説明

絶縁監視装置

【課題】ノイズの影響を受けた監視信号を有効に除外し、変圧器低圧側電路の対地絶縁抵抗成分を正確かつ安定に監視可能とする。
【解決手段】変圧器1のB種接地線4に商用周波数とは異なる周波数の監視信号を注入し、その低圧側電路と大地を介してB種接地線に環流する漏れ電流を検出すると共に、この漏れ電流から商用周波数を含む不要成分を除去して漏れ電流の監視信号成分に相当する測定信号を検出する。また低圧側電路のD種接地点を基準とするB種接地線からの基準入力より前記注入された監視信号に相当する基準信号を検出すると共に、該基準信号1サイクル分に渡って測定信号を累積加算し、その加算結果が所定の閾値範囲を逸脱しているか否かを判定する。そして、前記基準信号に同期し、累積加算結果が所定の閾値範囲を逸脱しないと判定された各基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を正確に求める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は絶縁監視装置に関し、更に詳しくは、受電変圧器の低圧側電路における対地絶縁抵抗を該電路と大地を介してB種接地線に環流する漏れ電流により監視する絶縁監視装置に関する。
【背景技術】
【0002】
受電変圧器の低圧側電路(100V、200V、600V)には、工場の機械設備或いは一般家庭のパソコン等、様々な負荷が接続されているため、このような低圧側電路における漏電をいち早く検出して、漏電事故等を未然に防止する必要がある。
【0003】
図9は従来技術を説明する図で、従来の絶縁監視装置の概略構成を示している(特許文献1,2)。図において、受電変圧器1の低圧側電路には負荷2が接続されると共に、この内の第1の電路3はB種接地線4を介して接地され、また第2の電路5は大地との間に対地絶縁抵抗R0と対地静電(浮遊)容量C0とからなる対地インピーダンスZ0を有している。この様な変圧器1の低圧側では、第2の電路5、対地インピーダンスZ0、大地及びB種接地線4を介して対地インピーダンスZ0と大地の抵抗とに基づく漏れ電流が還流する。従来の絶縁監視装置200はこのような低圧側電路のB種接地線4に設けられている。
【0004】
この絶縁監視装置200は、商用周波数とは異なる周波数の監視信号を生成し、重畳トランス30を介してB種接地線4に注入する監視信号発生部201と、低圧側電路のD種接地点EDを基準として前記B種接地線4より検出された前記監視信号に相当する基準信号を検出する基準信号検出部202と、変圧器1の低圧側電路と大地を介して前記B種接地線4に環流する漏れ電流を検出すると共に、その検出出力から商用周波数及びその高調波等の不要成分を除去して漏れ電流の監視信号成分に相当する測定信号を検出する測定信号検出部203と、前記基準信号に位相同期して、前記測定信号に含まれる漏れ電流の対地絶縁抵抗成分を求める演算処理部204とを備え、該求めた測定信号(即ち、漏れ電流の監視信号成分)の対地絶縁抵抗成分を継続的に監視することで漏電等を監視している。
【0005】
この様な構成では、対地インピーダンスZ0が比較的大きい正常な場合は良いが、何らかの理由により絶縁劣化が始まると、大地を介してB種接地線4に環流する商用成分の漏れ電流が大きくなると共に、D種接地点EDを基準とするB種接地線4にも大きな商用電圧(数十V程度)が表れるため、基準信号の正確な検出が困難となる。また、これに伴い測定信号に含まれる対地絶縁抵抗成分の検出も不安定かつ不正確なものになってしまう。
【0006】
このため、従来は、監視信号として比較的大きな電力の低周波信号(例えば20Hz、0.5V)を注入すると共に、その検出信号から商用周波数及びその高調波等の不要成分を除去して漏れ電流の監視信号成分に相当する測定信号Mを抽出し、この測定信号Mを使用したDFT演算により対地絶縁抵抗成分IgRを抽出していた。
【特許文献1】特開2005−181148
【特許文献2】特許第3043278号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかし、平時よりB種接地線に比較的大きなパワーの監視信号を注入するのは、自己の負荷装置2のみならず周辺の機器にとっても好ましくない。また、負荷装置の電源ON/OFF等に伴って発生するノイズには監視信号の周波数(例えば20Hz)に近い周波数成分も少なからず含まれているため、このようなノイズはフィルタ手段では除去し切れないばかりか、この種のノイズの混入した測定信号を使用してDFT演算を行ってしまうと、もはや正確な絶縁抵抗は得られず、漏電誤検出の原因ともなり得る。
【0008】
本発明は上記従来技術の問題点に鑑みなされたもので、その目的とするところは、ノイズの影響を受けた監視信号(即ち、測定信号)を有効に除外することで、変圧器低圧側電路の対地絶縁抵抗成分を正確かつ安定に監視可能とすることにある。
【課題を解決するための手段】
【0009】
上記の課題を解決するため、本発明の第1の態様による絶縁監視装置は、受電変圧器のB種接地線に対して商用周波数とは異なる周波数の監視信号を注入する監視信号注入手段と、前記変圧器の低圧側電路と大地を介して前記B種接地線に環流する漏れ電流を検出する電流検出手段と、前記検出された漏れ電流から商用周波数及びその高調波等の不要成分を除去して漏れ電流の監視信号成分に相当する測定信号を検出する測定信号検出手段と、前記低圧側電路のD種接地点を基準とする前記B種接地線からの基準入力より前記注入された監視信号に相当する基準信号を検出する基準信号検出手段と、前記検出した漏れ電流の測定信号を前記基準信号の1サイクル分に渡って累積加算する累積加算手段と、前記累積加算手段の累積加算結果が所定の閾値範囲を逸脱しているか否かを判定する判定手段と、前記基準信号の所定位相に同期し、前記判定手段により所定の閾値範囲を逸脱しないと判定された基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を抽出する抵抗成分抽出手段と、を備えるものである。
【0010】
例えば、負荷装置の電源ON/OFFに伴って発生するような低周波ノイズには監視信号の周波数(例えば20Hz)に近い周波数成分も少なからず含まれているため、この種のノイズ成分はフィルタ手段では充分に除去し切れない。この点、本発明においては、累積加算手段は、漏れ電流の測定信号を基準信号の1サイクル分に渡って累積加算するため、その累積加算結果は、この測定信号に含まれる低周波ノイズの平均レベル(DCレベル)に応じて大きく変動することになる。そこで、判定手段によりこの累積加算結果が所定の閾値範囲を逸脱しているか否かを判定すると共に、抵抗成分抽出手段は。所定の閾値範囲を逸脱しないと判定された基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を抽出する。従って、本発明によれば、フィルタ手段では除去できないような低周波ノイズを含む測定信号(監視信号)の使用を有効に回避しつつ、適正な測定信号を使用して絶縁監視を高精度かつ高信頼性で行える。
【0011】
本発明の第2の態様では、前記基準信号の所定位相に同期し、前記判定手段により所定の閾値範囲を逸脱しないと判定された基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地静電容量成分を抽出する容量成分抽出手段と、該抽出した対地静電容量成分信号に基づき前記漏れ電流の監視信号成分に含まれる対地静電容量成分を打ち消すための抑圧信号を生成して前記電流検出手段の抑圧部に供給する抑圧信号生成手段とを備え、前記抵抗成分抽出手段は、前記漏れ電流の監視信号成分に含まれる対地静電容量成分を抑圧された状態の測定信号に基づいて該測定信号に含まれる対地絶縁抵抗成分を抽出する。
【0012】
本発明では、漏れ電流の監視信号成分のうちの対地静電容量成分が電流検出手段において略0となるように抑圧されるため、残りの検出信号より対地絶縁抵抗成分を雑音の少ない状態でより高精度に抽出できる。
【0013】
本発明の第3の態様では、前記検出した漏れ電流の測定信号を順次記憶すると共に、前記判定手段により基準信号1サイクル分の測定信号の累積加算結果が所定の閾値範囲を逸脱すると判定された場合は、当該基準信号1サイクル分の測定信号を前回の逸脱しないと判定された基準信号1サイクル分の測定信号で置き換えるバッファメモリを備え、前記抵抗成分抽出手段は、前記バッファメモリの測定信号を使用してDFT演算を行う。従って、ノイズの少ない適正な測定信号を有効に活用して高精度かつ高信頼性な絶縁監視を行える。
【0014】
本発明の第4の態様では、前記判定手段により各基準信号1サイクル分の累積加算結果が所定回数以上連続して前記所定の閾値範囲を逸脱したと判定されたことにより、該所定の閾値範囲を広げる方向に更新する閾値更新手段を備える。従って、一時的、瞬時的なノイズ信号を除外する目的からしては厳しすぎるような狭い閾値範囲を自動的に広げることにより閾値範囲を適正に運用できる。
【0015】
本発明の第5の態様では、前記閾値更新手段は、前記判定手段によって各基準信号1サイクル分の累積加算結果が所定回数以上連続して前記所定の閾値範囲を逸脱しないと判定されたことにより、前記所定の閾値範囲を狭める方向に更新する。従って、一時的、瞬時的なノイズ信号を除外する目的からしては緩すぎるような広い閾値範囲を自動的に狭めることにより閾値範囲を適正に運用できる。
【0016】
本発明の第6の態様では、前記基準信号検出手段は、前記B種接地線の基準入力から商用周波数成分信号を抽出するバンドパスフィルタと、前記B種接地線の基準入力から前記バンドパスフィルタで抽出した商用周波数成分信号を除去する商用成分除去手段と、該商用周波数成分信号を除去された基準入力から前記監視信号の周波数成分に相当する基準信号を抽出するフィルタ手段と、を備える。
【0017】
本発明では、B種接地線の基準入力から主要なノイズ源である商用成分を抽出すると共に、該抽出した商用成分で基準入力の商用成分を相殺(除去)するため、絶縁劣化等に伴いB種接地線に大きな商用電圧が現れても、商用成分をその大きさによらず常に高い精度で除去(相殺)でき、残りの基準入力から小電力の監視信号に相当する基準信号を高い精度で検出できる。また、このような基準信号に位相同期することにより、B種接地線に環流する漏れ電流の監視信号成分から対地絶縁抵抗成分を高精度かつ高信頼性で抽出できる。
【0018】
本発明の第7の態様では、前記抵抗成分抽出手段は、前記基準信号の所定位相に同期し、該基準信号m(<n)サイクル分ずつずらした各基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を順次抽出する。
【0019】
一般に、DFT演算では、基本周波数f0の整数倍の周波数成分が得られることから、この基本周波数f0はDFT演算の周波数分解能を表すことになる。従って、特定周波数(例えば20Hz)の監視信号を使用する絶縁監視では、この周波数分解能は高い程、高精度な監視を行える。しかし、この周波数分解能が高いほど長時間(即ち、nが大)に渡る測定信号を使用する必要があるため、各演算結果の得られる時間間隔(即ち、DFT演算の時間分解能)が低下する。そこで、本発明では、基準信号m(<n)サイクル分ずつずらした各基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を順次抽出する。従って、簡単な構成により高精度な絶縁監視を高い時間分解能で行える。
【発明の効果】
【0020】
以上述べた如く本発明によれば、フィルタ手段では除去し切れないようなノイズの影響を受けた監視信号(即ち、測定信号)を有効に除外しつつ、有効な測定信号を使用して変圧器低圧側電路の対地絶縁抵抗成分を正確かつ安定に監視可能となるため、この種の絶縁監視装置の正確性や信頼性の向上に寄与するところが極めて大きい。
【発明を実施するための最良の形態】
【0021】
以下、添付図面を参照して本発明に好適な実施の形態を詳細に説明する。図1は実施の形態による絶縁監視装置のブロック図である。図において、受電変圧器1の低圧側電路には負荷2が接続されると共に、この内の第1の電路3はB種接地線4を介して接地され、また第2の電路5は、大地との間に対地絶縁抵抗R0と対地静電(浮遊)容量C0とからなる対地インピーダンスZ0を有している。この様な変圧器1の低圧側では、第2の電路5、対地インピーダンスZ0、大地及びB種接地線4を介して対地インピーダンスZ0と大地の抵抗とに基づく漏れ電流が還流する。この絶縁監視装置10はこのような低圧側電路のB種接地線4に設けられる。
【0022】
この絶縁監視装置10は、変圧器1のB種接地線4に対して商用周波数とは異なる周波数の監視信号Wを注入する監視信号注入手段20を備える。この監視信号注入手段20は、演算処理部(MPU)90から提供される高精度、高安定なクロック信号CKを分周して商用周波数とは異なる周波数(例えば20Hz)の正弦波交流信号である監視信号を発生する発振器(OSC)21と、この監視信号がB種接地線4上で所要の電圧レベル(例えば0.07V程度)となるように電力増幅する増幅器22とを備え、こうして得られた監視信号Wを注入手段としての重畳トランス(CT)30を介してB種接地線4に注入する。
【0023】
またこの絶縁監視装置10は、低圧側電路のD種接地点EDを基準としてB種接地線より前記注入された監視信号Wに相当する基準信号Bを検出する基準信号検出手段40を備える。この基準信号検出手段40は、B種接地線4の基準入力bから該基準入力bに含まれる商用周波数成分を除去する商用成分除去部41と、この商用成分を除去された基準入力から監視信号Wの周波数成分を抽出すると共に、該抽出した信号の位相調整を行って漏れ電流の監視信号成分に含まれる対地静電容量成分に位相同期した基準信号Bを生成するフィルタ手段としてのスイッチト・キャパシタ・フィルタ(SCF)45とを備える。
【0024】
商用成分除去部41では、一方でB種接地線4からの基準入力bをバッファアンプ(BA)42によりバッファ(インピーダンス整合及び利得1で増幅)すると共に、他方では前記B種接地線4からの基準入力bからバンドパスフィルタ(BPF)43により商用周波数成分を抽出する。更に、差動増幅器(AMP)44によってBA42の出力の基準入力bからBPF43の出力の商用周波数成分を差し引くことにより、商用成分が除去(相殺)された基準入力信号を生成する。
【0025】
本実施の形態では、B種接地線4の基準入力bから主要なノイズ源である商用成分を抽出すると共に、該抽出した商用成分で基準入力bの商用成分を相殺(除去)するため、絶縁劣化等に伴いB種接地線4に大きな商用電圧が現れても、商用成分をその大きさによらず常に高い精度で除去(相殺)できるため、残りの基準入力から小電力の監視信号Wに相当する基準信号Bを高い精度で検出できる。また、このような基準信号Bに位相同期することにより、B種接地線4に環流する漏れ電流の監視信号成分から対地絶縁抵抗成分IgRを高精度かつ高信頼性で抽出できる。
【0026】
更に、次段のフィルタ手段としてのSCF45は、バンドパスフィルタとしての機能と、MPU90から指定されたクロック周波数の指令に基づいて基準信号Bの位相を調整する位相シフタとしての機能とを兼ね備えており、まずバンドパスフィルタの機能により、商用成分を除去された基準入力bから、更に商用周波数及びその高調波等の不要成分を除去して監視信号の周波数成分からなる基準信号Bを抽出すると共に、前記位相シフタとしての機能により、この基準信号Bの位相を漏れ電流の監視信号成分に含まれる対地静電容量成分IgCの位相に合わせる。この基準信号Bは、測定信号Mに含まれる対地静電容量成分を抑圧するための後述の抑圧信号生成部80に送られると共に、次段の同期信号生成部70にも入力される。こうして得られた同期信号Sが演算処理部(MPU)90に送られる。
【0027】
またこの絶縁監視装置10は、変圧器1の低圧側電路より大地を介してB種接地線4に環流する漏れ電流mを検出する電流検出手段としての零相変流器(ZCT)50と、該検出した漏れ電流mから商用周波数等の不要成分を除去して漏れ電流の監視信号成分に相当する測定信号Mを検出する測定信号検出手段60とを備える。
【0028】
この測定信号検出手段60は、ZCT50により検出された漏れ電流mを電圧信号に変換すると共に次段で必要なレベルにまで増幅するヘッドアンプ61と、このヘッドアンプ61の出力から商用周波数およびその高調波等の不要成分を除去するローパスフィルタ(LPF)62と、このLPF62の出力を所定レート(例えば基準信号1サイクルの50ms当たり32サンプルのレート)でサンプリングしてディジタルの測定信号Mに変換するA/D変換器63とを備える。
【0029】
またこの絶縁監視装置10は、基準信号Bの所定位相に同期し、該基準信号nサイクル分の測定信号Mを使用したDFT(Discrete Fourier Transform)演算により該測定信号(即ち、漏れ電流の監視信号成分)Mに含まれる対地静電容量成分IgCを抽出する容量成分抽出手段90bと、該抽出した対地静電容量成分信号IgCに基づき漏れ電流の監視信号成分に含まれる対地静電容量成分を打ち消すための抑圧信号Pを生成してZCT50の抑圧部(三次巻線)より前記対地静電容量成分を打ち消す方向に供給する抑圧信号生成部80とを備える。
【0030】
この抑圧信号生成部80は、SCF45で生成された基準信号Bの出力レベル(振幅)を制御する回路であり、該SCF45からの基準信号Bを容量成分抽出手段90bで求められた対地静電容量成分IgCで増幅することにより、ZCT50で検出される監視信号の対地静電容量成分IgCが磁束的に相殺されるような大きさの抑圧信号Pを生成する。
【0031】
更にこの絶縁監視装置10は、本実施の形態の絶縁監視装置10における各種制御・処理を行う演算処理部(MPU)90を備える。この演算処理部90は、基準信号Bの所定位相(この例では90°遅れ位相相当)に同期し、基準信号nサイクル分の測定信号Mを使用したDFT演算により測定信号Mに含まれる対地絶縁抵抗成分IgRを求める抵抗成分抽出手段90aと、上記容量成分抽出手段90bとを備える。詳細は後述する。
【0032】
その他、この演算処理部90は、SCF45に対し、基準信号Bの位相を調整するための基準となるクロック周波数を指令する。更に表示部101や操作部102の各機能を制御する他、警報出力部103を制御する。
【0033】
次に、上記のように構成された絶縁監視装置10の基本的な動作を説明する。まず監視信号注入手段20は商用周波数とは異なる周波数(例えば20Hz)の監視信号Wを生成し、この監視信号Wを重畳トランス30を介して受電変圧器1のB種接地線4に注入する。
【0034】
一方、測定信号検出手段60では、対地インピーダンスZ0と大地を介してB種接地線4に環流する漏れ電流をZCT50により検出し、この電流をヘッドアンプ61で電圧信号に変換すると共に必要なレベルまで増幅する。更に、この増幅出力からLPF62で商用周波数およびその高調波等の不要成分を除去すると共に、その出力をA/D変換器63でディジタル信号に変換する。
【0035】
これと同時に、基準信号検出手段40では、商用成分除去部41がB種接地線4からの基準入力bより主要なノイズ源である商用成分を除去する。更にSCF45が商用成分除去部41の出力から商用周波数及びその高調波等の不要成分を除去し、こうして得られた基準信号Bの位相を漏れ電流の測定信号Mに含まれる対地静電容量成分IgCの位相に合わせる。この基準信号Bは、測定信号Mに含まれる対地静電容量成分IgCを抑圧するための抑圧信号生成部80に送られると共に、次段の同期信号生成部70にも入力され、ここで得られた同期信号Sが演算処理部90に送られる。
【0036】
演算処理部90では、抵抗成分抽出手段90aが基準信号Bの所定位相(この例では90°遅れ位相に相当)に同期して該基準信号nサイクル分の測定信号Mを使用したDFT演算により該測定信号Mに含まれる対地絶縁抵抗成分IgRを抽出すると共に、容量成分抽出手段90bでは基準信号Bの所定位相に同期して該基準信号nサイクル分の測定信号Mを使用したDFT演算により該測定信号Mに含まれる対地静電容量成分IgCを抽出する。
【0037】
抑圧信号発生手段80では、容量成分抽出手段90bより時々刻々と出力される対地静電容量成分信号IgCに基づきSCF45から出力される基準信号Bの振幅を調整すると共に、出力の抑圧電流信号PをZCT50の抑圧部(3次巻き線)に逆方向に加えることによってZCT50における対地静電容量成分IgCが磁束的に相殺される(0となる)ようにフィードバック制御する。一方、抵抗成分抽出手段90aでは、対地静電容量成分IgCが充分に抑圧された状態の測定信号Mを使用することにより該測定信号Mの対地絶縁抵抗成分IgRを高精度に求めることが可能となる。
【0038】
以上、この絶縁監視装置10の基本的な構成及び動作を説明したが、本実施の形態では、小電力の監視信号Wを使用しても高精度、高信頼性の絶縁監視を可能とするために、更に幾つかの工夫が演算処理部90においてなされている。次にこれらを詳細に説明する。
【0039】
図2は実施の形態による演算処理部の機能ブロック図である。図において、91は入力の測定信号Mをバッファメモリ92に書き込む書込制御部、92は少なくとも1回のDFT演算で使用する基準信号nサイクル分の測定信号Mに対して基準信号m(<n)サイクル分の空き容量を加えた記憶容量を有するバッファメモリ、93は入力の測定信号Mを基準信号1サイクル分に渡って累積加算すると共に、その累積加算結果が所定の閾値範囲を逸脱しているか否かを判別する累積加算判定部、94は累積加算判定部93の累積加算結果を時系列に監視することで前記所定の閾値範囲を最適に更新する閾値更新部である。
【0040】
また、95は同期信号生成部70からの同期信号Sに同期して、バッファメモリ92の基準信号nサイクル分の測定信号Mを使用したDFT演算により該測定信号Mに含まれる対地絶縁抵抗成分IgRと対地静電容量成分IgCとを分離するCR分離部である。このCR分離部95には、上記対地絶縁抵抗成分IgRを求める抵抗成分抽出手段90aと、対地静電容量成分IgCを求める容量成分抽出手段90bとが含まれる。
【0041】
更に、96はこのCR分離部95で分離された各対地絶縁抵抗成分信号IgRを時系列に監視することにより、ノイズの影響を受けた測定信号Mによって対地絶縁抵抗成分IgRの表示出力が不安定になるのを抑制する重み付け処理部、そして、97はこの重み付け処理された対地絶縁抵抗成分IgRに基づいて漏電の有/無を判定する漏電判定部である。これらの機能ブロックはMPU90のプログラム実行により実現される。
【0042】
次に各部の動作を詳細に説明する。まず書込制御部91は、同期信号Sの所定のタイミング(例えば対地絶縁抵抗成分IgRの0位相)に同期して入力の測定信号Mを順次バッファメモリ92に書き込む。これと並行して、累積加算判定部93では測定信号Mの累積加算を開始し、基準信号1サイクル(例えば50ms当たり32サンプル)分に渡って測定信号Mを累積加算すると共に、その累積加算結果が所定の閾値TH1、TH2で挟まれる範囲内にあるか否かを判定する。
【0043】
ところで、この測定信号Mは、上記の如くZCT50で漏れ電流の監視信号成分に含まれる対地静電容量成分IgCを充分に抑圧した上、LPF62で20Hzを超える不要成分を除去したものであるから、本来ならこの測定信号Mには監視信号の対地絶縁抵抗成分IgRのみが残っているはずである。
【0044】
しかし、実際の測定信号Mには監視信号(20Hz)に近い周波数のノイズ信号が含まれている場合が少なくない。例えば、負荷2の電源入/切時に発生するノイズには、これを20Hz(50ms)の区間で見ると、その平均レベルが20Hzに近い周波数で大きく振動する場合があり、このようなノイズ信号はLPF62では除去し切れない。そこで、累積加算判定部93では測定信号Mを基準信号1サイクル分に渡って累積加算することによりこのようなノイズ信号による影響の有/無を有効に検出している。以下、これを詳細に説明する。
【0045】
図3は実施の形態による累積加算判定部93のフローチャートである。ステップS11では同期信号Sの発生を待ち、やがて発生すると、ステップS12では所定の初期化処理を行う。具体的には、累積加算レジスタ=0、測定信号Mの加算数カウンタ=1、無効フラグ=0に初期化する。更にステップS13では測定信号Mの発生を待ち、やがて発生すると、ステップS14ではその測定信号Mを取得し、ステップS15ではこの測定信号Mを累積加算レジスタに加算する。ステップS16では加算数カウンタ≧K(例えば32)か否かを判別すると共に、NOの場合はステップS17で加算数カウンタに+1し、ステップS13に戻る。
【0046】
こうして、やがて測定信号MをK(32)回分累積加算すると、ステップS16における判別はYESとなり、フローはステップS18に進む。ステップS18では累積加算値が所定閾値TH1、TH2で挟まれる範囲内(TH1<累積加算値<TH2)にあるか否かを判別し、NO(範囲外)の場合はステップS19で当該基準信号1サイクル分の測定信号Mが無効であることを表す無効フラグ=1(無効)とする。またYES(範囲内)の場合はステップS19の処理をスキップする。ステップS20ではフラグの状態(有効/無効)を書込制御部91と閾値更新部部94に通知する。そして、ステップS11に戻る。
【0047】
図4は実施の形態による累積加算判定部93の動作説明図であり、監視信号Wに幾種類かの典型的なノイズが重畳された場合の累積加算経過と累積加算結果を示している。図4(a)にまずノイズが含まれていない場合を示す。この場合の測定信号M(=監視信号W)は正弦波交流信号であるから、基準信号1サイクル分に渡る累積加算経過は図示の如くその前半部では一様に増加するが、後半部では一様に減少して最終的に「0」となる。この累積加算結果SUMは閾値TH1,TH2の範囲内にあるので有効である。
【0048】
図4(b)は監視信号Wに20Hzよりも高い周波数のノイズ信号Nが重畳した場合を示している。この場合の累積加算経過SUMも上記図4(a)と同様にその前半部で増加し、後半部で減少するが、ノイズ信号Nの平均レベルが幾分+側にオフセットしているため、その累積加算結果SUMは+側の閾値TH2の少し下側に位置している。この測定信号Mもノイズによる影響があまり大きくないとして有効とされる。但し、このような高い周波数のノイズは実際はLPF62によって除去されるため、問題は無い。
【0049】
図4(c)は監視信号Wに対して平均レベルが+側に大きく振れるスパイク状のノイズ信号Nが重畳した場合を示しており、このようなノイズ信号は負荷2の電源をオンした場合に連動して典型的に表れる。この場合の累積加算経過SUMもその前半部で大きく増加し、後半部で減少に転じるが、この区間ではノイズ信号の平均レベルが大きく+側にオフセットしているため、その累積加算結果SUMも+側の閾値TH2を大きく+側に逸脱している。このような低周波のノイズ成分NはLPF62では除去できないため問題であるが、その影響を受けた測定信号Mは累積加算判定部93によって適切に「無効」とされる。
【0050】
図4(d)は監視信号Wに対して平均レベルが−側に大きく振れるスパイク状のノイズ信号Nが重畳した場合を示しており、このようなノイズ信号は負荷2の電源2をオフした場合に連動して典型的に表れる。この場合の累積加算経過SUMは、監視信号Wとノイズ信号Nとが略逆位相であるため、途中では大きく波打っているが、ノイズ信号Nの平均レベルは−側に大きくオフセットしているため、その累積加算結果SUMも−側の閾値TH1を大きく−側に逸脱している。このような測定信号Mも累積加算判定部93によって「無効」とされる。
【0051】
なお、実際上、監視信号Wとノイズ信号Nとは様々な振幅や位相で重畳されるものであるが、それらの累積加算経過や累積加算結果SUMがどのようなものになるかは、上記の例から容易に推測できる。
【0052】
このように、測定信号Mに比較的低周波の大きいノイズ信号が含まれていると、対地絶縁抵抗成分IgRを正確には監視できなくなるため、そのような1サイクル分の測定信号MはDFT演算には使わない方が良い。そこで、本実施の形態では、基準信号1サイクル分の累積加算結果SUMが所定の閾値範囲を逸脱する場合は当該区間の測定信号Mが「無効」である旨の信号を書込制御部91及び閾値更新部94に通知する。
【0053】
図2に戻り、この書込制御部91は、累積加算判定部93より「無効」の通知を受けた場合は、バッファメモリ92に書き込んだ今回の基準信号1サイクル分の測定信号Mを前回の有効とされた基準信号1サイクル分の測定信号Mによって書き換え(即ち、上書きす)る。こうして、ノイズ成分の大きい測定信号MはDFT演算から効率よく除外され、「有効」とされた直近の測定信号Mによって置き換えられる。
【0054】
一方、閾値更新部94は、予め設定された閾値TH1,TH2を累積加算判定部93に提供すると共に、この累積加算判定部93から送られる「有効]/「無効」の通知を監視することによりこの閾値範囲TH1、TH2を適宜に更新する。以下、これを詳細に説明する。
【0055】
図5は実施の形態による閾値更新部のフローチャートである。ステップS31では所定の初期化処理を行う。具体的には、無効通知の受信回数をカウントする無効数カウンタ=0、有効通知の受信回数をカウントする有効数カウンタ=0に初期化する。ステップS32では同期信号Sの発生(即ち、対地絶縁抵抗成分IgRの0位相に相当)を待ち、やがて発生すると、ステップS33では累積加算判定部93からの有効/無効のフラグ通知(即ち、対地絶縁抵抗成分IgRの終了位相に相当)を待つ。やがて、このフラグ通知があると、ステップS34では当該通知が無効フラグ=1か否かを判別し、YES(無効)の場合はステップS35で無効数カウンタに+1する。またNO(有効)の場合はステップS36で有効数カウンタに+1する。ステップS37では両カウンタの和≧L(例えば8)か否かを判別し、NOの場合はステップS32に戻り、上記処理を繰り返す。
【0056】
こうして、やがてステップS37の判別で両カウンタの和(即ち、フラグ通知の全発生回数)がL(=8)になると、フローはステップS38に進み、ここでは無効数カウンタ=Lか否かを判別する。YESの場合は、連続する基準信号8サイクル(0.4sec)分の累積加算結果SUMの全てが閾値TH1、TH2の範囲から逸脱していたことになるので、現時点の閾値範囲は狭すぎるとして、ステップS39ではこの閾値範囲を所定の割合で又は所定量だけ広くする。例えば、現時点の閾値TH1及び又はTH2に所定の比率(例えば1.1〜1.5等)を掛け、または現時点の閾値TH1及び又はTH2に一定の値を加算して閾値範囲を広くする。また、NOの場合はステップS39の処理をスキップする。
【0057】
ステップS40では有効数カウンタ=Lか否かを判別し、YESの場合は、連続する基準信号8サイクル分の累積加算結果SUMの全てが閾値TH1、TH2の範囲内に入っていたことになるので、現時点の閾値範囲は広すぎるとして、ステップS41ではこの閾値範囲を所定の割合で又は所定量だけ狭くする。例えば、現時点の閾値TH1及び又はTH2に所定の比率(例えば0.6〜0.9等)を掛け、または現時点の閾値TH1及び又はTH2から一定の値を差し引いて閾値範囲を狭くする。また、NOの場合は、この区間内に有効と無効とが入り混じっていたことになるため、この閾値範囲は適正であるとして、更新は行わずにそのままステップS31に戻る。こうして、閾値範囲が現時点のノイズの大きさを反映した測定環境に自動的に適応するよう閾値範囲を更新する。
【0058】
次に、このような閾値更新処理の一例を具体的に説明する。図6は実施の形態による閾値更新部の動作説明図である。レベル「0」を挟んで上下に閾値TH2、TH1が初期設定されているとする。時刻t1で始まる最初の基準信号8サイクル(0.4sec)の区間ではこの閾値TH1、TH2を使用して閾値判定が行われ、この例では連続する8つの累積加算結果SUMの全てがこの閾値範囲内にあるため、この閾値範囲は広いと判定され、次の区間では閾値範囲が狭くされている。また、次の区間では5番目と7番目の累積加算結果SUMのみがこの時点の閾値範囲から逸脱しているため、この閾値範囲は適正と判定され、そのまま維持される。
【0059】
一方、時刻t2で始まる最初の0.4secの区間では8回分の累積加算結果SUMの全てが現時点の閾値範囲を逸脱しているため、この閾値範囲は狭いと判定され、次の時点では閾値範囲が広くされている。以下、同様である。こうして、バッファメモリ92には現時点の測定環境に適した有用な測定信号Mのみが順次記憶されてゆく。なお、閾値範囲を広げる場合も、狭める場合も、共に所定の限界が定められており、これらを超えて閾値範囲を更新することはできないものとする。
【0060】
次に図7を参照してバッファメモリ92の記憶態様を説明する。本実施の形態では、基準信号1サイクル(50ms)当たり32サンプルのレートで測定信号MをA/D変換すると共に、この様な測定信号Mを16サイクル(0.8sec、512サンプル)分集めてブロックデータB1と呼び、更にこの様なブロックデータを8ブロック(4096サンプル)分集めてグループデータG1と呼ぶ。このバッファメモリ92は、少なくとも1回のDFT演算で使用する基準信号n(例えば16サイクル×8ブロックB1〜B8=128)サイクル分の測定信号M(4096サンプル)に対して基準信号m(例えば16)サイクル分の空き容量B1’を加えた記憶容量を有しており、これらの限られた記憶容量を巡回的に使用する。
【0061】
更に、この図7を参照してCR分離部95の動作を説明する。このCR分離部95は、基本的には、同期信号Sの所定タイミング(即ち、基準信号Bの90°遅れ位相に相当)に同期し、基準信号n(=128)サイクル分の測定信号Mを使用したDFT演算により該測定信号Mに含まれる対地絶縁抵抗成分IgRと対地静電容量成分IgCとを分離する。この対地絶縁抵抗成分IgRはsin関数を使用して分離でき、また対地静電容量成分IgCはcos関数を使用して同時に分離できる。ところで、このようなDFT演算は4096サンプル分の測定信号Mが使用可能となる6.4sec置きに行っても良いが、これでは6.4sec置きにしか対地絶縁抵抗成分IgRが算出されないため、時間分解能が悪い。
【0062】
そこで、好ましくは、このCR分離部95は、同期信号Sの所定タイミングに同期し、該基準信号m(=16)サイクル分ずつずらした各基準信号n(=128)サイクル分の測定信号Mを使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分IgRと対地静電容量成分IgCとを分離する。
【0063】
これを図7に従って具体的に言うと、最初はグループG1の測定信号Mを使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分IgR1と対地静電容量成分IgC1とを分離し、次に、グループG2の測定信号Mを使用したDFT演算により該測定信号に含まれるIgR2とIgC2とを分離する。なお、この時点ではバッファメモリ92の先頭1ブロック(B1)分のメモリが空きになっているため、新たに入力する測定信号Mはこの空き領域(図のB2’で示す)に順次記憶されている。以下同様にして進み、こうして限られたメモリの有効利用を図っている。
【0064】
また、本実施の形態では、6.4sec分の測定信号Mを使用してDFT演算を行うため、DFT演算の基本周波数f0は略0.156Hzとなる。DFT演算では基本周波数f0の整数倍の周波数成分を求めることが可能であるから、この基本周波数f0=0.156HzはDFT演算の周波数分解能となる。これに基づき、各周波数成分を測定信号Mの周波数20Hzの周辺で見てみると、127×f0の周波数成分が19.844Hz、128×f0の周波数成分が丁度20.00Hz、129×f0の周波数成分が20.156Hzとなり、小電力の監視信号Wを使用した場合でも、その測定信号M(20.00Hz)の対地絶縁抵抗成分IgRを極めて高い周波数分解能で高精度に検出できることが分かる。
【0065】
また、本実施の形態では0.8sec置きに対地絶縁抵抗成分IgRが得られるため、ユーザは高い時間分解能で絶縁状態を監視できる。また、対地静電容量成分IgCも0.8sec置きに得られるため、対地静電容量成分抑制御のフィードバック応答も速い。
【0066】
更に、上記0.8sec置きに求められた測定信号Mの対地絶縁抵抗成分IgRは図2の重み付け処理部96に入力される。そして、この重み付け処理部96は、今回の対地絶縁抵抗成分信号IgRが前回の対地絶縁抵抗成分信号IgRよりも所定以上の割合で増加した場合は、今回の対地絶縁抵抗成分信号IgRに1よりも小さい重み付けをして今回対地絶縁抵抗成分信号IgRとし、それ以外の場合は、今回の対地絶縁抵抗成分信号IgRをそのまま今回の対地絶縁抵抗成分信号IgRとする。以下、具体的に説明する。
【0067】
図8に実施の形態による重み付け処理部の動作説明図を示す。図において、時刻t1より6.4sec経過した時点で最初の絶縁抵抗成分IgR1が得られ、その値が表示部101に表示される。更に、その0.8sec後には2番目の絶縁抵抗成分IgR2が得られるが、これは前回の抵抗成分IgR1よりも小さいのでそのままの値が表示される。更に、次の絶縁抵抗成分IgR3は前回の絶縁抵抗成分IgR2よりも大きいが、所定の増分限界θを超えていないので、そのままの値が表示される。
【0068】
以下同様にして進み、この例では第5番目の絶縁抵抗成分IgR5が4番目の抵抗成分IgR4に対する所定の増分限界θを上回るため、この絶縁抵抗成分IgR5に所定の倍率(例えば0.6〜0.8)が掛けられて新たな絶縁抵抗成分IgR5’に変換され、この値が表示部101に表示される。また同様にして、第8番目の絶縁抵抗成分IgR8も所定の増分限界θを上回るため所定の倍率が掛けられて新たな絶縁抵抗成分IgR8’となり、この値が表示部101に表示される。こうして、瞬間的なノイズ成分の急増に伴う絶縁抵抗成分IgRの急増は有効に緩和されることとなり、監視者に不安定感を与えない。
【0069】
更に、時刻t2からのケースでは、第16番目の絶縁抵抗成分IgR16の生成後、続く各測定信号Mの絶縁抵抗成分IgR17〜IgR27については、途中のIgR22以外は、通常の絶縁劣化に伴い比較的緩やかに上昇している。この場合は、何れも所定の増分限界θを超えないので、重み付け処理を受けることもなくそのままの抵抗値で表示される。そして、この例では所定閾値TH3を超えた後の、例えば4回目(IgR27)の時点で漏電判定部97により絶縁不良ALMが検出され、その旨の「警報」が警報出力部103に出力される。また、負荷2等における急な短絡事故に伴い、得られた各絶縁抵抗成分IgRが一様かつ急峻に上昇したような場合は、僅かな時間遅れはあるものの、実際上速やかに且つ確実に絶縁不良ALMが検出される。
【0070】
なお、上記実施の形態では連続する基準信号8サイクル(0.4sec)毎に閾値範囲の判定を行ったが、これに限らない。閾値範囲の判定周期は任意に設定できる。また、上記実施の形態では一例の数値例を伴って各部の動作を具体的に説明したが、本発明がこれらの数値例に限定されないことは言うまでも無い。
【図面の簡単な説明】
【0071】
【図1】実施の形態による絶縁監視装置のブロック図である。
【図2】実施の形態による演算処理部のブロック図である。
【図3】実施の形態による累積加算判定部のフローチャートである。
【図4】実施の形態による累積加算判定部の動作説明図である。
【図5】実施の形態による閾値更新部のフローチャートである。
【図6】実施の形態による閾値更新部の動作説明図である。
【図7】実施の形態によるCR分離部の動作説明図である。
【図8】実施の形態による重み付け処理部の動作説明図である。
【図9】従来技術を説明する図である。
【符号の説明】
【0072】
1 変圧器(受電変圧器)
2 負荷
3 第1の電路
4 B種接地線
5 第2の電路
10 絶縁監視装置
20 監視信号発生部
21 発振器(OSC)
22 増幅器
30 注入手段(重畳トランス:CT)
40 基準信号検出手段
41 商用成分除去部
42 バッファアンプ(BA)
43 バンドパスフィルタ(BPF)
44 差動増幅器(AMP)
45 スイッチト・キャパシタ・フィルタ(SCF)
50 検出手段(零相変流器:ZCT)
60 測定信号検出手段
61 ヘッドアンプ
62 ローパスフィルタ(LPF)
63 A/D変換器
70 同期信号生成部
80 抑圧信号生成部
90 演算処理部(MPU)

【特許請求の範囲】
【請求項1】
受電変圧器のB種接地線に対して商用周波数とは異なる周波数の監視信号を注入する監視信号注入手段と、
前記変圧器の低圧側電路と大地を介して前記B種接地線に環流する漏れ電流を検出する電流検出手段と、
前記検出された漏れ電流から商用周波数及びその高調波等の不要成分を除去して漏れ電流の監視信号成分に相当する測定信号を検出する測定信号検出手段と、
前記低圧側電路のD種接地点を基準とする前記B種接地線からの基準入力より前記注入された監視信号に相当する基準信号を検出する基準信号検出手段と、
前記検出した漏れ電流の測定信号を前記基準信号の1サイクル分に渡って累積加算する累積加算手段と、
前記累積加算手段の累積加算結果が所定の閾値範囲を逸脱しているか否かを判定する判定手段と、
前記基準信号の所定位相に同期し、前記判定手段により所定の閾値範囲を逸脱しないと判定された基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を抽出する抵抗成分抽出手段と、を備えることを特徴とする絶縁監視装置。
【請求項2】
前記基準信号の所定位相に同期し、前記判定手段により所定の閾値範囲を逸脱しないと判定された基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地静電容量成分を抽出する容量成分抽出手段と、該抽出した対地静電容量成分信号に基づき前記漏れ電流の監視信号成分に含まれる対地静電容量成分を打ち消すための抑圧信号を生成して前記電流検出手段の抑圧部に供給する抑圧信号生成手段とを備え、
前記抵抗成分抽出手段は、前記漏れ電流の監視信号成分に含まれる対地静電容量成分を抑圧された状態の測定信号に基づいて該測定信号に含まれる対地絶縁抵抗成分を抽出することを特徴とする請求項1記載の絶縁監視装置。
【請求項3】
前記検出した漏れ電流の測定信号を順次記憶すると共に、前記判定手段により基準信号1サイクル分の測定信号の累積加算結果が所定の閾値範囲を逸脱すると判定された場合は、当該基準信号1サイクル分の測定信号を前回の逸脱しないと判定された基準信号1サイクル分の測定信号で置き換えるバッファメモリを備え、
前記抵抗成分抽出手段は、前記バッファメモリの測定信号を使用してDFT演算を行うことを特徴とする請求項1記載の絶縁監視装置。
【請求項4】
前記判定手段により各基準信号1サイクル分の累積加算結果が所定回数以上連続して前記所定の閾値範囲を逸脱したと判定されたことにより、該所定の閾値範囲を広げる方向に更新する閾値更新手段を備えることを特徴とする請求項1乃至3の何れか一つに記載の絶縁監視装置。
【請求項5】
前記閾値更新手段は、前記判定手段によって各基準信号1サイクル分の累積加算結果が所定回数以上連続して前記所定の閾値範囲を逸脱しないと判定されたことにより、前記所定の閾値範囲を狭める方向に更新することを特徴とする請求項4記載の絶縁監視装置。
【請求項6】
前記基準信号検出手段は、前記B種接地線の基準入力から商用周波数成分信号を抽出するバンドパスフィルタと、前記B種接地線の基準入力から前記バンドパスフィルタで抽出した商用周波数成分信号を除去する商用成分除去手段と、該商用周波数成分信号を除去された基準入力から前記監視信号の周波数成分に相当する基準信号を抽出するフィルタ手段と、を備えることを特徴とする請求項1記載の絶縁監視装置。
【請求項7】
前記抵抗成分抽出手段は、前記基準信号の所定位相に同期し、該基準信号m(<n)サイクル分づつずらした各基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を順次抽出することを特徴とする請求項1記載の絶縁監視装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−38786(P2010−38786A)
【公開日】平成22年2月18日(2010.2.18)
【国際特許分類】
【出願番号】特願2008−203424(P2008−203424)
【出願日】平成20年8月6日(2008.8.6)
【出願人】(391009372)ミドリ安全株式会社 (201)
【出願人】(000232461)日本電波株式会社 (12)
【Fターム(参考)】