説明

粉体分散装置および粉体処理設備ならびにトナーの製造方法

【課題】 粉体中に含まれる粉体凝集物の含有率を低減することができる粉体分散装置を提供する。
【解決手段】 旋回流形成手段である気体噴射手段7によって気体を噴射し、粉体分散容器5内に旋回流を形成する。粉体供給手段6から粉体分散容器5内に供給される粉体凝集物を含む粉体は、粉体分散容器5内に形成される旋回流によって粉体分散容器5内で旋回し、旋回によって遠心力が付与されて粉体分散容器5の内周面4に衝突し、その後粉体分散容器5の内周面4に接触した状態で排出口部3側に移動しながら粉体分散容器5の内周面4に沿って移動する。このときの衝突力および動摩擦力によって、粉体に含まれる粉体凝集物を分散させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、粉体分散装置および粉体処理設備ならびにトナーの製造方法に関する。
【背景技術】
【0002】
画像形成に用いられるトナーは、少なくとも結着樹脂および着色剤を含む組成物である。結着樹脂は、それ自身では成型できない着色剤を結着樹脂中に分散させて成型するための樹脂である。着色剤は、有機もしくは無機顔料または染料などの色材である。トナーには、結着樹脂および着色剤の他に、ワックスおよび帯電制御剤などの添加剤が含有されてもよい。トナーは、たとえば粉砕法、懸濁重合法または乳化重合法などの製造方法によって製造される。
【0003】
上記のようなトナーの製造方法の中でも製造コストなどの点で特に好ましい粉砕法を用いるトナーの製造は、たとえば次のようにして行なわれる。ミキサーなどの混合機を用いて結着樹脂、着色剤および添加剤を含む原料を混合した後、原料の温度が結着樹脂の軟化点以上となるように保持しながら混練し、着色剤および添加剤を、軟化または溶融した結着樹脂中に分散させる溶融混練工程を行なう。溶融混練工程によって得られる溶融混練物は、次の粉砕工程において粉砕される。粉砕工程では、まず溶融混練物の固化物をハンマー式の粉砕機などで粗粉砕し、100μm〜5mm程度の粒径を有する粗粉砕物とする。次いで、超音速ジェット気流を利用して粉砕するジェット式粉砕機または高速で回転する回転子(ロータ)と固定子(ライナー)との間に形成される空間に粗粉砕物を導入して粉砕する衝撃式粉砕機などを用いて、5μm〜15μm程度の粒径の樹脂粒子からなる粉体を生成する。粉砕工程で生成される粉体は、分離工程においてたとえば粒径の違いなどに応じて分離され、分離される所望の粒径の範囲に含まれる粉体を、トナー粒子として得る。
【0004】
このようにして得られるトナー粒子としては、形成される画像の高精細化を目的として、一層粒径の小さいトナー粒子、たとえば粒径が8.0μm以下の小粒径のトナー粒子が求められている。トナー粒子の粒径が小さくなると、トナー粒子同士に働く静電気力および分子間力がトナー粒子に働く重力および慣性力に比べて大きくなること、またトナー粒子の比表面積が大きくなり付着力が増大することなどによって、トナー粒子同士の凝集が起こりやすくなる。
【0005】
またカラートナーを製造する場合、結着樹脂として透光性および光沢性を有する樹脂であって、黒色トナーに用いる結着樹脂よりも軟化点の低い結着樹脂が用いられる。軟化点の低い結着樹脂を用いると、トナー粒子同士の摩擦で発生する摩擦熱によって結着樹脂が軟化し、トナー粒子同士が付着しやすくなる。したがって、カラートナーを製造する場合、黒色トナーを製造する場合よりもトナー粒子同士の凝集が生じやすくなる。
【0006】
このようなトナー粒子同士の凝集は、溶融混練工程で得られる溶融混練物を粉砕する粉砕工程を終えてから、分離工程を開始するまでの間にも生じる。分離工程とは、たとえば上記のような溶融混練工程と粉砕工程とを含む粉体生成工程で生成された樹脂粒子を、所望の性質を有する粒子群と、所望の性質を有しない粒子群とに分離する工程である。分離工程とは、たとえば、粉体生成工程で生成された樹脂粒子を所望の粒径の範囲に含まれる粒子群と所望の粒径の範囲に含まれない粒子群とに分級する分級工程である。粉体生成工程にて得られた粉体中の樹脂粒子同士が凝集すると、粉体生成工程後に行われる分離工程が正しく行なわれないという問題が発生する。
【0007】
粉体中の樹脂粒子同士が凝集する状態で分離工程、たとえば粒径の違いによって粉体を分離する分級工程が行なわれると、具体的には次のような問題が生じる。たとえば、粉体に含まれる所望の粒径の範囲よりも小さい樹脂粒子が凝集し、樹脂粒子同士の凝集によって生じる粉体凝集物が1個の樹脂粒子としてみなされると、1個の樹脂粒子としてみなされた粉体凝集物が製品としてのトナーに含まれることとなる。このような粉体凝集物がトナー中に含まれると、トナー粒子同士の摩擦によって粉体凝集物が分散されて所望の粒径よりも小さい微粉粒子の含有率が高くなるので、トナーの帯電不均一性を招来し、画像かぶりの発生など形成画像への悪影響が生じる。
【0008】
また粉体に含まれる所望の粒径の範囲に含まれる樹脂粒子が凝集し、粉体凝集物が1個の樹脂粒子としてみなされると、本来トナーに含まれるべき粒径を有する樹脂粒子を含む粉体凝集物が所望の粒径よりも大きい粗粉として扱われることとなり、廃棄されるかまたは分級工程の前の工程、たとえば溶融混練物の固化物とともに粉砕され樹脂粒子の生成が行なわれる粉砕工程に戻される。これによって、粉体生成工程において得られる粉体の量よりも、分級工程後に得られるトナーの量が著しく少なくなり、粉体生成工程において得られる粉体の重量に対する分級工程後に得られるトナーの重量の比率であるトナーの収率が低下する。
【0009】
またトナーの製造においては、単位時間当りに得られるトナーの量を増加させること、すなわちトナーの製造効率を高めることが求められている。分級工程では、樹脂粒子同士の凝集の発生を防止するために、分級装置に投入する単位時間当りの粉体投入量が定められている。トナーの製造効率を高めるためには単位時間当りの粉体投入量を増加させることが必要であるけれども、単位時間当りの粉体投入量を増加させることは、粉体に含まれる樹脂粒子同士の接触回数を増加させ、樹脂粒子同士の凝集を一層発生しやすくする。したがって、単位時間当りの粉体投入量を増加させてトナーの製造効率を高めることは困難である。
【0010】
このような問題は、粉体生成工程と分級工程との間で凝集する粉体を、充分に分散させた状態、すなわち粉体凝集物の含有率が低減された状態で分級装置に導入することによって解決できると考えられる。またこれによって、トナーの収率および製造効率を向上させるとともに、所望の粒径よりも小さい微粉の含有率が低いトナーを得ることができると考えられる。
【0011】
凝集する粉体を充分に分散させた状態で分級を行なう分級装置としては、気流を利用して粉体を粒度に応じて分離する気流式の分級装置が提案されている(たとえば、特許文献1参照)。特許文献1に開示の分級装置は、粉体を分級するための旋回分級室であって、該分級室の下部に形成されて粉体凝集物および所定の粒径よりも大きい粒子を該分級室の外部に排出する粗粉排出口、粗粉排出口の上方に回転自在に支持されて外部から該分級室に供給される粉体をその側面に衝突させて粉体に含まれる粉体凝集物を分散させる回転部材、回転部材の上方に設けられて該分級室内部に浮遊する粉体凝集物を回収して該分級室の外部に排出する粗粉回収口、ならびに該分級室の上部であって、回転部材の上方に形成されて分散された微粉を外部に排出する微粉排出口を有する旋回分級室と、回転部材と同じ高さの旋回分級室側面に設けられて、分級処理されるべき粉体を回転部材に向けて回転部材の回転方向と同じ方向に気流噴射する粉体供給ノズルと、回転部材と同じ高さの旋回分級室側面の粉体供給ノズルと対向する位置に設けられて、粉体凝集物を回転部材の側面に向けて回転部材の回転方向と同じ方向に気流噴射する粗粉供給ノズルと、粗粉排出口および粗粉回収口から排出される粉体凝集物を粗粉供給ノズルに搬送する粉体凝集物搬送手段とを含んで構成される。
【0012】
このような分級装置によれば、粉体供給ノズルから粉体を気流噴射して回転部材に衝突させて粉体に含まれる粉体凝集物を分散させる。分散された粉体中の微粉は気流に乗って旋回分級室内部を上昇し、微粉排出口から排出される。分散が充分に行なわれなかった粉体凝集物および所定の粒径よりも大きい粒子も気流に乗ってある程度までは旋回分級室内部を上昇するけれども、自重によって下降し、粗粉排出口および粗粉回収口から外部に排出されて粗粉供給ノズルに搬送され、再び回転部材に向けて気流噴射されて分散される。粉体凝集物については、分散されて所望の粒径を有する粒子になるまで、同じサイクルが繰返し実行される。このようにして、製品として粒度分布の狭いトナー粒子を得ることができる。
【0013】
特許文献1に開示される分級装置では、粉体生成工程と分級工程との間に粉体の凝集が生じても、粉体凝集物を回転部材に衝突させるときの衝突力によって粉体凝集物を分散させることができることが期待されるけれども、粉体を充分に分散させ、粉体中の粉体凝集物の含有率を低減することは困難である。
【0014】
特許文献1に開示される分級装置では、回転部材に衝突させるとともに粉体を上方に移動させるように気流が噴射されるので、回転部材と粉体との衝突力が小さい。回転部材と粉体との衝突力が小さいと、小粒径のカラートナーを製造する場合に、粉体凝集物の凝集力が大きいことによって、粉体凝集物を分散させることが困難となる。また粉体を旋回分級室の上部まで上昇させる必要があるので、粉体と回転部材との衝突回数を増加することも困難であり、粉体凝集物の含有率が低減された状態で粉体を分級することができない。したがって、特許文献1に開示される分級装置では、トナーの収率および製造効率を向上させることが困難であるとともに、分級工程後の粉体として、所望の粒径よりも小さい粒子の含有率が低減されたものを得ることができない。
【0015】
【特許文献1】実開平1−65652号公報
【発明の開示】
【発明が解決しようとする課題】
【0016】
本発明の目的は、粉体中に含まれる粉体凝集物の含有率を低減することができる粉体分散装置および粉体処理設備を提供することである。また本発明の目的は、粉体処理設備を用いてトナーの製造効率を向上させるとともに、分離すべき粒子よりも小さい粒子のトナー中での含有率を低減できるトナーの製造方法を提供することである。
【課題を解決するための手段】
【0017】
本発明は、粉体が供給される供給口部および粉体を排出する排出口部が形成され、内周面が円筒形状に形成される周壁を備える粉体分散容器と、
供給口部から粉体分散容器内に、粉体を供給する粉体供給手段と、
粉体分散容器内に、粉体分散容器内の気体の旋回流を形成する旋回流形成手段とを含むことを特徴とする粉体分散装置である。
【0018】
また本発明は、旋回流形成手段は、
周壁に形成される気体噴射口部から、粉体分散容器の軸線に向かう方向からずれた方向へ、気体を噴射する気体噴射手段であることを特徴とする。
【0019】
また本発明は、排出口部は、
粉体分散容器の軸線方向一端部に形成され、
気体噴射手段は、粉体分散容器の軸線に垂直な仮想平面に対して軸線方向他端部側に傾斜する方向へ、気体を噴射することを特徴とする。
【0020】
また本発明は、気体噴射口部は、
供給口部に対して排出口部寄りの位置に形成されることを特徴とする。
【0021】
また本発明は、排出口部は、
周壁から半径方向内方へ間隔をあけた位置に形成されることを特徴とする。
【0022】
また本発明は、前記本発明の粉体分散装置と、
粉体分散装置によって分散された粉体を粒径、密度または形状の違いによって分離する分離装置とを含むことを特徴とする粉体処理設備である。
【0023】
また本発明は、分離装置には、粉体分散装置によって分散された粉体が投入される投入口部が形成され、
粉体分散装置の排出口部が、分離装置の投入口部に装着されることを特徴とする。
【0024】
また本発明は、結着樹脂および着色剤を含む樹脂粉体を生成する粉体生成工程と、
前記本発明の粉体処理設備を用いて、粉体生成工程で生成される樹脂粉体を処理してトナーを得る粉体処理工程とを含むことを特徴とするトナーの製造方法である。
【発明の効果】
【0025】
本発明によれば、旋回流形成手段で形成される粉体分散容器内の気体の旋回流によって、粉体供給手段から供給口部を介して供給される粉体が粉体分散容器内で旋回する。粉体には、旋回によって遠心力が付与され、その遠心力によって円筒形状に形成される粉体分散容器の内周面に粉体凝集物を含む粉体が衝突する。粉体に含まれる粉体凝集物は、この粉体と内周面との衝突力によって分散される。さらに粉体分散容器の内周面に衝突した粉体は、粉体分散容器の内周面に接触する状態で、旋回流形成手段で形成される旋回流によって、粉体分散容器の内周面に沿って粉体分散容器内を旋回しながら排出口部側に移動する。このとき、粉体分散容器内周面に対する粉体凝集物のすべり、粉体分散容器内周面での粉体凝集物の転がりなどによって粉体分散容器の内周面から粉体凝集物に対して動摩擦力が付与され、粉体分散容器の内周面への衝突によっても分散されなかった粉体凝集物は、この動摩擦力によって分散される。
【0026】
このようにして粉体に含まれる粉体凝集物が衝突力および動摩擦力によって分散されるので、粉体中の粉体凝集物の含有率を低減することができる。粉体を分散させるために気体の旋回流を形成し、粉体を粉体分散容器内で旋回させて遠心力を付与することによって粉体を分散させることができる本発明の粉体分散装置では、粉体と粉体分散容器が衝突する時間よりも長い時間、粉体に粉体分散容器の内周面からの動摩擦力が作用するので、衝突のみによって粉体を分散させるよりも確実に、粉体中の粉体凝集物の含有率を低減することができる。
【0027】
また本発明によれば、気体噴射手段が周壁に形成される気体噴射口部から粉体分散容器の軸線に向かう方向からずれた方向へ気体を噴射することによって、円筒形状に形成される内周面に沿うような旋回流を粉体分散容器内に形成することができる。また旋回流形成手段として気体噴射手段を用いることによって、たとえば粉体分散容器内の気体を機械的に撹拌することによって旋回流を形成する場合に比べて、粉体分散容器内における粉体旋回領域を大きく確保することができる。
【0028】
また本発明によれば、排出口部が粉体分散容器の軸線方向一端部に形成され、気体噴射手段は粉体分散容器の軸線に垂直な仮想平面に対して軸線方向他端部側に傾斜する方向へ気体を噴射するので、この気体の圧力によって、粉体に排出口部に向かう側と反対側に向かうような力が付与される。これによって、気体噴射手段が気体を噴射する方向が粉体分散容器の排出口部側に傾斜しない場合よりも、排出口部に向かう粉体の速度が低減され、粉体が粉体分散容器内に留まる時間を長くすることができるので、粉体に対する動摩擦力の付与を一層長い時間行なえ、粉体中の粉体凝集物の含有率を一層低減することができる。
【0029】
また本発明によれば、気体噴射口部が供給口部に対して排出口部寄りに形成されるので、気体噴射手段によって形成される旋回流の流速が最も大きい領域に向けて粉体を供給することができる。旋回流の流速が最も大きい領域に粉体が供給されると、旋回流の流速が最大である領域に粉体が供給される場合に比べて粉体の旋回速度を増加させることができ、粉体に付与される遠心力も大きくなるので、粉体と粉体分散容器の内周面との衝突力および粉体分散容器から粉体に作用する動摩擦力も大きくすることができ、粉体を一層確実に分散させることができる。
【0030】
また本発明によれば、排出口部は周壁から半径方向内方へ間隔をあけた位置に形成されるので、排出口部の半径方向外方の縁部から粉体分散容器の周壁までの部分では粉体が排出されない。これによって、粉体に付与される遠心力によって粉体分散容器の周壁寄りで旋回する粉体および内周面に接触しながら旋回する粉体については排出口部から排出されにくくなる。また粉体中に含まれる粉体凝集物の重量は、凝集していない粉体中の粒子の重量に比べて大きく、粉体分散容器の周壁寄りまたは内周面に接触しながら旋回する。したがって、粉体分散容器の周壁寄りまたは内周面に接触しながら旋回する粉体凝集物が排出口部から排出されて分離装置に投入されることを防止でき、分離装置での分離精度が向上する。
【0031】
また本発明によれば、前記本発明の粉体分散装置によって分散され、粉体凝集物の含有率が低減された粉体を、粒径、密度または形状の違いによって分離する分離装置を含む粉体処理設備が提供される。このような粉体処理設備では、粉体凝集物の含有率の低い粉体から所望の密度または形状の粉体を分離することができ、凝集した複数の粒子が1つの粒子としてみなされて分離が行なわれることが防止されるので、粉体の分離精度の向上を図ることができる。
【0032】
また本発明によれば、投入口部から投入される粉体を分離する分離装置の投入口部に、粉体分散装置の排出口部が装着されるので、粉体分散装置で分散させた直後の粉体凝集物の含有率が低減された粉体を、分離装置内に迅速に導入することができる。したがって、粉体分散装置で粉体が分散された後、分散された粉体が放置されることによって、分離すべき粉体が再度凝集することを防止することができ、粉体凝集物が1個の粒子とみなされて分離工程が行なわれることが防止されるので、分離精度を一層向上することができる。
【0033】
また本発明によれば、粉体生成工程で生成され、結着樹脂および着色剤を含む樹脂粉体を、前記本発明の粉体処理設備を用いて処理する粉体処理工程が行なわれるので、粉体処理工程において樹脂粉体中に含まれる粉体凝集物の含有率の低減が図られるとともに、粉体凝集物の含有率が低減された樹脂粉体を分離することができる。したがって、製造されたトナーは、粉体凝集物の含有率の低い粉体が粒径、密度または形状の違いによって分離されて得られる。これによって、所望の性質を有するトナーを得ることができ、たとえば粉体を粒径の違いによって分離する場合、トナー中の微粉の含有率が低減されたトナーを得ることができる。トナー中の微粉の含有率が低減されたトナーは、帯電均一性に優れるので、画像かぶりなどの発生を抑制し、優れた画像を形成することができる。
【発明を実施するための最良の形態】
【0034】
図1は本発明の実施の第1形態である粉体分散装置1の構成を概略的に示す断面図であり、図2は図1の粉体分散装置1の正面図であり、図3は粉体分散装置1の断面図である。図1は、内周面4が円筒形状に形成される粉体分散容器5の半径方向に垂直な平面で粉体分散装置1を切断したときの断面図である。図3は、図1および図2に示す切断面線III−IIIで粉体分散装置1を切断したときの断面図である。図1では、粉体供給手段6の輸送管6bと、気体噴射手段7の噴射ノズル7bとの粉体分散容器5の軸線5a方向における位置関係を示すために、輸送管6bおよび噴射ノズル7bの取付け位置を変更して示す。
【0035】
粉体分散装置1は、粉体が供給される供給口部2および粉体を排出する排出口部3が形成され、内周面4が円筒形状に形成される周壁8を備える粉体分散容器5と、供給口部2から粉体分散容器5内に粉体を供給する粉体供給手段6と、粉体分散容器5内に、粉体分散容器5内の気体の旋回流Cを形成する旋回流形成手段である気体噴射手段7とを含むことを特徴とする。ここで粉体とは粒子の集合体を意味し、粉体凝集物とは複数の粒子が凝集した凝集粉を意味する。粉体は、凝集した複数の粒子である粉体凝集物と凝集していない粒子とから構成される。
【0036】
本実施形態の粉体分散容器5は、内周面4が円筒形状に形成される周壁8を備える容器であり、粉体分散容器5の上部に粉体が供給される供給口部2が形成され、下部に粉体を排出する排出口部3が形成される。供給口部2は、粉体分散容器5の周壁8に形成され、排出口部3は、粉体分散容器5の底部において分級装置10と粉体分散容器5とが接続される部分である粉体分散容器5のフランジ9の部分に形成される。
【0037】
粉体供給手段6は、供給口部2から粉体分散容器5内に粉体を供給する。粉体供給手段6は、たとえば粉体生成装置などによって生成される粉体を粉体分散容器5内に供給する。粉体供給手段6は、粉体生成装置によって生成される粉体を一時的に貯留する貯留容器および振動フィーダを備える粉体供給部6aと、粉体を圧送するための気体供給源である圧縮空気導入ノズルと、粉体供給部6a中の粉体を粉体分散装置1の供給口部2に導入するための輸送管6bとを含んで構成される。輸送管6bは、圧縮空気導入ノズルに接続され、圧縮空気導入ノズルによって導入される空気導入方向の圧縮空気導入ノズルよりも下流側に、粉体供給部6aおよび粉体分散容器5の供給口部2がこの順番で接続される。粉体分散容器5と輸送管6bとは、一体的に形成されてもよい。
【0038】
粉体供給手段6によれば、まず、圧縮空気導入ノズルから輸送管6b内に圧縮空気を導入するとともに、粉体供給部6aの貯留容器内に貯留される粉体を、振動フィーダによって貯留容器から輸送管6b内に供給する。輸送管6b内に供給される粉体は、圧縮空気導入ノズルから導入される圧縮空気によって圧送され、輸送管6bの空気導入方向下流側に接続される粉体分散装置1の供給口部2から粉体分散容器5の半径方向内方に向かうようにして粉体分散容器5内に導入される。
【0039】
粉体供給手段6によって粉体を導入するときの圧縮空気の圧力と粉体分散容器5内の気体の圧力との差(以後、単に圧縮空気の圧力と称する)としては、単位時間当りに供給する粉体の量にもよるけれども、たとえば、単位時間当りに供給する粉体の量が毎時25kg以上35kg以下である場合、0.1MPa以上0.6MPa以下であることが好ましい。
【0040】
圧縮空気の圧力が上記範囲にあると、供給口部2から粉体分散容器5内に導入される粉体の供給量を一定にすることができる。また粉体の輸送管6b内での粉体を圧送する力が小さくなり過ぎることがないので、粉体分散容器5の半径方向内方に粉体を供給することができる。これによって、後述の気体噴射手段7によって形成される旋回流Cで粉体が旋回し、粉体に付与される遠心力による粉体と粉体分散容器5の内周面4とが衝突するときの衝突力で粉体中の粉体凝集物を分散させることができる。圧縮空気の圧力が0.1MPa未満であると、粉体分散容器5の半径方向内方に粉体を圧送する力が小さくなり、旋回流Cによって遠心力が付与されるときに粉体分散容器5の内周面4と供給された粉体との粉体分散容器5半径方向における距離が短くなるので、内周面4と粉体との衝突力が小さくなるおそれがある。圧縮空気の圧力が0.6MPaを超えると、輸送管6b内で粉体が飛散し、粉体を均一な供給量で粉体分散容器5内に導入することが困難となるおそれがある。
【0041】
また粉体を供給する圧縮空気の供給口部2における噴射速度(以後、供給噴射速度とも呼ぶ)は、秒速0.4m以上1.0m以下であることが好ましい。ここで供給噴射速度とは、供給口部2において輸送管6bから噴射される気体の速度であるので、供給噴射速度は供給口部2から供給される粉体の速度とは必ずしも一致せず、実際の粉体の速度は前記供給噴射速度よりも多少低くなる。供給噴射速度が上記好適な範囲であると、粉体分散容器5の半径方向について軸線5a寄りに粉体を供給することが可能であり、粉体分散容器5内に形成される旋回流Cで粉体が旋回し、遠心力が付与されることによって粉体と粉体分散容器5の内周面4とが衝突するときの衝突力を大きくすることができ、粉体に含まれる粉体凝集物を分散させることができる。供給噴射速度が秒速0.4m未満であると、粉体分散容器5の半径方向内方に向かう粉体の速度が低くなり、粉体分散容器5の内周面4と供給された粉体との粉体分散容器5半径方向における距離が短くなるので、粉体が旋回して遠心力が付与されることによる内周面4と粉体との衝突力が小さくなるおそれがある。供給噴射速度が秒速1.0mを超えると、気体噴射手段7によって形成される粉体分散容器5内での旋回流Cの気流を乱し、粉体を粉体分散容器5内で旋回させることができなくなるおそれがある。
【0042】
図4は、粉体分散装置1の粉体分散容器5の一部を拡大して示す断面図である。図4は、粉体分散容器5の軸線5a方向に垂直な平面で切断したときの、粉体分散容器5の供給口部2付近を拡大して示す断面図である。
【0043】
供給口部2からの粉体の供給は、図4に示すように、圧縮空気の導入方向、すなわち輸送管6bの延びる方向と、供給口部2における粉体分散容器5の内周面4の接線4aとが成す角度(以後、粉体導入角度と称する)をαとするとき、粉体導入角度αが10°以上70°以下となるように行なわれることが好ましい。粉体導入角度αは、より具体的には、粉体分散容器5内に形成される旋回流Cの旋回方向下流側における供給口部2と輸送管6bとの接続部分における粉体分散容器5の内周面4の接線4aと、輸送管6bの延びる方向と平行な仮想線とが成す角度である。
【0044】
粉体導入角度αが上記好適な範囲であると、後述の気体噴射手段7によって粉体が旋回され、粉体が旋回することによって粉体に働く遠心力で粉体が粉体分散容器5の内周面4に衝突するときの衝突力を大きくすることができ、粉体と粉体分散容器5の内周面4との衝突力によって粉体中に存在する粉体凝集物を分散させることができる。粉体導入角度αが10°未満であると、粉体分散容器5の内周面4と供給された粉体との粉体分散容器5半径方向の距離が短くなるので、粉体の旋回によって遠心力が付与されることによる内周面4と粉体との衝突力が小さくなるおそれがある。粉体導入角度αが70°を超えると、粉体分散容器5の半径方向における中央付近に粉体が供給され、気体噴射手段7によって気体を噴射しても粉体を旋回させることが困難となるおそれがある。
【0045】
粉体分散容器5の軸線5a方向一端部のフランジ9には、分散された粉体を分級装置10に供給するための排出口部3が形成される。本実施形態では、排出口部3は粉体分散容器5の下部に形成される。排出口部3は、後述の図6で示す粉体生成装置22にて生成された樹脂粉体を粒径の違いによって分離(以後、分級とも呼ぶ)する分離装置である分級装置10の投入口部11に、粉体分散容器5の内部空間と分級装置10の不図示の粉体分級容器の内部空間とを連通するように、粉体分散容器5のフランジ9において装着される。
【0046】
気体噴射手段7は、図3に示すように、粉体分散容器5の周壁に形成される気体噴射口部7aから、粉体分散容器5の軸線5aに向かう方向からずれた方向へ、気体を噴射する。さらに本実施形態では、気体噴射手段7は、粉体分散容器5の軸線5aに垂直に、すなわち本実施形態では水平に、気体を噴射する。本実施形態の気体噴射手段7は、空気を噴射する噴出孔が形成され、気体噴射口部7aが形成される噴射ノズル7bと、圧縮空気を生成し、生成される圧縮空気を噴射ノズルに供給するポンプ、および噴射ノズル7bとポンプとを接続する配管を備える気体噴射部7cとを含んで構成される。
【0047】
気体噴射手段7の噴射ノズル7bは、分散させるべき粉体の単位時間当りの供給量、粉体分散容器5の大きさなどに応じて個数が選択され、複数個が設けられる。本実施形態では、図3に示すように4個の噴射ノズル7bが設けられる。また各噴射ノズル7bは粉体分散容器5の円周方向に等間隔で配置される。これによって、粉体分散容器5内に旋回流を形成することができる。図1では、4個設けられる噴射ノズル7bのうち2個だけを示し、さらにそのうちの1つを除いて気体噴射部7cの記載を省略する。
【0048】
本実施形態では、気体噴射手段7は、粉体分散容器5の軸線5a方向における気体噴射口部7aの排出口部3側の端部と排出口部3との距離L1が、粉体分散容器5の軸線5a方向における供給口部2の排出口部3側の端部と排出口部3との距離L2よりも長くなるように設けられる。本実施形態のように粉体分散容器5の上部に供給口部2が形成され、下部に排出口部3が形成される場合、気体噴射手段7は、その気体噴射口部7aが供給口部2に対して上側に形成されるように設けられる。
【0049】
気体噴射口部7aと排出口部3との距離L1は、たとえば気体噴射手段7から噴射される気体の圧力、粉体分散容器5の大きさ、気体噴射口部7aと供給口部2との距離|L1−L2|などに応じて定められる。気体噴射口部7aと排出口部3との距離L1が長くなると、粉体が粉体分散容器5内に留まる時間が長くなり、粉体を分散させる時間を長くすることができるので粉体中での粉体凝集物の含有率を低減することができるけれども、距離L1が長くなり過ぎると、排出口部3付近での旋回流Cの流速が低くなり、粉体が粉体分散容器5の内周面4で集合することによって再凝集を発生するおそれがある。したがって、気体噴射口部7aと排出口部3との距離L1は、これらを勘案して定められることが好ましい。
【0050】
気体噴射口部7aと排出口部3との距離L1が供給口部2と排出口部3との距離L2よりも長い場合、すなわちL1>L2である場合、気体噴射口部7aと供給口部2との距離|L1−L2|は、10cm以下であることが好ましく、3cm以下であることがより好ましい。気体噴射口部7aと供給口部2との距離|L1−L2|が10cm以下であると、気体噴射口部7aと供給口部2との距離が短く、気体噴射手段7から気体が噴射されることによって粉体分散容器5内に形成される旋回流Cの流速が高い部分に粉体を供給することができるので、粉体に付与される遠心力も大きくなり、一層強い衝突力で粉体凝集物を分散させることができる。
【0051】
気体噴射手段7から噴射される気体の圧力(以後、気体噴射圧力とも称する)としては、粉体分散容器5内に旋回流を形成することができ、その旋回流によって粉体を旋回させるとともに、旋回される粉体を遠心力によって粉体分散容器5の内周面4に接触させることができるような気流が形成できれば、特に限定されない。
【0052】
気体噴射圧力の具体的な値としては、供給される粉体の量、粉体分散容器5の大きさなどにもよるけれども、たとえば、粉体分散容器5の内径Dが8cm以上30cm以下であって、容積が1500cm以上15000cm以下である粉体分散容器5に、毎時25kg以上35kg以下の粉体を供給する場合、0.4MPa以上0.8MPa以下であることが好ましい。
【0053】
気体噴射圧力が上記のような好ましい範囲であると、粉体分散容器5内に気体の旋回流Cを形成することができ、この旋回流Cによって粉体が粉体分散容器5内で旋回し、粉体に遠心力を付与することができる。旋回によって遠心力が付与された粉体は、粉体分散容器5の内周面4に衝突し、その後粉体分散容器5の内周面4に接触した状態で粉体分散容器5の内周面4に沿って移動する。このような粉体と粉体分散容器5の内周面4との衝突力、および粉体と粉体分散容器5の内周面4との動摩擦力によって、粉体に含まれる粉体凝集物を分散させることができる。
【0054】
気体噴射圧力が0.4MPa未満であると、気体を噴射することによって形成される旋回流Cの流速が小さく、粉体分散容器5内で粉体を旋回させることができないおそれがある。また粉体を旋回させることができたとしても、粉体に働く遠心力が小さく、粉体と粉体分散容器5とを衝突させることができないおそれがある。気体噴射圧力が0.8MPaを超えると、粉体と粉体分散容器5の内周面4との衝突力および動摩擦力が大きくなり過ぎ、粉体中の凝集していない粒子が粉砕されて所望の粒径よりも小さい粒子である微粉が粉体中に多く含まれるおそれがある。
【0055】
また排出口部3からの距離が気流噴射口部7aと排出口部3との距離L1に等しい部分の旋回流Cの流速であって、粉体分散容器5の内周面4付近での旋回流Cの流速としては、その旋回流によって粉体を旋回させ、旋回される粉体を遠心力によって粉体分散容器5の内周面4に接触させることができれば、特に限定されない。
【0056】
旋回流Cの流速の具体的な値としては、たとえば、粉体分散容器5の内径Dが8cm以上30cm以下であって、容積が1500cm以上15000cm以下である粉体分散容器5に毎時25kg以上35kg以下の粉体を供給する場合、秒速0.8m以上1.2m以下であることが好ましい。旋回流Cの流速がこのような範囲であると、粉体に対して好適な大きさの遠心力を付与することができ、粉体凝集物を分散させることができる。また粉体分散容器5の排出口部3が分級装置10の投入口部11に装着される場合であっても、排出口部3付近の旋回流Cの流速は空気抵抗によって低減されるので、分級装置10の粉体分級容器内の気流に対する影響を生じない。
【0057】
旋回流Cの流速が秒速0.8m未満であると、粉体に対して付与する遠心力が小さく、粉体凝集物を分散させることができないおそれがある。旋回流Cの流速が秒速1.2mを超えると、粉体に付与される遠心力が大きくなりすぎ、粉体中の凝集していない粒子が粉砕されるおそれがある。また粉体分散容器5の排出口部3が分級装置10の投入口部11に装着される場合、分級装置10の粉体分級容器内の気流に対して影響を与え、分級装置10として気流式の分級装置などを用いるときに正しく分級が行なえなくなるおそれがある。
【0058】
図5は、粉体分散装置1の粉体分散容器5の一部を拡大して示す断面図である。図5は、粉体分散容器5の軸線5a方向に垂直な平面で切断したときの、粉体分散容器5の気体噴射口部7a付近を拡大して示す断面図である。
【0059】
気体噴射手段の噴射ノズル7bからの気体の噴射は、図5に示すように、気体噴射方向、すなわち噴射ノズル7bの延びる方向と、気体噴射口部7aにおける粉体分散容器5の内周面4の接線4bとが成す角度(以後、気体噴射角度と称する)をβとするとき、気体噴射角度βが粉体導入角度αよりも小さくなるように、すなわち気体噴射角度β<粉体導入角度αとなるように、気体噴射角度βが設定される。気体噴射角度βを粉体導入角度αよりも小さくすると、粉体分散容器5の内周面4付近で旋回流を形成することができ、供給口部2から供給された粉体を気体噴射手段7から噴射される気体によって粉体分散容器5内で旋回させることが容易に行なえる。気体噴射角度βが粉体導入角度α以上の大きさであると、粉体を粉体分散容器5内で旋回させることが困難となる。
【0060】
また気体噴射角度βは40°未満であることが好ましく、10°以上40°未満であることがさらに好ましい。気体噴射角度βがこのような範囲であると、気体噴射手段7から噴射される気体の圧力が粉体分散容器5の内周面4に沿う方向において大きくなるので、粉体を粉体分散容器5内で旋回させることが容易に行なえる。気体噴射角度βが40°以上であると、粉体分散容器5内で、粉体分散容器5の内周面4に沿うような旋回流Cを形成することが困難となるおそれがある。気体噴射角度βが10°未満であると、粉体分散容器5の周壁8から半径方向内方に向かうにつれて旋回流Cの流速が小さくなるので、粉体が粉体分散容器5の半径方向について軸線5a寄りに供給される場合において、粉体を粉体分散容器5内で旋回させることができなくなるおそれがある。
【0061】
粉体分散装置1では、まず、気体噴射手段7によって気体が噴射され、粉体分散容器5内に、粉体分散容器5の内周面4に沿うような気流の流れである旋回流Cが形成される。このような旋回流Cが形成されると、粉体分散容器5内に、粉体供給手段6から供給口部2を介して、粉体生成装置によって造粒された粉体凝集物を含む粉体が導入される。供給口部2から供給される粉体凝集物を含む粉体は、粉体分散容器5内に形成される旋回流Cによって粉体分散容器5内で旋回し、その旋回によって遠心力が付与される。遠心力が付与された粉体は、粉体分散容器5の内周面4に衝突し、その後粉体分散容器5の内周面4に接触した状態で、重力で下方に移動しながら粉体分散容器5の内周面4に沿って移動する。このような粉体と粉体分散容器5の内周面4との衝突力、粉体と粉体分散容器5の内周面4との動摩擦力によって、粉体に含まれる粉体凝集物が分散される。このようにして分散され、粉体凝集物の含有率が低減された粉体は、重力によって下方に移動しながら粉体分散容器5内を旋回し、矢符12で示すように排出口部3から排出される。
【0062】
このような粉体分散装置1は、たとえば、結着樹脂および着色剤を含む画像形成用のトナーの製造などに用いられる。
【0063】
このような粉体分散装置1は、上記の構成に限定されることなく、種々の変更が可能である。
【0064】
図6は、粉体分散装置1が設けられるトナー製造装置21の回路図である。トナー製造装置21は、結着樹脂および着色剤を含む樹脂粉体を生成する粉体生成装置22と、本実施形態の粉体分散装置1と、粉体分散装置1によって分散された粉体を粒径の違いによって分離する分離装置である分級装置10とを含んで構成される。粉体分散装置1と、分級装置10とは、粉体処理設備23を構成する。
【0065】
本実施形態の粉体分散装置1は、結着樹脂および着色剤を含む樹脂粉体を生成する粉体生成装置22と、粉体生成装置22にて造粒された樹脂粉体を粒径の違いによって分離(以後、分級とも呼ぶ)する分級装置10との間に設けられる。また少なくとも分級装置10は粉体分散装置1に連なるように設けられる。トナー製造装置21を用いるトナーの製造方法については後述する。
【0066】
粉体分散装置1に連なるように設けられる分級装置10は、粉体分散装置1によって分散される粉体を分級する分級手段と、粉体分散装置1の排出口部3から排出される粉体が投入される投入口部11を有する粉体分級容器とを含む。
【0067】
本実施形態では、分級装置10として、投入口部11から投入される粉体を、粒径の違いによって分級する気流式分級装置を用いる。気流式分級装置は、粉体分級容器内に羽根車型の分級ロータを備え、分級ロータの回転によって粉体に作用する遠心力が重量の違いによって異なることを利用して、導入される粉体を、相対的に粒径が大きく重量の大きい粉体と、相対的に粒径が小さく重量の小さい粉体とに分級する。粒径の大きい粉体は、作用する遠心力が粒径の小さい粉体に作用する遠心力よりも大きいことによって、粉体分級容器内の外周寄りの部分で旋回する。また粒径の小さい粉体は、作用する遠心力が粒径の大きい粉体に作用する遠心力よりも小さいことによって、粉体分級容器内の中央寄りの部分で旋回する。粉体分級容器の下部には、粉体分級容器中央部付近に存在する粉体を排出する微粉排出管と、粉体分級容器外周付近の粉体を排出する粗粉排出管とが設けられ、各排出管にはそれぞれの排出管から排出される粉体を回収する回収容器が備えられる。
【0068】
分級装置10による分級は、次のようにして行なわれる。まず、分級ロータが回転している状態で粉体分散装置1によって分散された粉体が導入される。導入される粉体は、分級ロータの回転による遠心力によって、相対的に粒径が大きい粉体は粉体分級容器内の外周寄りの部分を旋回し、相対的に粒径が小さい粉体は粉体分級容器内の中央寄りの部分を旋回するようにして分離される。ここで、分級装置においては、粉体が粉体分級容器の内壁にほとんど衝突および接触することなく粉体分級容器内を旋回し、分離される。このようにして分離される粉体は重力によってそれぞれ下降する。重力によって下降する粉体のうち、粉体分級容器内の外周寄りの部分を旋回する粉体、すなわち相対的に粒径の大きい粉体は、粗粉排出管から排出され回収される。また、重力によって下降する粉体のうち、粉体分級容器内の中央寄りの部分を旋回する粉体、すなわち相対的に粒径の小さい粉体は、微粉排出管から排出され回収される。このようにして、粉体の分級が行なわれる。
【0069】
粉体処理設備23では、粉体分散装置1によって分散される粉体凝集物の含有率の低い粉体を分級装置10によって分級することができる。したがって、分級装置10では、粉体分散装置で分散され、粉体凝集物の含有率が低減された粉体が分級されるので、所望の粒径未満の粒子同士が凝集した粉体凝集物が所望の粒径を有する粒子群に含まれること、および所望の粒径である粒子同士が凝集した粉体凝集物が所望の粒径を有する粒子群から外れることを防止することができるので、分級精度の向上を図ることができる。また分級装置10に粉体を投入するとき、投入量が多くなっても粉体を粉体分散容器5内で分散させることができ、粉体の再凝集を防止できる。これによって、単位時間当りの粉体投入量を増加させることができるので、トナーの製造効率が向上する。
【0070】
分級装置10としては、上記の構成に限定されることなく、たとえば篩式の分級装置を用いるなど、種々の変更が可能である。また粒径の違いによって粉体を分離する分級装置10に代えて、密度または形状の違いによって粉体を分離する分離装置などを用いることもできる。たとえば、粒径が似ているけれども密度が異なる粒子を含む粉体を密度の違いによって分離する分離装置としては、粉体に付与される遠心力を用いて分離する装置などを用いることができる。またたとえば、粒子の重量が似ているけれども形状が異なる粒子を含む粉体を形状の違いによって分離する分離装置としては、篩などによって分離する分離装置などを用いることができる。このような分離装置を用いる場合にも、粉体凝集物の含有率の低い粉体から所望の密度または形状の粉体を分離することができるので、複数の粒子が凝集した粉体凝集物が1つの粒子としてみなされることを防止でき、粉体の分離精度の向上を図ることができる。
【0071】
図7は、本発明の実施の第2形態である粉体分散装置31の構成を概略的に示す断面図である。粉体分散装置31は、前述の第1実施形態の粉体分散装置1に類似し、同一の構成である部分については同一の参照符号を付してその説明を省略する。図7では、図1の粉体分散装置1と同様に、粉体供給手段6の輸送管6bと、気体噴射手段32の噴射ノズル32bとの粉体分散容器5の軸線5a方向における位置関係を示すために、輸送管6bおよび噴射ノズル32bの取付け位置を変更して示す。
【0072】
本実施形態の粉体分散装置31は、排出口部3が粉体分散容器5の軸線5a方向一端部である下部に形成され、気体噴射手段32は、粉体分散容器5の軸線5aに垂直な仮想平面に対して軸線方向他端部側、すなわち上側に傾斜する方向へ、気体を噴射することを特徴とする。
【0073】
気体噴射手段32の噴射ノズル32bが上方に向けて気体を噴射するように設けられると、旋回によって粉体に付与される遠心力が、粉体分散容器5の軸線5aに垂直な仮想平面に対して上側について大きくなる。これによって、供給口部2から排出口部3に向かうように流下する粉体の排出口部3に向かう速度が低減され、粉体が粉体分散容器5内に留まる時間を長くすることができる。粉体が粉体分散容器5内に留まる時間が長くなると、粉体凝集物を分散させるために、粉体に動摩擦力が付与される時間も長くなるので、粉体中の粉体凝集物の含有率をさらに低減することができるので好ましい。
【0074】
ここで、気体噴射手段32が粉体分散容器5の軸線5aに垂直な仮想平面に対して排出口部3が形成される側と反対側に傾斜する方向へ、すなわち上方に向けて気体を噴射するように構成されると、気体噴射手段32によって気体が噴射される粉体分散容器5よりも圧力が低い粉体分級容器内に吸引するように粉体を排出口部3から吸引しようとする排出口部3付近での流速と、粉体分散容器5内の旋回流Cとによって、粉体に含まれる粉体凝集物が排出口部3から飛び出すことを防止できる。したがって、上方に向けて気体を噴射するように構成される場合、噴射ノズルの傾斜角度などにもよるけれども、気体噴射手段32から噴射する気体の圧力および旋回流Cの流速を、気体噴射手段32が粉体分散容器5の軸線5aに垂直に気体を噴射するときの旋回流Cの流速に比べて5〜20%の範囲で小さく設定することができる。
【0075】
図8は、粉体分散装置31の粉体分散容器5の一部を拡大して示す断面図である。図8は、粉体分散容器5の半径方向に垂直な平面で切断したときの、粉体分散容器5の気体噴射口部32a付近を拡大して示す断面図である。
【0076】
本実施形態のように、気体噴射手段32の噴射ノズル32bが粉体分散容器5の軸線5aに垂直な仮想平面に対して排出口部3が形成される側と反対側に傾斜する方向へ気体を噴射するように構成される場合、図8に示すように、気体噴射方向、すなわち噴射ノズル32bの延びる方向と、噴射ノズル32bが接続される部分における粉体分散容器5の内周面4とが成す角度(以後、ノズル傾斜角度と称する)をθとするとき、ノズル傾斜角度θは50°以上80°以下であることが好ましい。
【0077】
ノズル傾斜角度θがこのような範囲であると、気体の噴射が上方に向けて行なわれ、粉体に、粉体分散容器5の軸線5aに垂直な仮想平面に対して軸線5a方向他端部側の力が付与される。これによって、供給口部2から排出口部3に向かうように流下する粉体の排出口部3に向かう速度が低減され、粉体が粉体分散容器5内に留まる時間を長くすることができるので、粉体凝集物の分散を一層長い時間行なえ、一層確実に粉体中の粉体凝集物の含有率を低減することができる。
【0078】
ノズル傾斜角度θが50°未満であると、気体噴射口部7aよりも排出口部3側の粉体分散容器5内に、粉体分散容器5内の気体の旋回流Cを形成することが困難となるおそれがある。ノズル傾斜角度θが80°を超えると、粉体の排出口部3に向かう速度が低減されず、粉体が粉体分散容器5内に長く留まる効果が得られなくなるおそれがある。
【0079】
図9は、本発明の実施の第3形態である粉体分散装置41の構成を概略的に示す断面図である。粉体分散装置41は、前述の第1実施形態の粉体分散装置1に類似し、同一の構成である部分については同一の参照符号を付してその説明を省略する。図9では、図1の粉体分散装置1と同様に、粉体供給手段6の輸送管6bと、気体噴射手段42の噴射ノズル42bとの粉体分散容器5の軸線5a方向における位置関係を示すために、輸送管6bおよび噴射ノズル42bの取付け位置を変更して示す。
【0080】
本実施形態の粉体分散装置41は、気体噴射手段42の噴射ノズル42bの気体噴射口部42aが、供給口部2に対して排出口部3寄りの位置に形成されることを特徴とする。本実施形態の気体噴射手段42は、粉体分散容器5の軸線5a方向における気体噴射口部42aと排出口部3との距離L1が、粉体分散容器5の軸線5a方向における供給口部2と排出口部3との距離L2よりも短くなるように設けられる。気体噴射手段42は、気体噴射口部42aが供給口部2に対して排出口部3寄りの位置に形成されること以外は前述の第1実施形態の気体噴射手段42と同様の構成であるので、説明を省略する。
【0081】
気体噴射口部42aと排出口部3との距離L1は、前述の第1実施形態と同様に、気体噴射手段42から噴射される気体の圧力、粉体分散容器5の大きさ、気体噴射口部42aと供給口部2との距離|L1−L2|などに応じて定められる。気体噴射口部42aと供給口部2との距離|L1−L2|については特に限定されず、粉体分散容器5の大きさなどに応じて決定される。
【0082】
気体噴射手段42によって形成される旋回流Cの流速は、気体噴射口部42a付近において最も大きい流速となる。気体噴射手段42の気体噴射口部42aが供給口部2に対して排出口部3寄りの位置に形成されると、気体噴射口部42aが供給口部2よりも排出口部3寄りに形成されるので、矢符43で示すように、気体噴射手段42によって形成される旋回流Cの流速が最も大きい領域に粉体を供給することができる。これによって、粉体の旋回速度を増加させることができ、粉体に付与される遠心力も大きくなるので、粉体の粉体分散容器5の内周面4への衝突力および粉体と粉体分散容器5の内周面4との動摩擦力も大きくすることができ、粉体を一層確実に分散させることができる。
【0083】
さらに本実施形態のように気体噴射手段42の気体噴射口部42aが供給口部2に対して排出口部3寄りの位置、すなわち供給口部2よりも下側に形成されると、粉体に付与される衝突力および動摩擦力が大きくなるので、供給口部2が気体噴射手段42の気体噴射口部42aに対して排出口部3寄りに形成される場合に比べて粉体が粉体分散容器5内で留まる時間を短くしても、粉体中の粉体凝集物の含有率を低減することができる。したがって、粉体分散容器5の軸線5a方向の長さ寸法を、供給口部2が気体噴射手段42の気体噴射口部42aに対して排出口部3寄りに形成される場合よりも短くすることができ、粉体分散装置1の小型化を図ることができる。
【0084】
また図9において、粉体は、粉体供給手段6によって矢符43で示すように粉体分散容器5の軸線5a付近に供給されるけれども、これに限定されることなく、粉体分散容器5の半径方向について軸線5aよりも内周面4側に供給されてもよい。本実施形態のように気体噴射手段42の噴射ノズル42bの気体噴射口部42aが、供給口部2に対して排出口部3寄りの位置に形成される場合、気体噴射手段42によって形成される旋回流Cの流速が大きい領域に粉体が供給されるので、矢符43で示すように粉体分散容器5の軸線5a付近に供給されても粉体を粉体分散容器5内で旋回させることが可能である。粉体分散容器5の軸線5a付近に粉体が供給されると、遠心力による粉体と粉体分散容器5の内周面4との衝突力を大きくすることができるので好ましい。
【0085】
図10は、本発明の実施の第4形態である粉体分散装置51の構成を概略的に示す断面図である。粉体分散装置51は、前述の第3実施形態の粉体分散装置31に類似し、同一の構成である部分については同一の参照符号を付してその説明を省略する。図10では、図9の粉体分散装置41と同様に、粉体供給手段6の輸送管6bと、気体噴射手段52の噴射ノズル52bとの粉体分散容器5の軸線5a方向における位置関係を示すために、輸送管6bおよび噴射ノズル52bの取付け位置を変更して示す。
【0086】
本実施形態の粉体分散装置51は、気体噴射手段52の噴射ノズル52bの気体噴射口部52aが、供給口部2に対して排出口部3寄りの位置に形成されるとともに、排出口部3が粉体分散容器5の軸線5a方向一端部である下部に形成され、気体噴射手段52は、粉体分散容器5の軸線5aに垂直な仮想平面に対して軸線方向他端部側、すなわち上側に傾斜する方向へ、気体を噴射することを特徴とする。このような本実施形態の粉体分散装置51によれば、粉体分散容器5内での粉体の留まる時間を長くすることができるので、粉体を一層確実に分散させることができる。
【0087】
図11は本発明の実施の第5形態である粉体分散装置61の構成を概略的に示す断面図であり、図12は粉体分散装置61の断面図である。図11は、図12に示す切断面線XI−XIで示す粉体分散容器5の半径方向に垂直な平面で粉体分散装置61を切断したときの断面図である。図12は、図11に示す切断面線XII−XIIで示す粉体分散容器5の軸線5a方向に垂直な平面で粉体分散装置61のテラス62が設けられる部分を切断したときの断面図である。
【0088】
粉体分散装置61は、前述の第3実施形態の粉体分散装置41に類似し、同一の構成である部分については同一の参照符号を付してその説明を省略する。図11では、図9の粉体分散装置41と同様に、粉体供給手段6の輸送管6bと、気体噴射手段42の噴射ノズル42bとの粉体分散容器5の軸線5a方向における位置関係を示すために、輸送管6bおよび噴射ノズル42bの取付け位置を変更して示す。
【0089】
本実施形態の粉体分散装置61には、粉体分散容器5の排出口部3が形成されるフランジ9に、粉体分散容器5の軸線5aに対して垂直に、フランジ9の内周面9aから半径方向内方へ向かって張り出すドーナツ状、すなわち円環状の突起部材であるテラス62が設けられる。これによって、排出口部3は粉体分散容器5の周壁よりも半径方向内方へ間隔をあけた位置に設けられることとなる。
【0090】
テラス62が設けられると、気体噴射手段42によって形成される旋回流Cは、排出口部3付近において、旋回流のまま矢符63で示すように排出口部3に向かうような気流に変化する。この矢符63で示す気流の速度は、排出口部3と気体噴射口部42aとが離れて形成されるので、気体噴射手段42によって形成される旋回流Cの流速であって、粉体分散容器5の軸線5a方向について基体噴射口部42aと同じ位置の旋回流Cの流速よりも低くなる。粉体中の凝集していない粒子よりも重量の大きい粉体凝集物は、旋回流Cの流速よりも低い速度である矢符63で示す気流では排出口部3に移動せず、テラス62に残留する。粉体凝集物よりも重量の小さい凝集していない粉体は、旋回流Cの流速よりも低い速度であっても、矢符63で示す気流によって排出口部3側に移動し、分級装置10に投入される。
【0091】
テラス62に残留する重量の大きい粉体凝集物は、テラス62に残留したまま旋回流Cによって粉体分散容器5の内周面4に沿って移動し、粉体分散容器5から動摩擦力が付与される。またテラス62と接触状態にある粉体凝集物には、テラス62からも動摩擦力が付与される。テラス62に残留する粉体凝集物は、これらの動摩擦力によって分散され、重量が小さくなる。粉体凝集物が分散されて重量が小さくなると、矢符63で示す気流によって排出口部3側に移動し、分級装置10に導入される。
【0092】
テラス62を設けることによって、排出口部3が粉体分散容器5の周壁8よりも半径方向内方へ間隔をあけた位置に形成されると、排出口部3の外周縁部から粉体分散容器5の周壁8へ向かう部分、すなわちテラス62の設けられる部分では粉体が排出されない。これによって、粉体に付与される遠心力によって粉体分散容器5の周壁寄りの部分で旋回する粉体および粉体分散容器5の内周面4に接触しながら旋回する粉体については排出口部3から排出されにくくなる。また粉体の中でも重量の大きい粉体凝集物は、粉体分散容器5の周壁8寄りの部分または内周面4に接触しながら旋回する。したがって、粉体分散容器5の周壁8寄りの部分または内周面4に接触しながら旋回する粉体凝集物が、分級装置10に投入されることを防止でき、分級装置10での分離精度の低下が防止される。
【0093】
テラス62としては、フランジ9の内周面9aから半径方向内方へ向かう突起長さX(以後、単に突起長さXと称する)が、内周面4が円筒形状に形成される周壁を備える粉体分散容器5の内径Dの半分の長さである半径Rの5%以上30%以下であることが好ましい。本実施形態のテラス62は、突起長さXが粉体分散容器5の半径Rの20%(5分の1)である。テラス62の突起長さXが半径Rの5%以上30%以下であると、粉体と粉体分散容器5の内周面4との衝突力および動摩擦力によっても分散されなかった粉体凝集物をテラス62に残留させることができ、排出口部3から粉体凝集物が分級装置10に導入されることを防止できる。テラス62の突起長さXが半径Rの5%未満であると、粉体凝集物をテラス62に残留させることができないおそれがある。テラス62の突起長さXが半径Rの30%を超えると、テラス62に残留する粉体凝集物の量が多くなり過ぎ、テラス62に残留した粉体凝集物を分散させることが困難となるおそれがある。また粉体の排出口部3に向かう気流の流れ、すなわち矢符63で示す気流の速度が低減され、粉体が再凝集するおそれがある。
【0094】
粉体分散装置61は、上記の構成に限定されることなく、種々の変更が可能である。本実施形態では、テラス62は粉体分散容器5の軸線5aに対して垂直に設けられるけれども、これに限定されることなく、傾斜して設けられてもよい。たとえば、ドーナツ状のテラス62の外周縁部側が、粉体分散容器5の軸線に対して排出口部3側に傾斜して設けられると、粉体凝集物が排出口部3から排出されることを一層確実に防止することができる。
【0095】
またテラス62を設けることなく、粉体分散容器5の軸線5aに平行な面に形成される排出口部3の大きさを、排出口部3が形成される面であって、粉体分散容器5の軸線5aに平行な面の大きさよりも小さくするように構成してもよい。このように構成される粉体分散装置では、排出口部3が形成される粉体分散容器5の軸線5aに平行な面の排出口部3周りに粉体凝集物を残留させることができ、粉体凝集物が排出口部3から排出されることを防止することができる。
【0096】
以上のような粉体分散装置を含む粉体処理設備は、前述のように、たとえばトナーの製造方法などに好ましく用いられる。本発明の粉体分散装置を含む粉体処理設備を用いて製造されるトナーは、たとえば、電子写真法による画像形成に用いられる。
【0097】
電子写真法による画像形成は、導電性支持体の表面に光導電性物質を含む感光層が形成される電子写真感光体(以後、感光体とも称する)を用い、帯電工程、露光工程、現像工程、転写工程、定着工程、クリーニング工程および除電工程などの工程を経て行なわれる。帯電工程では、感光体の表面を均一に帯電する。露光工程では、帯電した感光体を露光して感光体の表面に静電荷像を形成する。現像工程では、感光体表面に形成された静電荷像をトナーで現像することによってトナー像を形成する。転写工程では、トナーと逆極性の電荷を記録媒体に付与してトナー像を記録媒体に転写させる。定着工程では、加熱および加圧などによって記録媒体に転写された可視像を定着する。クリーニング工程では、記録媒体に転写されずに感光体の表面に残ったトナーを回収して感光体を清浄化する。除電工程では、感光体を除電する。以上のような工程によって、記録媒体に画像が形成される。
【0098】
このようにして画像を形成するトナーの製造方法は、大略、結着樹脂および着色剤を含む樹脂粉体を生成する粉体生成工程と、本発明の粉体処理設備を用いて、粉体生成工程で生成される樹脂粉体を処理してトナーを得る粉体処理工程とを含む。
【0099】
粉体生成工程は、たとえば、結着樹脂および着色剤を溶融混練する溶融混練工程と、溶融混練工程で得られる溶融混練物を粉砕し、樹脂粉体を生成する粉砕工程とを含む。粉体処理工程は、粉体生成工程で得られる樹脂粉体を粉体処理設備に含まれる分散装置によって分散する分散工程と、分散工程で分散される樹脂粉体を粉体処理設備に含まれる分級装置などの分離装置で分離し、トナーを得る分離工程とを含む。本実施形態では、樹脂粉体の分離は粒径の違いによって行なう。したがって分離工程を分級工程と呼び、分離装置を分級装置と呼ぶことがある。
【0100】
まずトナーの構成材料について説明する。トナーは、少なくとも結着樹脂および着色剤を含む。結着樹脂は、それ自身では成型できない着色剤を結着樹脂中に分散させて成型するための樹脂である。着色剤は、有機もしくは無機顔料または染料などの色材である。
【0101】
結着樹脂としては、たとえば、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂、ポリスチレン、ポリアミド樹脂、ポリウレタン樹脂およびアクリル樹脂などを用いることができる。これらの樹脂は単独で用いられてもよく、2種以上が併用されてもよい。
【0102】
着色剤としては、たとえば、カーボンブラック、鉄黒、ニグロシン、ベンジジンブルー、キナクリドン、ローダミンBおよびフタロシアニンブルーなどが挙げられる。着色剤は、結着樹脂100重量部に対して3重量部以上12重量部以下の割合で含まれることが好ましい。着色剤の使用割合が上記範囲に含まれると、充分な着色力を有するトナーを得ることができる。着色剤の使用割合が3重量部未満であると、充分な着色力が得られず、所望の画像濃度を有する画像を形成するのに要するトナー量が増加し、トナーの消費量が増大するおそれがある。着色剤の使用割合が12重量部を超えると、樹脂混練物中における着色剤の分散性が低下し、均一な着色力を有するトナーが得られないおそれがある。
【0103】
結着樹脂および着色剤以外にも、オフセット防止効果を高める目的で一般的な離型剤であるワックスを用いることが好ましい。ワックスとしては、たとえば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体およびエチレン−エチレンアクリレート共重合体などが挙げられる。これらは単独で使用しても、あるいは2種以上を併用してもよい。ワックスの配合量は特に限定されないけれども、結着樹脂100重量部に対して2重量部以上8重量部以下の割合で含まれることが好ましい。ワックスの使用割合が2重量部未満であると、高温オフセットが発生するおそれがある。ワックスの使用割合が8重量部を超えると、感光体表面にトナーが付着して薄い膜を形成するフィルミングを発生するおそれがある。
【0104】
またトナーには、結着樹脂、着色剤、ワックスのほかに、好ましい特性を損なわない範囲で帯電制御剤などの添加剤を含有してもよい。帯電制御剤の添加によって、トナーの摩擦帯電量を好適にすることができる。帯電制御剤としては、たとえば、モノアゾ染料の金属錯塩、ニトロフミン酸およびその塩、サリチル酸、ナフトエ酸およびジカルボン酸のコバルト、クロムおよび鉄などの金属錯体アミノ化合物、ならびに第4級アンモニウム化合物などが挙げられ、これらを単独で、もしくは2種以上を併用して使用することができる。帯電制御剤の配合量は特に限定されないけれども、結着樹脂100重量部に対して、0.05重量部以上10重量部以下である。帯電制御剤がこのような範囲で含まれることによって、環境変動によるトナーの帯電量変化を防止する帯電量安定制御を行うことができる。帯電制御剤が0.05重量部未満であると、トナーに帯電安定性を付与することができないおそれがある。また帯電制御剤が10重量部を超えると、帯電制御剤を結着樹脂中に均一に分散させることが困難になるおそれがある。
【0105】
またトナーを1成分系の磁性トナーとして用いる場合、原料に磁性粉を含有させる。磁性粉としては、磁場の中に置かれて磁化される物質を用いることができ、たとえば、鉄、コバルトおよびニッケルなどの強磁性金属の粉末、ならびにマグネタイトおよび鉄以外の金属元素を含むフェライトの粉末などが挙げられる。磁性粉は、結着樹脂100重量部に対して40重量部以上150重量部以下の割合で含まれることが好ましい。なお、トナーを2成分系の現像剤として用いる場合には磁性粉は含有されない。
【0106】
以上のような結着樹脂および着色剤と、必要に応じて添加されるワックスおよび帯電制御剤などとを含む原料を、溶融混練する溶融混練工程を行なう。溶融混練工程では、結着樹脂を溶融または軟化させ(以後、溶融も含めて軟化と称する)、軟化する結着樹脂中に結着樹脂以外の原料を分散させる。
【0107】
溶融混練工程を行なう前に、結着樹脂および着色剤と、必要に応じて添加されるワックスおよび帯電制御剤などとを含む原料を、混合装置を用いて混合してもよい。混合装置としては特に限定されるものではなく、たとえば、ダブルコンミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサーおよびナウターミキサーなどの高速攪拌型混合装置が挙げられる。混合された原料混合物は、溶融混練工程にて溶融混練される。
【0108】
溶融混練工程に用いられる装置としては、特に限定されるものではなく、たとえば、二軸押出機、三本ロールおよびラボブラストミルなどの一般的な混練機、TEM−100B(商品名、東芝機械株式会社製)、PCM−30、PCM−65/87(以上いずれも商品名、株式会社池貝製)などの1軸または2軸のエクストルーダー、およびニーデックス(商品名、三井鉱山株式会社製)などのオープンロール方式の混練機などが挙げられる。
【0109】
次いで、溶融混練工程で得られる溶融混練物を粉砕し、樹脂粉体を生成する粉砕工程を行なう。粉砕工程では、まず、クラッシャー、ハンマーミルまたはフェザーミルなどを用いて、溶融混練工程で得られる溶融混練物を100μmから5mm程度の粗粉砕物に粗粉砕する。そして、超音速ジェット気流を利用して粉砕するジェット式粉砕機、高速で回転する回転子(ロータ)と固定子(ライナー)との間に形成される空間に粗粉砕物を導入して粉砕する衝撃式粉砕機などを用いて、粗粉砕物を所望の粒径、たとえば体積平均粒径が8μm以下になるまで粉砕する。
【0110】
粉体生成工程は、以上のような溶融混練工程および粉砕工程を含む工程から樹脂粉体を生成する工程に限定されない。粉体生成工程では、たとえば、懸濁重合法または乳化重合法などの湿式法を用いる工程を経て樹脂粉体が生成されてもよい。粉体生成工程によって生成される樹脂粉体は、樹脂粉体を構成する粒子同士の静電気力、分子間力などの付着力によって、粉体凝集物を発生する。またカラートナーを製造する場合、結着樹脂として透光性および光沢性を有する樹脂を用いることが必須であり、透光性および光沢性を有する樹脂として、たとえばポリエステル樹脂などの軟化点の低い結着樹脂が用いられる。軟化点の低い結着樹脂を用いると、トナー粒子同士の摩擦で発生する摩擦熱によって結着樹脂が軟化し、トナー粒子同士が付着しやすくなり、さらに粉体凝集物が発生しやすくなる。
【0111】
本発明のトナーの製造方法では、このような樹脂粉体中に含まれる粉体凝集物を分散させるために、本発明の粉体処理設備に含まれる粉体分散装置によって粉体中に含まれる粉体凝集物を分散させる分散工程を行なう。
【0112】
本発明の粉体分散装置によって粉体中に含まれる粉体凝集物が分散されると、粉体処理設備に含まれる分級装置によって粉体をその粒径の違いによって分級する分級工程を分散工程と連続的に行なう。分級工程では、所望の粒径範囲に含まれる粒子群が得られるまで、分散工程を含む同じサイクルが繰返し実行される。このようにして、所望の粒径範囲に含まれる粒子群から構成されるトナーを得ることができる。
【0113】
上記の分散工程および分級工程を含む粉体処理工程を経て得られるトナーは、体積平均粒径が5.0μm以上8.0μm以下であるものが好ましい。トナーの体積平均粒径がこのような範囲であると、高精細な画像を長期にわたって安定して形成することができる。トナーの体積平均粒径が5.0μm未満であると、トナー粒径が小さくなり過ぎ、高帯電化、現像剤の低流動化が起こり、感光体にトナーを安定して供給することができないので、画像かぶり、画像濃度の低下などを引起こすおそれがある。トナーの体積平均粒径が8.0μmを超えると、トナーの粒径が大きいので、高精細な画像を得ることができず、またトナーの帯電量が小さくなることによってトナーの感光体への供給安定性を失い、トナー飛散による機内汚染が発生するおそれがある。
【0114】
また上記のような体積平均粒径であるトナーの中でも、粒径が4.00μm以下の粒子の含有率が30個数%未満であることが好ましい。また粒径が4.00μm以下の粒子の含有率が30個数%未満であり、かつ3.17μm以下の粒子の含有率が20個数%未満であるものがさらに好ましい。このような所望の粒径範囲よりも小さい粒径の粒子である微粉の含有率が低いトナーは、粒子の凝集を生じにくく、帯電性能にばらつきが少ないので、感光体に安定してトナーを供給することができる。粒径が4.00μm以下の粒子の含有率が30個数%以上であると、微粉の含有率が高くなり、高帯電化、現像剤の低流動化が起こり、感光体にトナーを安定して供給することができないので、画像かぶり、画像濃度の低下などを引起こすおそれがある。粒径が3.17μm以下の粒子の含有率が20個数%以上である場合においても、高帯電化、現像剤の低流動化の問題が生じるおそれがある。
【0115】
このようにして得られたトナーに、たとえば、粉体流動性向上、摩擦帯電性向上、耐熱性、長期保存性改善、クリーニング特性改善、感光体表面磨耗特性制御などの機能を担う外添剤を混合してもよい。外添剤としては、たとえば、シリカ微粉末、酸化チタン微粉末およびアルミナ微粉末などが挙げられる。外添剤の添加量としては、トナーに必要な帯電量、外添剤を添加することによる感光体の摩耗に対する影響、トナーの環境特性などを考慮して、トナー100重量部に対し1重量部以下が好適である。
【0116】
以上のようにして製造されるトナーは、そのままで1成分系の現像剤として用いることができるけれども、さらにトナーにキャリアを混合し、2成分系の現像剤としてもよい。2成分系の現像剤に用いられるキャリアとしては、たとえば、鉄粉、フェライト粉、ニッケル粉、磁性分含有樹脂キャリアなどの磁性を有する粉体およびガラスビーズなど、ならびにこれらの表面を樹脂などで被覆したものが挙げられる。磁性を有する粉体の被覆に使用できる樹脂としては、たとえば、シリコーン樹脂、アクリル樹脂、スチレン樹脂およびフッ素樹脂などが挙げられる。
【0117】
本発明の粉体分散装置を含む粉体処理設備を用いるトナーの製造方法では、粉体生成工程によって結着樹脂および着色剤を含む樹脂粉体を生成した後、粉体生成工程で生成される樹脂粉体を処理してトナーを得る粉体処理工程が行なわれる。この粉体処理工程では、分散工程を経て分級工程が行なわれるので、分級工程において分級すべき樹脂粉体における粉体凝集物の含有率が低い状態で樹脂粉体を分級することができる。したがって、分級工程において所望の粒径よりも大きい粒子を除去するときに、所望の粒径の範囲内である粒子を含む粉体凝集物が所望の粒径よりも大きい粗粉として扱われて除去されることが防止できるので、分級工程後に得られるトナーの量と粉体生成工程において製造される粉体の量との比であるトナーの収率を向上させることができる。
【0118】
また、分級工程において所望の粒径よりも小さい粒子を除去するときに、粉体に含まれる所望の粒径範囲よりも小さい粒子の凝集物が1個の粒子としてみなされて製品としてのトナーに含まれることが防止されるので、トナー中に含まれる所望の粒径よりも小さい微粉の含有率を低減することができる。トナー中に微粉の含有率が低減されたトナーは、帯電均一性に優れるので、画像かぶりなどの発生を抑制し、優れた画像を形成することができる。
【実施例】
【0119】
以下本発明の実施例について説明する。実施例および比較例では、次のようにしてトナーを製造した。
【0120】
〔実施例1〕
以下に示すトナー原料をスーパーミキサー(商品名:SMV−20、株式会社カワタ製)で充分に混合し、得られた混合物を二軸混練機(商品名:PCM−30、株式会社池貝製)によって溶融混練する溶融混練工程を行なった。
【0121】
(トナー原料)
結着樹脂:ポリエステル樹脂(酸価:21mgKOH/g)
芳香族系アルコール成分:ビスフェノールAプロピレンオキサイド、ビスフェノールAエチレンオキサイド
酸成分:フマル酸、無水トリメリット酸 87.5重量部
着色剤:C.I.Pigment Blue 15:1 5.0重量部
ワックス:無極性パラフィンワックス (DSCピーク78℃)6.0重量部
帯電制御剤:サリチル酸の亜鉛化合物 1.5重量部
【0122】
結着樹脂の酸価は次のようにして測定した。ポリエステル樹脂1gをテトラヒドロフランに溶解し、指示薬にフェノールフタレイン、滴定液に0.1N(0.1モル/L)水酸化カリウム(化学式:KOH)エタノール溶液を用いて、自動滴定装置(商品名:AT−510、京都電子工業株式会社製)によって電位差滴定を行なった。この電位差滴定において、中和するために使用した水酸化カリウムのmg数を、酸価として固形分換算で算出した。
【0123】
また、ワックスのDSCピーク温度は、セイコーインスルメンツ株式会社製のDSC200(商品名)を用いて次のようにして測定した。サンプルおよび基準物質を入れた装置の電気炉内の雰囲気(不活性ガス)温度を20℃から200℃まで1分間当たり10℃の割合で昇温させた後、200℃から20℃まで降温させる過程を2回繰り返して、2回目の昇温時のサンプル温度を測定した。そして、このサンプル温度と基準物質の温度との差によって吸熱ピークを検出し、吸熱ピーク時の温度をDSCピーク温度とした。
【0124】
次いで、溶融混練工程で得られた溶融混練物を粗粉砕し、ジェット式粉砕機(商品名:IDS−2、日本ニューマチック工業株式会社製)によって粉砕し、樹脂粉体を生成する粉砕工程を行なった。このような溶融混練工程と粉砕工程とを含む粉体生成工程後、得られた樹脂粉体を、図1に示す粉体分散装置1および分級装置(商品名:315−TSPの改造機、ホソカワミクロン株式会社製)を用いて、体積平均粒径が6.5μm以上7.5μm以下の範囲となるまで分散工程および分級工程を連続的に繰返し行なった。粉体分散装置1による分散条件は以下のとおりである。
【0125】
粉体分散容器としては、内径Dが10.8cm、軸線方向の長さが25cm、容積が2277cmの内周面が円筒形状に形成される容器を用いた。気体噴射手段の気体噴射口部から排出口部までの粉体分散容器軸線方向における距離L1は22cmであり、供給口部から排出口部までの粉体分散容器軸線方向における距離L2は18cmであった。粉体分散容器内への粉体供給手段からの粉体の供給は0.15MPaの圧縮空気によって行ない、粉体導入角度αを65°とし、秒速0.6mで毎時30kgの粉体を粉体分散容器内に供給した。気体噴射手段の噴射ノズルは、供給口部よりも排出口部と反対側寄りに、すなわち供給口部よりも上側に、粉体分散容器の円周方向に4個が等間隔で設けられ、各噴射ノズルからの噴射圧力を0.40MPaに設定した。各噴射ノズルの気体噴射角度βを30°、ノズル傾斜角度θを90°とした。また複数設けられる噴射ノズル間における旋回流の流速であって、粉体分散容器の内周面付近での旋回流の流速(以後、単に旋回流の流速と称する)は、秒速1.0mであった。以上のようにして、実施例1のトナーを製造した。
【0126】
〔実施例2〕
気体噴射手段から気体を排出口部と反対側、すなわち上側に気体を噴射する図7に示す粉体分散装置31を用い、気体噴射手段の噴射ノズルからの噴射圧力を0.35MPaに設定し、ノズル傾斜角度θを60°としたこと以外は実施例1と同様にして、実施例2のトナーを製造した。旋回流の流速は、秒速0.9mであった。粉体分散装置31の粉体分散容器は、実施例1で用いた粉体分散容器と同じ大きさであった。
【0127】
〔実施例3〕
気体噴射手段の噴射ノズルが供給口部よりも排出口部寄りに設けられる図9に示す粉体分散装置41を用いたこと以外は、実施例1と同様にして、実施例3のトナーを製造した。粉体分散装置41の粉体分散容器は、実施例1で用いた粉体分散容器と同じ大きさであった。また気体噴射手段の気体噴射口部から排出口部までの粉体分散容器軸線方向における距離L1は18cmであり、供給口部から排出口部までの粉体分散容器軸線方向における距離L2は22cmであった。
【0128】
〔実施例4〕
気体噴射手段の噴射ノズルが供給口部よりも排出口部寄りに設けられ、ドーナツ状のテラスが設けられる図11に示す粉体分散装置61を用いたこと以外は、実施例1と同様にして、実施例4のトナーを製造した。粉体分散装置61の粉体分散容器は、実施例1で用いた粉体分散容器と同じ大きさであった。また気体噴射手段の気体噴射口部から排出口部までの粉体分散容器軸線方向における距離L1は18cmであり、供給口部から排出口部までの粉体分散容器軸線方向における距離L2は22cmであった。テラスのフランジの内周面から半径方向内方へ向かう突起長さXは、1cmであった。
【0129】
〔比較例1〕
粉体生成工程後、得られた樹脂粉体を分散させることなく、0.15MPaの圧縮空気によって分級装置(商品名:315−TSPの改造機、ホソカワミクロン株式会社製)に粉体を毎時30kgで供給し、体積平均粒径が6.5μm以上7.5μm以下の範囲となるまで分級工程を行なったこと以外は実施例1と同様にして、比較例1のトナーを製造した。
【0130】
以上のようにして実施例および比較例のトナーの製造における分散工程および分級工程での各条件を表1に示す。
【0131】
【表1】

【0132】
以上のようにして製造した実施例および比較例のトナーの体積平均粒径を測定するとともに、トナー中に含まれる微粉の含有率を求め、評価した。体積平均粒径および微粉の含有率は、コールターマルチサイザーIII(商品名、コールター株式会社(現ベックマン・コールター株式会社)製)によって得られた粒度分布から算出した。なお、微粉の含有率としては、粒径が4.00μm以下の粒子の含有率および粒径が3.17μm以下の粒子の含有率を求めた。
【0133】
微粉の含有率についての評価は、粒径が4.00μm以下の粒子については、25.00個数%未満であるものを○(良好)、25.00個数%以上30.00個数%未満であるものを△(可)、30.00個数%以上であるものを×(不可)とした。粒径が3.17μm以下の粒子については、15.00個数%未満であるものを○(良好)、15.00個数%以上20.00個数%未満であるものを△(可)、20.00個数%以上であるものを×(不可)とした。
【0134】
また実施例および比較例で製造したトナーの収率について評価した。トナーの収率とは、粉体生成工程において製造される粉体の重量に対する分級工程後に得られるトナーの重量の比率(分級工程後に得られるトナーの重量/粉体生成工程において製造される粉体の重量)である。トナーの収率の評価は、64.0%以上であるものを○(良好)、60.0%以上64.0%未満であるものを△(可)、60.0%未満であるものを×(不可)とした。
【0135】
さらに微粉の含有率およびトナーの収率の評価結果から、総合判定を行なった。総合判定では、評価に×および△がないものを特に良好なものとして◎、評価に×がなく、△が2つ以内であるものを良好なものとして○、評価に×がなく、△が3つであるものを実使用上は問題がないものとして△、評価に×が1つ以上あるものを実使用が不可能であるものとして×と評価した。
【0136】
実施例および比較例で製造したトナーの体積平均粒径、微粉の含有率およびトナーの収率についての評価ならびに総合評価を表2に示す。
【0137】
【表2】

【0138】
表2に示すように、本発明の粉体分散装置によって分散工程を行なわなかったトナー(比較例1)は、微粉の含有率が高く、収率も低いものであった。
【0139】
これに対して、本発明の粉体分散装置を含む粉体処理設備を用いて粉体処理工程を行なったトナー(実施例1〜4)は、微粉の含有率が低く、高い収率でトナーを製造することができた。これらの中でも、ノズル傾斜角度θを60°に設定し、排出口部と反対側に遠心力が付与されるように気体を噴射する粉体分散装置を用いて製造されたトナー(実施例2)は、粉体分散容器内に粉体が留まる時間が長く、気体噴射圧力を小さくしても粉体凝集物を分散させることができた。
【0140】
また気体噴射手段の気体噴射口部が供給口部に対して排出口部寄りの設けられる粉体分散装置を用いて製造されたトナー(実施例3および4)では、粉体中の粉体凝集物の含有率を一層低減することができ、微粉の含有率が一層低減され、収率も向上させることができた。また粉体分散容器内にテラスが設けられた粉体分散装置を含む粉体処理設備を用いて粉体処理工程を行なったトナー(実施例4)は、分級装置に粉体凝集物が投入されることをさらに抑制することができ、微粉の含有率を一層低減することができるとともに、トナーの収率もさらに高いものであった。
【図面の簡単な説明】
【0141】
【図1】本発明の実施の第1形態である粉体分散装置1の構成を概略的に示す断面図である。
【図2】粉体分散装置1の正面図である。
【図3】粉体分散装置1の断面図である。
【図4】粉体分散装置1の粉体分散容器5の一部を拡大して示す断面図である。
【図5】粉体分散装置1の粉体分散容器5の一部を拡大して示す断面図である。
【図6】粉体分散装置1が設けられるトナー製造装置21の回路図である。
【図7】本発明の実施の第2形態である粉体分散装置31の構成を概略的に示す断面図である。
【図8】粉体分散装置31の粉体分散容器5の一部を拡大して示す断面図である。
【図9】本発明の実施の第3形態である粉体分散装置41の構成を概略的に示す断面図である。
【図10】本発明の実施の第4形態である粉体分散装置51の構成を概略的に示す断面図である。
【図11】本発明の実施の第5形態である粉体分散装置61の構成を概略的に示す断面図である。
【図12】粉体分散装置61の断面図である。
【符号の説明】
【0142】
1,31,41,51,61 粉体分散装置
2 供給口部
3 排出口部
4 内周面
5 粉体分散容器
6 粉体供給手段
7,32,42,52 気体噴射手段
7a,32a,42a,52a 気体噴射口部
7b,32b,42b,52b 噴射ノズル
7c,42c 気体噴射部
8 周壁
9 フランジ
10 分級装置
11 投入口部
12,63 粉体排出方向
21 トナー製造装置
22 粉体生成装置
23 粉体処理設備
43 粉体供給方向
62 テラス

【特許請求の範囲】
【請求項1】
粉体が供給される供給口部および粉体を排出する排出口部が形成され、内周面が円筒形状に形成される周壁を備える粉体分散容器と、
供給口部から粉体分散容器内に、粉体を供給する粉体供給手段と、
粉体分散容器内に、粉体分散容器内の気体の旋回流を形成する旋回流形成手段とを含むことを特徴とする粉体分散装置。
【請求項2】
旋回流形成手段は、
周壁に形成される気体噴射口部から、粉体分散容器の軸線に向かう方向からずれた方向へ、気体を噴射する気体噴射手段であることを特徴とする請求項1記載の粉体分散装置。
【請求項3】
排出口部は、
粉体分散容器の軸線方向一端部に形成され、
気体噴射手段は、粉体分散容器の軸線に垂直な仮想平面に対して軸線方向他端部側に傾斜する方向へ、気体を噴射することを特徴とする請求項2記載の粉体分散装置。
【請求項4】
気体噴射口部は、
供給口部に対して排出口部寄りの位置に形成されることを特徴とする請求項2または3記載の粉体分散装置。
【請求項5】
排出口部は、
周壁から半径方向内方へ間隔をあけた位置に形成されることを特徴とする請求項1〜4のいずれか1つに記載の粉体分散装置。
【請求項6】
請求項1〜5のいずれか1つに記載の粉体分散装置と、
粉体分散装置によって分散された粉体を粒径、密度または形状の違いによって分離する分離装置とを含むことを特徴とする粉体処理設備。
【請求項7】
分離装置には、粉体分散装置によって分散された粉体が投入される投入口部が形成され、
粉体分散装置の排出口部が、分離装置の投入口部に装着されることを特徴とする請求項6記載の粉体処理設備。
【請求項8】
結着樹脂および着色剤を含む樹脂粉体を生成する粉体生成工程と、
請求項6または7記載の粉体処理設備を用いて、粉体生成工程で生成される樹脂粉体を処理してトナーを得る粉体処理工程とを含むことを特徴とするトナーの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2007−187736(P2007−187736A)
【公開日】平成19年7月26日(2007.7.26)
【国際特許分類】
【出願番号】特願2006−3749(P2006−3749)
【出願日】平成18年1月11日(2006.1.11)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】