説明

結晶粒径計測装置、方法及びプログラム

【課題】室温時だけでなく高温時においても被計測板の結晶粒径を高精度に計測できるようにする。
【解決手段】被計測板2の板厚方向に伝播した共振周波数を含む所定の周波数領域の各周波数における超音波の波形を波形検出手段30で検出し、検出した超音波の波形に基づいて、エネルギー値算出手段40で所定の周波数領域の各周波数における超音波のエネルギー値を算出する。そして、共振周波数における超音波のエネルギー値である最大のエネルギー値を検出し、この最大のエネルギー値と、前記最大のエネルギー値以外の他のエネルギー値とを補正手段60で室温時換算した上で比算出手段80でこれらエネルギー値の比を算出し、結晶粒径算出手段100において、比算出手段80で算出したエネルギー値の比に基づいて、被計測板2における結晶粒径を算出するようにする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波を用いて被計測板の結晶粒径を計測する結晶粒径計測装置、方法及びプログラムに関する。
【背景技術】
【0002】
鋼板等の材料の結晶粒径を非破壊試験で計測する方法として、電磁超音波(EMAT:Electro Magnetic Acoustic Transducer)による共振法を利用した計測が提案されている。この電磁超音波による共振法を利用した従来の結晶粒径の計測方法の一例について、以下に説明する。図15は、電磁超音波(EMAT)による共振法を説明するための概略図である。図15において、111は電磁超音波振動子であり、電磁超音波の発信と受信の両方に用いられる。112は板状材料からなる板厚dの被計測板である。電磁超音波振動子111に交流電圧を加えつつ、その交流電圧の周波数を連続的に変化させると、次の数式1が成り立つときに被計測板112内部に超音波の共振がおこる。
【0003】
【数1】

【0004】
数式1において、dは被計測板112の板厚、λは超音波の波長、nは正の整数である。すなわち、被計測板112の板厚dが超音波の波長λの半分の整数倍のときに超音波の共振がおこる。ここで、nが1、2、3、…のときの共振をそれぞれ1次、2次、3次、…の共振という。図15には、一例として2次の共振状態時に形成される定在波を示している。一方、超音波の速度V、波長λ、周波数fの間には、次の数式2が成り立つことが一般的によく知られている。
【0005】
【数2】

【0006】
また、数式1、数式2から、次の数式3を導くことができる。
【0007】
【数3】

【0008】
そして、数式3のfはn次の共振のときの周波数であるので、これを明確に示すためにfnと書き直すと、次の数式4となる。
【0009】
【数4】

【0010】
この共振周波数の測定に関しては、例えば、電磁超音波振動子111において、周波数を連続的に変化させた超音波を被計測板112に対して発振し、被計測板112の板厚方向に伝播した超音波の共振スペクトルを計測することによって行われる。図16に、共振スペクトルの計測結果の一例を示す特性図を示す。
【0011】
ここで、図16は、横軸に発振した超音波の周波数(MHz)をとり、縦軸に検出した超音波波形(減衰波形)のエネルギー値をとったものを示している。また、図16には、被計測板112として、板厚が0.35mmで平均結晶粒径が40.4μmのものと、板厚が0.35mmで平均結晶粒径が87.5μmのものの2種類の共振スペクトルが示されており、それぞれ最大のエネルギー値P1及びP2における周波数は共振周波数に相当するものである。
【0012】
そして、従来の結晶粒径計測装置では、共鳴周波数における減衰係数や共振周波数における受信信号振幅から、被計測板112の結晶粒径を算出するものであった(例えば特許文献1、2を参照)。
【0013】
ところで、図16に示した共振スペクトルの計測結果からもわかるように、結晶粒径の大きいもの(図16の例では平均結晶粒径が87.5μmのもの)は、結晶粒径の小さいもの(図16の例では平均結晶粒径が40.4μmのもの)に比べて、共振周波数における超音波波形(減衰波形)のエネルギー値が小さくなり、また、共振しない他の周波数における超音波波形(減衰波形)のエネルギー値の割合が大きくなっている。これは、結晶粒径が大きいほど、発振した超音波における結晶粒の界面での散乱が大きいためであると考えられる。
【0014】
図16の例では、被計測板112の板厚dが共に0.35mm(350μm)であるため、平均結晶粒径が40.4μmのものでは被計測板112の板厚方向に約8〜9個の結晶粒が存在し、平均結晶粒径が87.5μmのものでは被計測板112の板厚方向にわずか4個程度の結晶粒が存在することになる。すなわち、被計測板112の板厚dに対して結晶粒径の大きさの比率が高くなってくると、換言すれば、被計測板112の結晶粒径に対して被計測板112の板厚dが薄くなってくると、上述したように、共振周波数における超音波波形(減衰波形)のエネルギー値が小さくなり、また、共振しない他の周波数における超音波波形(減衰波形)のエネルギー値の割合が大きくなっていく。
【0015】
従来の結晶粒径計測装置では、共振周波数域に基づいて被計測板112の結晶粒径を算出するようにしていたため、被計測板112の板厚dが薄いものであるほど、結晶粒径の大きさに起因した超音波の散乱による結晶粒径の計測誤差が大きくなってしまい、結晶粒径を高精度に計測することが困難であるといった問題があった。
【0016】
上述の問題点に鑑みて、本出願人は、特許文献3において、被計測板の板厚が非常に薄い場合であっても、被計測板の結晶粒径を高精度に計測することができるようにするために、共振周波数における超音波のエネルギー値である最大のエネルギー値と、その最大のエネルギー値以外の他のエネルギー値との比を算出して平均結晶粒径を計測することを提案している。
【先行技術文献】
【特許文献】
【0017】
【特許文献1】特開2001−343366号公報
【特許文献2】特開平6−347449号公報
【特許文献3】特開2007−101360号公報
【発明の概要】
【発明が解決しようとする課題】
【0018】
ところで、製鉄所で製造プロセスの過程にある鋼板を被計測板とするような場合、鋼板の温度や雰囲気温度が常に室温であるとは限らない。例えば加熱された状態にある鋼板の結晶粒径を計測することが求められることもある。
【0019】
しかしながら、鋼板の温度や雰囲気温度が高温である場合、室温時と比べて、鋼板の温度依存性の物性値が変化したり、電磁超音波振動子を含む送受信プローブの感度特性が変化したりすることが考えられるため、計測精度が落ちてしまうおそれがある。上述したいずれの特許文献でも、室温であることが前提とされており、被計測板の温度や雰囲気温度が高温である場合は想定されていない。
【0020】
本発明は上記のような点に鑑みてなされたものであり、室温時だけでなく高温時においても被計測板の結晶粒径を高精度に計測できるようにすることを目的とする。
【課題を解決するための手段】
【0021】
本発明の結晶粒径計測装置は、被計測板の表面の所定位置に配置された送受信プローブを介して、前記被計測板の板厚方向における共振周波数を含む所定の周波数領域の超音波を発振する超音波発振手段と、前記被計測板の板厚方向に伝播した前記所定の周波数領域の各周波数における超音波の波形を、前記送受信プローブを介して検出する波形検出手段と、前記波形検出手段で検出した超音波の波形に基づいて、前記所定の周波数領域の各周波数における超音波のエネルギー値を算出するエネルギー値算出手段と、前記エネルギー値算出手段で算出したエネルギー値の中から、前記共振周波数における超音波のエネルギー値である最大のエネルギー値を検出する最大エネルギー値検出手段と、前記最大エネルギー値検出手段で検出した最大のエネルギー値と、前記エネルギー値算出手段で算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値とを、前記送受信プローブの温度情報及び前記被計測板の温度情報のうち少なくともいずれか一方を用いてそれぞれ補正する補正手段と、前記補正手段で補正した最大のエネルギー値と、前記補正手段で補正した他のエネルギー値との比を算出する比算出手段と、前記比算出手段で算出したエネルギー値の比に基づいて、前記被計測板における結晶粒径を算出する結晶粒径算出手段とを備えることを特徴とする。
本発明の結晶粒径計測装置の他の特徴とするところは、前記エネルギー値算出手段で算出したエネルギー値のうち、前記最大のエネルギー値を除いた各エネルギー値の平均値を、前記他のエネルギー値とする点にある。
本発明の結晶粒径計測装置の他の特徴とするところは、前記補正手段は、前記最大エネルギー値検出手段で検出した最大のエネルギー値と、前記エネルギー値算出手段で算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値とをそれぞれ室温時換算する点にある。
本発明の結晶粒径計測方法は、被計測板の表面の所定位置に配置された送受信プローブを介して、前記被計測板の板厚方向における共振周波数を含む所定の周波数領域の超音波を発振する超音波発振ステップと、前記被計測板の板厚方向に伝播した前記所定の周波数領域の各周波数における超音波の波形を、前記送受信プローブを介して検出する波形検出ステップと、前記波形検出ステップで検出した超音波の波形に基づいて、前記所定の周波数領域の各周波数における超音波のエネルギー値を算出するエネルギー値算出ステップと、前記エネルギー値算出ステップで算出したエネルギー値の中から、前記共振周波数における超音波のエネルギー値である最大のエネルギー値を検出する最大エネルギー値検出ステップと、前記最大エネルギー値検出ステップで検出した最大のエネルギー値と、前記エネルギー値算出ステップで算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値とを、前記送受信プローブの温度情報及び前記被計測板の温度情報のうち少なくともいずれか一方を用いてそれぞれ補正する補正ステップと、前記補正ステップで補正した最大のエネルギー値と、前記補正ステップで補正した他のエネルギー値との比を算出する比算出ステップと、前記比算出ステップで算出したエネルギー値の比に基づいて、前記被計測板における結晶粒径を算出する結晶粒径算出ステップとを有することを特徴とする。
本発明のプログラムは、被計測板の表面の所定位置に配置された送受信プローブを介して、前記被計測板の板厚方向における共振周波数を含む所定の周波数領域の超音波を発振する超音波発振処理と、前記被計測板の板厚方向に伝播した前記所定の周波数領域の各周波数における超音波の波形を、前記送受信プローブを介して検出する波形検出処理と、前記波形検出処理で検出した超音波の波形に基づいて、前記所定の周波数領域の各周波数における超音波のエネルギー値を算出するエネルギー値算出処理と、前記エネルギー値算出処理で算出したエネルギー値の中から、前記共振周波数における超音波のエネルギー値である最大のエネルギー値を検出する最大エネルギー値検出処理と、前記最大エネルギー値検出処理で検出した最大のエネルギー値と、前記エネルギー値算出処理で算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値とを、前記送受信プローブの温度情報及び前記被計測板の温度情報のうち少なくともいずれか一方を用いてそれぞれ補正する補正処理と、前記補正処理で補正した最大のエネルギー値と、前記補正処理で補正した他のエネルギー値との比を算出する比算出処理と、前記比算出処理で算出したエネルギー値の比に基づいて、前記被計測板における結晶粒径を算出する結晶粒径算出処理とをコンピュータに実行させる。
【発明の効果】
【0022】
本発明によれば、室温時だけでなく高温時においても被計測板の結晶粒径を高精度に計測することができる。
【図面の簡単な説明】
【0023】
【図1】本発明の実施形態に係る結晶粒径計測装置の概略構成を示すブロック図である。
【図2】本発明の実施形態に係る結晶粒径計測装置で行う結晶粒径計測方法の一例を示すフローチャートである。
【図3】超音波発振手段から発振する超音波波形の一例を示す図である。
【図4】波形検出手段で検出したある周波数における超音波の波形の一例を示す図である。
【図5】図4の超音波の検出波形に対するエネルギー値の算出イメージを示す図である。
【図6】エネルギー値算出手段で算出した、所定の周波数領域(周波数3MHz〜5MHz)の各周波数における超音波のエネルギー値の特性図である。
【図7】最大のエネルギー値と他のエネルギー値との比と、平均結晶粒径との関係を示す特性図である。
【図8】各被計測板における結晶方位、音速及び共振周波数の結果を示す図である。
【図9】温度による結晶粒径計測の精度について考察を行う試験のための装置概要を示す図である。
【図10】試験の結果を示す図である。
【図11】試験の結果を示す図である。
【図12】透磁率μと電気抵抗率Rの温度依存性を示す特性図である。
【図13】室温時換算した結果を示す特性図である。
【図14】室温時換算した結果を示す特性図である。
【図15】電磁超音波(EMAT)による共振法を説明するための概略図である。
【図16】共振スペクトルの計測結果の一例を示す特性図である。
【発明を実施するための形態】
【0024】
以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1は、本発明の実施形態に係る結晶粒径計測装置の概略構成を示すブロック図である。図1において、2は鋼板等からなる板厚dの被計測板、3は被計測板2を支持する支持体である。1は支持体3上の被計測板2の結晶粒径を計測する結晶粒径計測装置である。被計測板2の表面温度を測定する不図示の温度センサ(例えば放射温度計)が設置されており、その温度情報T1が結晶粒径計測装置1に入力される。
【0025】
結晶粒径計測装置1において、10は送受信プローブであり、被計測板2の表面の所定位置に配置され、被計測板2に対して超音波を送信するとともに被計測板2の板厚方向に伝播した当該超音波を受信する。この送受信プローブ10は、例えば電磁超音波振動子等で構成される。送受信プローブ10の例えば側面には、不図示の温度センサ(例えば熱電対)が設置されており、その温度情報T2が取得される。
【0026】
20は超音波を発振する超音波発振手段であり、被計測板2の表面の所定位置に配置された送受信プローブ10を介して、被計測板2の板厚方向における共振周波数を含む所定の周波数領域の超音波を発振する。
【0027】
30は波形検出手段であり、超音波発振手段20から発振され、被計測板2の板厚方向に伝播した所定の周波数領域の各周波数における超音波の波形(減衰波形)を、被計測板2の表面の所定位置に配置された送受信プローブ10を介して検出する。
【0028】
40はエネルギー値算出手段であり、波形検出手段30で検出した超音波の波形(減衰波形)に基づいて、所定の周波数領域の各周波数における超音波のエネルギー値を算出する。
【0029】
50は最大エネルギー値検出手段であり、エネルギー値算出手段40で算出したエネルギー値の中から、共振周波数における超音波のエネルギー値である最大のエネルギー値を検出する。
【0030】
60は補正手段であり、最大エネルギー値検出手段50で検出した最大のエネルギー値を被計測板2の温度情報T1を用いて補正し、また、エネルギー値算出手段40で算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値を送受信プローブ10の温度情報T2を用いて補正する。
【0031】
70は物性値記憶部であり、補正手段60での補正に使用する物性値を記憶する。本実施形態では、後述するように、結晶粒径計測の対象材(被計測板2の種類)ごとに、温度に依存する透磁率μと、温度に依存する電気抵抗率Rとを記憶する。
【0032】
80は比算出手段であり、補正手段60で補正した最大のエネルギー値と、補正手段60で補正した他のエネルギー値との比を算出する。
【0033】
90は相関値記憶部であり、予め実験等により算出した、最大のエネルギー値と他のエネルギー値との比に対する平均結晶粒径の相関値を記憶する。
【0034】
100は結晶粒径算出手段であり、比算出手段80で算出したエネルギー値の比に基づいて、相関値記憶部90に記憶されている相関値を参照することにより、被計測板2における平均結晶粒径を算出する。
【0035】
次に、結晶粒径計測装置1による結晶粒径計測方法について説明する。図2は、本発明の実施形態に係る結晶粒径計測装置1で行う結晶粒径計測方法の一例を示すフローチャートである。
【0036】
まず、送受信プローブ10を被計測板2の表面の所定位置に配置した後、ステップS101で、超音波発振手段20は、この送受信プローブ10を介して、被計測板2の板厚方向における共振周波数を含む所定の周波数領域の超音波を、それぞれ各周波数ごとに独立して発振する。
【0037】
このステップS101では、例えば、図3に示すような、いわゆるバースト波を各周波数ごとに発振する。図3には、バースト波として周波数3MHzのものを5波発振する例を示している。また、本実施形態においては、発振する超音波の所定の周波数領域として、周波数3MHz〜5MHzを例にして以下に説明を行う。
【0038】
続いて、ステップS102で、波形検出手段30は、超音波発振手段20から発振され、被計測板2の板厚方向に伝播した所定の周波数領域(周波数3MHz〜5MHz)の各周波数における超音波の波形(減衰波形)を送受信プローブ10を介して検出する。
【0039】
図4は、波形検出手段30で検出したある周波数における超音波の波形の一例を示す図である。図4に示された超音波の波形は、その縦軸に超音波の振幅の大きさを電圧(V)で示しており、その横軸に経過時間(t)を示したものである。本実施形態では、波形検出手段30において、第1波の超音波を検出してから所定時間Tまでに到達した超音波の波形を検出している。
【0040】
続いて、ステップS103で、エネルギー値算出手段40は、波形検出手段30で検出した超音波の波形(減衰波形)に基づいて、所定の周波数領域(周波数3MHz〜5MHz)の各周波数における超音波のエネルギー値を算出する。図5は、図4の超音波の検出波形に対するエネルギー値の算出イメージを示す図である。図5の斜線で示した部分の積分値の合計が算出されるエネルギー値となる。
【0041】
続いて、ステップS104で、最大エネルギー値検出手段50は、ステップS103においてエネルギー値算出手段40で算出した、所定の周波数領域(周波数3MHz〜5MHz)の各周波数におけるエネルギー値の中から、共振周波数における超音波のエネルギー値である最大のエネルギー値を検出する。
【0042】
図6は、エネルギー値算出手段40で算出した、所定の周波数領域(周波数3MHz〜5MHz)の各周波数における超音波のエネルギー値の特性図である。図6には、縦軸に超音波のエネルギー値を示し、横軸に周波数を示している。また、図6は、平均結晶粒径が12.0μm、20.5μm、35.7μm及び53.6μmである各被計測板2の所定の周波数領域(周波数3MHz〜5MHz)の各周波数における超音波のエネルギー値の特性図を示している。そして、最大エネルギー値検出手段50は、図6の例では、平均結晶粒径が12.0μmである被計測板2の場合には最大のエネルギー値P3を検出し、平均結晶粒径が20.5μmである被計測板2の場合には最大のエネルギー値P4を検出し、平均結晶粒径が35.7μmである被計測板2の場合には最大のエネルギー値P5を検出し、平均結晶粒径が53.6μmである被計測板2の場合には最大のエネルギー値P6を検出する。ここで、これらの最大のエネルギー値P3〜P6は、各被計測板2の板厚方向における共振周波数の超音波のエネルギー値に相当するものである。
【0043】
続いて、ステップS105で、補正手段60は、ステップS104において最大エネルギー値検出手段50で検出した最大のエネルギー値を、被計測板2の温度情報T1を用いて室温時換算する。また、補正手段60は、ステップS103においてエネルギー値算出手段40で算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値を、送受信プローブ10の温度情報T2を用いて室温時換算する。
【0044】
ここで、他のエネルギー値の具体的な算出方法としては、エネルギー値算出手段40で算出したエネルギー値のうち、共振周波数における超音波のエネルギー値である最大のエネルギー値を除いた各エネルギー値の平均値を、当該他のエネルギー値とする方法が考えられる。最大のエネルギー値を除く具体的な方法は、共振周波数付近におけるエネルギー値がパルス状になる特徴を利用して、以下の通りにすることが考えられる。まず周波数とエネルギーのデータは、(fi,i)のようにデジタルデータとして記録されており、(fimax,imax)が最大のエネルギー値となる共振周波数値とそのエネルギー値であるとする。但し、iは1,2,3,・・・,Nの整数であり、fNが計測し記録した最大周波数値とし、imaxは1以上N以下の整数である。ここで、i=imax+1,i=imax+2のようにimaxから1つずつ増加させ、最初にPi<Pimax×(1/100)となるiを探しiupperとし、同様にi=imax−1,i=imax−2のようにimaxから1つずつ減少させ、最初にPi<Pimax×(1/100)となるiを探しilowとし、ilowからiupperまでを除いた、それ以外のiにおけるPiの平均値を算出するようにする。このような方法で、最大エネルギー値となる共振周波数から十分離れた周波数に対応した他のエネルギー値の平均値を算出することができる。なお、本発明においては、他のエネルギー値の算出方法としては、これらの具体的な算出方法に限定されるものではない。
【0045】
この場合に、数式4に示されるように複数次(nが1、2、3、…)の共振周波数fnが存在し、後述する図10、図11等にも示されるように、各共振周波数で波形のピークが表われる。他のエネルギー値を算出するに際しては、これら共振周波数における超音波のエネルギー値は含まないようにする。そのために、所定の周波数領域(本実施形態では周波数3MHz〜5MHz)を複数次の共振周波数(波形のピーク)が含まれないように適宜設定する。或いは、所定の周波数領域(本実施形態では周波数3MHz〜5MHz)に複数次の共振周波数(波形のピーク)が含まれる場合には、これら複数次の共振周波数における超音波のエネルギー値を除いて他のエネルギー値を算出する。
【0046】
このステップS105では、ステップS104において最大エネルギー値検出手段50で検出した最大のエネルギー値ST1(被計測板2の表面温度T1における最大エネルギー値)を、次の数式9により室温時換算する。数式9で用いられる透磁率μT1及び電気抵抗率RT1は、結晶粒径計測の対象材(被計測板2の種類)に応じて、被計測板2の温度情報T1に対応するものが物性値記憶部70から抽出される。
room=(RT1/Rroom)*(μroom/μT12*ST1・・・(数式9)
但し、Rroomは室温での電気抵抗率、μroomは室温での透磁率を表す。
【0047】
また、このステップS105では、ステップS103においてエネルギー値算出手段40で算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値NT2を、次の数式10により室温時換算する。他のエネルギー値NT2は送受信プローブ10で生じる熱雑音(送受信プローブ10の温度T2における熱雑音)と考え、熱雑音は√Tに比例することに基づくものである。
room=(√室温/√T2)*NT2・・・(数式10)
【0048】
続いて、ステップS106で、比算出手段80は、ステップS105において補正手段60で室温時換算した最大のエネルギー値と、同じくステップS105において補正手段60で室温時換算した他のエネルギー値との比を算出する。
【0049】
続いて、ステップS107で、結晶粒径算出手段100は、ステップS106において比算出手段80で算出したエネルギー値の比に基づいて、被計測板2における平均結晶粒径を算出する。
【0050】
ここで、具体的に、被計測板2の平均結晶粒径の算出方法について説明する。まず、被計測板2と同一工程で形成したサンプル板に対して、最大のエネルギー値と他のエネルギー値との比と、平均結晶粒径との関係を予め実験等により求める。図7は、最大のエネルギー値と他のエネルギー値との比と、平均結晶粒径との関係を示す特性図である。そして、図7に示すように、求めた特性値に対して近似処理を行って、最大のエネルギー値と他のエネルギー値との比に対する平均結晶粒径の相関値を算出し、算出した各相関値を予め相関値記憶部90に記憶しておく。結晶粒径算出手段100は、比算出手段80で算出したエネルギー値の比に基づいて、相関値記憶部90に記憶されている該当する平均結晶粒径の相関値を抽出して、被計測板2における平均結晶粒径を算出する。
【0051】
これらステップS101〜ステップS107までの処理を経ることにより、共振スペクトルにおける超音波の最大のエネルギー値と、当該最大のエネルギー値以外の他のエネルギー値との比に基づいた被計測板2の平均結晶粒径の算出が行われる。
【0052】
特許文献3では、平均結晶粒径が小さい被計測板(図16の例では平均結晶粒径が40.4μmのもの)に対して平均結晶粒径が大きい被計測板(図16の例では平均結晶粒径が87.5μmのもの)の共振周波数における超音波波形(減衰波形)のエネルギー値が小さくなり、かつ、共振しない他の周波数における超音波波形(減衰波形)のエネルギー値の割合が大きくなるという事象の考察を行っている。
【0053】
まず、上述した事象が生じる要因として、結晶粒の結晶方位に注目し、図16における被計測板とは異なるサンプルではあるが、平均結晶粒径が小さい被計測板と、当該被計測板に比べて平均結晶粒径が大きい被計測板のそれぞれについて、板厚方向の主な結晶方位について計測を行った。この際、被計測板として鋼板を用いて計測を行った。図8にその結果を示す。
【0054】
図8に示すように、板厚方向の主な結晶方位については、平均結晶粒径が小さい被計測板では結晶方位<111>となり、平均結晶粒径が大きい被計測板では結晶方位<111>と<110>となる結果が得られた。そして、この結晶方位から、各被計測板の板厚方向における共振周波数を算出することを試みた。以下に、その算出方法を示す。
【0055】
被計測板として鋼板を用いた場合、その結晶は立方晶であり、x、y、z軸を結晶軸にとったときの弾性率テンソルTは、次の数式5で表わせることがわかっている。
【0056】
【数5】

【0057】
また、横波超音波の伝播方向が結晶方位<111>の場合には、その横波超音波の音速Vsが、次の数式6で表わせることがわかっている。
【0058】
【数6】

【0059】
また、横波超音波の伝播方向が結晶方位<110>の場合には、その横波超音波の音速が2種類存在し、それぞれの音速Vs1及びVs2が、次の数式7及び数式8で表わせることがわかっている。
【0060】
【数7】

【0061】
ここで、数式6〜数式8において、鉄の単結晶の場合には、弾性定数C11が2.331×1011(N/m2)、弾性定数C44が1.178×1011(N/m2)、弾性定数C12が1.354×1011(N/m2)であり、密度ρが7.86×103(kg/m3)であることがわかっている。
【0062】
平均結晶粒径が小さい被計測板では、主な結晶方位が<111>であるため、数式6に基づいて横波超音波の音速を算出すると、図8に示すように3023(m/s)となる結果が得られた。一方、平均結晶粒径が大きい被計測板では、主な結晶方位が<111>と<110>であるため、数式6〜数式8に基づいて横波超音波の音速を算出すると、図8に示すように3023(m/s)、2492(m/s)及び3871(m/s)の3種類の音速が混在する結果が得られた。
【0063】
そして、各被計測板での横波超音波の音速から、数式4に基づいて共振周波数を算出すると(この場合、n=1とする)、図8に示すように、平均結晶粒径が小さい被計測板では、共振周波数が4.318(MHz)の1種類のみ存在するのに対して、平均結晶粒径が大きい被計測板では、共振周波数が4.318(MHz)、3.56(MHz)及び5.53(MHz)の3種類が存在する結果となった。
【0064】
これにより、平均結晶粒径が小さい被計測板では、共振周波数が1種類のみ存在するため、最大のエネルギー値が大きくなるとともに、共振しない他の周波数におけるエネルギー値の割合が小さくなることが判明した。一方、平均結晶粒径が大きい被計測板では、共振周波数が3種類も存在するため、最大のエネルギー値が小さくなるとともに、当該最大のエネルギー値以外の他の周波数におけるエネルギー値の割合が大きくなることが判明した。すなわち、被計測板を伝播する超音波のエネルギー値が当該被計測板の結晶方位に起因することを実証した。
【0065】
ここで、本発明者は、送受信プローブ10の温度及び被計測板2の温度による結晶粒径計測の精度について考察を行った。図9に示すように、高温試験槽51内にサンプル板52を置き、サンプル板52の表面の所定位置に送受信プローブ53を配置する。送受信プローブ53は、200℃耐熱のエポキシ系樹脂を使用したEMATセンサを使用している。また、サンプル板52の表面及びEMATセンサ53の側面にそれぞれ熱電対を設置して、サンプル板52の表面温度(サンプル温度と称する)及びEMATセンサ53の側面温度(センサ温度と称する)を測定する。
【0066】
まず、2.3mm厚の一般構造用圧延鋼材(SS400)のサンプル板52について、高温試験槽51内を室温にした場合と200℃にした場合とで試験を実施した。図10(a)は、1MHz〜5MHzの周波数領域の各周波数における超音波のエネルギー値の特性図であり、縦軸に超音波のエネルギー値を示し、横軸に周波数を示している。図中の破線が室温時での特性を表わし、実線が200℃時での特性を表わす。図10(a)に示すように、5種類の共振周波数が存在する結果となったが、いずれにおいても室温時と200℃時とでずれが発生していることがわかる。
【0067】
図10(b)には、室温から200℃まで温度上昇させながら約3分間隔で測定したサンプル温度及びセンサ温度を示す。図中の◆がサンプル温度を表わし、■がセンサ温度を表わす。本試験では固定されたサンプル板52の表面の所定位置に送受信プローブ53を配置しているので、両温度にほとんど差はない。
【0068】
図10(c)には、図10(b)の各測定回において算出した、最大のエネルギー値とそれ以外の他のエネルギー値との比(以下「共振ピークSN値」と呼ぶ)を示す。なお、図10(a)では1MHz〜5MHzの周波数領域を示しているが、ここでの共振ピークSN値の算出では、実際の計測に対応させて、1.5MHz〜2.8MHzの周波数領域で評価している。図10(c)に示すように、同一のサンプル板52、すなわち同じ結晶粒径であるのに、温度上昇に伴って共振ピークSN値が減少する結果となった。
【0069】
また、2mm厚のオーステナイト系ステンレス鋼(SUS304)のサンプル板52について、高温試験槽51内を室温にした場合と200℃にした場合とで試験を実施した。図11(a)は、1MHz〜5MHzの周波数領域の各周波数における超音波のエネルギー値の特性図であり、縦軸に超音波のエネルギー値を示し、横軸に周波数を示している。図中の破線が室温時での特性を表わし、実線が200℃時での特性を表わす。図11(a)に示すように、3種類の共振周波数が存在する結果となったが、いずれにおいても室温時と200℃時とでずれが発生していることがわかる。
【0070】
図11(b)には、室温から200℃まで温度上昇させながら約3分間隔で測定したサンプル温度及びセンサ温度を示す。図中の◆がサンプル温度を表わし、■がセンサ温度を表わす。本試験では固定されたサンプル板52の表面の所定位置に送受信プローブ53を配置しているので、両温度にほとんど差はない。
【0071】
図11(c)には、図11(b)の各測定回において算出した共振ピークSN値を示す。なお、図11(a)では1MHz〜5MHzの周波数領域を示しているが、ここでの共振ピークSN値の算出では、実際の計測に対応させて、1.5MHz〜2.8MHzの周波数領域で評価している。図11(c)に示すように、同一のサンプル板52、すなわち同じ結晶粒径であるのに、温度上昇に伴って共振ピークSN値が減少する結果となった。
【0072】
これら試験の結果から、結晶粒径計測を行う際には温度補正を行わなければ精度が落ちてしまうことがわかる。
【0073】
本発明者は、共振周波数における超音波のエネルギー値を、透磁率や電気抵抗率等の温度依存性の物性値から室温時換算できる可能性があると考えた。EMATセンサ53の検出信号である受信電圧VRを、磁束密度B、EMATセンサ内の送受信コイルと検査体による形状係数G、周波数や密度等による定数Z、渦電流IEを用いて、次の数式11で表わす。磁束密度Bは透磁率μに依存し、渦電流IEは電気抵抗率Rに依存する。SS400及びSUS304について、これら透磁率μと電気抵抗率Rの温度依存性をデータブック等から調査すると、図12(a)、(b)に示すものとなる。
【0074】
【数8】

【0075】
数式11によれば、EMATセンサ53の検出信号である受信電圧VRはB2に比例し、渦電流IEに比例する。ただし、渦電流コイルには一定電圧をかけているので、対象材の電気抵抗率Rに反比例することになる。したがって、対象材の表面温度がT1のときの最大エネルギー値が数式9で表わされることになる。
【0076】
図13、図14に、数式9、10を用いて室温時換算して求めた共振ピークSN値を示す。図13は、SS400を対象材とした図10に対応する結果である。図14は、SUS304を対象材とした図11に対応する結果である。なお、透磁率μと電気抵抗率Rは図12に示す情報を利用した。
【0077】
図13、図14において、●が生データの結果(図10(c)、図11(c)と同じ結果)を表わし、○が室温時換算した結果を表わす。室温時換算することにより、温度上昇に伴って共振ピークSN値が減少する現象がなくなり、温度上昇したときにも室温時での共振ピークSN値と略一致していることがわかり、室温時換算する補正に妥当性があるといえる。
【0078】
以上述べたように、本発明を適用した結晶粒径計測によれば、被計測板2の板厚が非常に薄い場合であっても、被計測板2の結晶粒径を高精度に計測することができる。
【0079】
しかも、室温時だけでなく高温時においても被計測板の結晶粒径を高精度に計測することができる。これにより、オンラインでの各種対象材の結晶粒径の計測が可能になる。例えば、ある種の鋼材の場合、結晶粒径が大きくなると硬度が増加するため、製造プロセスの圧延段階において鋼板の破断が生じる等の問題が発生することがある。このような場合に、圧延段階の前段で結晶粒径を計測し、それに応じて圧延速度を制御すれることにより、破断防止が可能になる。
【0080】
以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。例えば上述した実施形態では、被計測板2の温度情報T1及び送受信プローブ10の温度情報T2をそれぞれ測定するようにしたが、図10、図11の試験例でも述べたように、被計測板2が固定されているような場合は両温度にほとんど差はない。したがって、いずれか一方の温度のみを測定するようにしてもよい。ただし、被計測板2が搬送されている状態では、両温度に差が生じることもありえるので、被計測板2の温度情報T1及び送受信プローブ10の温度情報T2をそれぞれ測定するのが好適である。
【0081】
また、上述した実施形態では、数式9、10を用いて室温時換算したが、例えば予め実験等により図10(c)、図11(c)のようなデータを計測しておき、そのデータを用いて室温時換算することも考えられる。しかしながら、その場合、結晶粒径計測の対象材ごとにデータを採取しておく必要がある。したがって、多種の鋼板を対象材とするような場合には、事前にデータを採取する必要性のない、数式9、10を用いた室温時換算が優位である。
【0082】
(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。すなわち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU等)がプログラムを読み出して実行する処理である。
【符号の説明】
【0083】
1:結晶粒径計測装置
2:被計測板
3:支持体
10:送受信プローブ
20:超音波発振手段
30:波形検出手段
40:エネルギー値算出手段
50:最大エネルギー値検出手段
60:補正手段
70:物性値記憶部
80:比算出手段
90:相関値記憶部
100:結晶粒径算出手段

【特許請求の範囲】
【請求項1】
被計測板の表面の所定位置に配置された送受信プローブを介して、前記被計測板の板厚方向における共振周波数を含む所定の周波数領域の超音波を発振する超音波発振手段と、
前記被計測板の板厚方向に伝播した前記所定の周波数領域の各周波数における超音波の波形を、前記送受信プローブを介して検出する波形検出手段と、
前記波形検出手段で検出した超音波の波形に基づいて、前記所定の周波数領域の各周波数における超音波のエネルギー値を算出するエネルギー値算出手段と、
前記エネルギー値算出手段で算出したエネルギー値の中から、前記共振周波数における超音波のエネルギー値である最大のエネルギー値を検出する最大エネルギー値検出手段と、
前記最大エネルギー値検出手段で検出した最大のエネルギー値と、前記エネルギー値算出手段で算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値とを、前記送受信プローブの温度情報及び前記被計測板の温度情報のうち少なくともいずれか一方を用いてそれぞれ補正する補正手段と、
前記補正手段で補正した最大のエネルギー値と、前記補正手段で補正した他のエネルギー値との比を算出する比算出手段と、
前記比算出手段で算出したエネルギー値の比に基づいて、前記被計測板における結晶粒径を算出する結晶粒径算出手段とを備えることを特徴とする結晶粒径計測装置。
【請求項2】
前記エネルギー値算出手段で算出したエネルギー値のうち、前記最大のエネルギー値を除いた各エネルギー値の平均値を、前記他のエネルギー値とすることを特徴とする請求項1に記載の結晶粒径計測装置。
【請求項3】
前記補正手段は、前記最大エネルギー値検出手段で検出した最大のエネルギー値と、前記エネルギー値算出手段で算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値とをそれぞれ室温時換算することを特徴とする請求項1又は2に記載の結晶粒径計測装置。
【請求項4】
被計測板の表面の所定位置に配置された送受信プローブを介して、前記被計測板の板厚方向における共振周波数を含む所定の周波数領域の超音波を発振する超音波発振ステップと、
前記被計測板の板厚方向に伝播した前記所定の周波数領域の各周波数における超音波の波形を、前記送受信プローブを介して検出する波形検出ステップと、
前記波形検出ステップで検出した超音波の波形に基づいて、前記所定の周波数領域の各周波数における超音波のエネルギー値を算出するエネルギー値算出ステップと、
前記エネルギー値算出ステップで算出したエネルギー値の中から、前記共振周波数における超音波のエネルギー値である最大のエネルギー値を検出する最大エネルギー値検出ステップと、
前記最大エネルギー値検出ステップで検出した最大のエネルギー値と、前記エネルギー値算出ステップで算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値とを、前記送受信プローブの温度情報及び前記被計測板の温度情報のうち少なくともいずれか一方を用いてそれぞれ補正する補正ステップと、
前記補正ステップで補正した最大のエネルギー値と、前記補正ステップで補正した他のエネルギー値との比を算出する比算出ステップと、
前記比算出ステップで算出したエネルギー値の比に基づいて、前記被計測板における結晶粒径を算出する結晶粒径算出ステップとを有することを特徴とする結晶粒径計測方法。
【請求項5】
被計測板の表面の所定位置に配置された送受信プローブを介して、前記被計測板の板厚方向における共振周波数を含む所定の周波数領域の超音波を発振する超音波発振処理と、
前記被計測板の板厚方向に伝播した前記所定の周波数領域の各周波数における超音波の波形を、前記送受信プローブを介して検出する波形検出処理と、
前記波形検出処理で検出した超音波の波形に基づいて、前記所定の周波数領域の各周波数における超音波のエネルギー値を算出するエネルギー値算出処理と、
前記エネルギー値算出処理で算出したエネルギー値の中から、前記共振周波数における超音波のエネルギー値である最大のエネルギー値を検出する最大エネルギー値検出処理と、
前記最大エネルギー値検出処理で検出した最大のエネルギー値と、前記エネルギー値算出処理で算出したエネルギー値のうち、前記最大のエネルギー値以外の他のエネルギー値とを、前記送受信プローブの温度情報及び前記被計測板の温度情報のうち少なくともいずれか一方を用いてそれぞれ補正する補正処理と、
前記補正処理で補正した最大のエネルギー値と、前記補正処理で補正した他のエネルギー値との比を算出する比算出処理と、
前記比算出処理で算出したエネルギー値の比に基づいて、前記被計測板における結晶粒径を算出する結晶粒径算出処理とをコンピュータに実行させるためのプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2011−169872(P2011−169872A)
【公開日】平成23年9月1日(2011.9.1)
【国際特許分類】
【出願番号】特願2010−36475(P2010−36475)
【出願日】平成22年2月22日(2010.2.22)
【出願人】(000006655)新日本製鐵株式会社 (6,474)
【Fターム(参考)】