説明

荷電粒子ビーム装置

【課題】 像分解能を維持して装置のコンパクト化を図る。
【解決手段】 電子銃1、電子銃からの電子ビームを試料4上に集束させる集束レンズ2、電子ビームで試料4上を走査させる走査用偏向レンズ5、試料上の走査により試料4から発生した二次電子ビームを検出する検出器6、検出器で検出された二次電子ビームに基づいて、試料4に関する像若しくはスペクトルを表示する表示装置12を備えており、試料4の直上に、4段の静電型4極子21,22,23,24と4段の静電型8極子27,28,29,30から成る静電型12極子を配置させ、4段の静電型4極子21,22,23,24により電子ビームの試料4上のフォーカス調整を行わせ、4段の静電型8極子27,28,29,30で収差補正を行わせる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、収差補正装置を備えた荷電粒子ビーム装置に関する。
【背景技術】
【0002】
電子ビームやイオンビームの如き荷電粒子ビームを使用して、試料を観察したり、材料上にパターンを描いたり、或いは試料を分析したりする荷電粒子ビーム装置がある。
【0003】
図1は荷電粒子ビーム装置の一例である走査型電子顕微鏡の1概略例を示したものである。
図中1は電子銃、2,3はそれぞれ、前記電子銃1からの電子ビームを試料4上に集束するための集束レンズ、対物レンズである。
5は,前記電子銃からの電子ビームで試料上を走査させるための走査用偏向レンズで、X方向走査用偏向レンズ5X,Y方向走査用偏向レンズ5Yから成る。
6は二次電子検出器で、該検出器の出力はアンプ7,AD変換器8を介して、装置各部への指令や演算等を司る中央制御装置9に送られる。
10は走査信号発生回路で、DA変換器11を介した前記制御装置9からの指令に基づいて走査信号を作成し、X方向走査信号を前記X方向走査用偏向レンズ5Xへ、Y方向走査信号を前記Y方向走査用偏向レンズ5Xそれぞれ送るものである。
12は前記制御装置9の指令により前記二次電子検出器6からの出力信号に基づいた前記試料4の二次電子像を表示する表示装置である。
この様な顕微鏡においては、電子銃1からの電子ビームは集束レンズ2と対物レンズ3により試料4上に集束する。該試料上に集束した電子ビームは、走査用偏向レンズ5により前記試料上の所定領域を二次元的に走査する。
該試料上の所定領域走査により、該領域から発生した二次電子は二次電子検出器6に検出される。該検出器の出力はアンプ7及びAD変換器8を介して制御装置9に送られる。
該制御装置は送られて来た二次電子信号を画像処理し、表示装置12に前記走査領域の二次電子像を表示させる。
【0004】
【特許文献1】特開2003−203593号公報
【特許文献2】特開2004−265864号公報
【非特許文献1】V.H.Rose,Optik33,Heftl,1−24(1971)
【非特許文献2】J.Zach,Optik83,No1,30−40(1989)
【非特許文献3】J.Zach and M.Haider,Nucl.Instr.and Meth.In Pyhs.Res.A363,316−325(1995)
【非特許文献4】M.Haider et al.,Optik63,No.1,9−23(1982)
【発明の開示】
【発明が解決しようとする課題】
【0005】
さて、この様な走査型電子顕微鏡の対物レンズ3としては、静電型レンズに比べて収差が小さく、高電圧放電の問題がない磁界型レンズを用いることが一般的である。しかしながら、磁界型レンズは、鉄ヨークとコイル等から製作されているために、全体サイズが大型化してしまう。
更に、この様な走査型電子顕微鏡においては、前記対物レンズ3と試料4との間に二次電子検出器6を配置させる必要があるので、前記対物レンズ3と試料4との間にある程度の広さの空間を開ける必要がある。特に、観察すべき試料が半導体ウエハの場合等では、ウエハを傾斜させて観察する場合があるので、より広い空間が必要となる。
この結果、走査型電子顕微鏡自体が大型化してしまう。
又、前記対物レンズ3の底面と試料4との距離が大きい程、像分解能は低下(逆に、前記距離が小さい程、像分解能が向上する)するので、前記空間は像分解能向上に限界をもたらしていた。
所で、この様な像分解能の限界を打破する対策として、例えば、前記走査用偏向レンズ5と対物レンズ3との間に、収差補正装置(図1中で破線のブロック13で示す)が設けられている。
この収差補正装置13は、例えば、4段の静電型4極子、該4段の静電型4極子の2段目と3段目の静電型4極子が形成する電位分布と相似な磁位分布を重畳させる2段の磁場型4極子、及び、前記4段の静電型4極子の電位分布に8極子電位を重畳させる4段の静電8極子から構成されたものである(この様な構成の収差補正装置は、例えば、4段の12極子用いて前記各電位分布及び磁位分布を形成している)。この様な収差補正装置により、球面収差と色収差が補正され、ある程度の像分解能は向上する(上記文献参照)。
しかし、像分解能の向上は改善されるものの、前記収差補正装置13の2段目と3段目には磁界型4極子を備えているので、走査型電子顕微鏡は更に大型化してしまう。
【0006】
本発明は、この様な問題に鑑み、像分解能の向上を保ったまま、装置のコンパクト化を図った新規な荷電粒子ビーム装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の荷電粒子ビーム装置は、荷電粒子ビーム発生手段、該荷電粒子ビーム発生手段からの荷電粒子ビームを集束させる集束手段、前記荷電粒子ビーム発生手段からの荷電粒子ビームで試料上を走査させる走査用偏向手段、該試料上の走査により試料から発生した荷電粒子ビームを検出する検出器、及び、該検出器で検出された荷電粒子ビームに基づいて、前記試料に関する像若しくはスペクトルを表示する表示手段を備えた荷電粒子ビーム装置において、前記試料直上に、静電型多極子を複数段配置させ、該複数段の静電型多極子により荷電粒子ビームの試料上のフォーカス調整と球面収差補正が行われる様に成したことを特徴とする。
【0008】
本発明の荷電粒子ビーム装置は、荷電粒子ビーム発生手段、該荷電粒子ビーム発生手段からの荷電粒子ビームを集束させる集束手段、前記荷電粒子ビーム発生手段からの荷電粒子ビームで試料上を走査させる走査用偏向手段、該試料上の走査により試料から発生した荷電粒子ビームを検出する検出器、及び、該検出器で検出された荷電粒子ビームに基づいて、前記試料に関する像若しくはスペクトルを表示する表示手段を備えた荷電粒子ビーム装置において、前記試料直上に、静電型4極子と、該静電4極子の電位分布に8極子電位分布を重畳させる静電型8極子とから成る静電型12極子を4段配置させ、前記4段の静電型4極子により荷電粒子ビームの試料上のフォーカス調整を行わせ、前記4段の静電型8極子により球面収差補正を行わせる様に成したことを特徴とする。
【発明の効果】
【0009】
本発明の荷電粒子ビーム装置によれば、高分解能を保ったまま、装置のコンパクト化を図れる。
【発明を実施するための最良の形態】
【0010】
先ず、本発明の原理について、以下に説明する。
【0011】
例えば、前記図1に示す構成の走査型電子顕微鏡においては、収差補正装置13により色収差補正と球面収差補正を、該収差補正装置と対物レンズ3によってフォーカス調整が、次の様に行われている(尚、詳細は、前記文献の例えば1(特開2003−203593号公報)等を参照)。
【0012】
前記収差補正装置13は、図2に示す様に、4段の静電型4極子21,22,23,24、該4段の静電型4極子の2段目と3段目の静電型4極子22,23が形成する電位分布と相似的な磁位分布を重畳させる2段の磁場型4極子25,26及び、前記4段の静電型4極子の電位分布に8極子電位を重畳させる4段の静電型8極子27,28,29,30から構成されており、光軸LOに沿って図の左側から入射した電子ビームは前記4段の静電型4極子21,22,23,24と対物レンズ3によって基準となる電子ビームの軌道が作られ、試料4面に電子ビームがフォーカスされる。この図では、電子ビームが進行する光軸LO方向をZ方向として、このZ方向に直交する電子ビームのX方向の軌道RxとY方向の軌道Ryを平面上にまとめて模式的に描いている。又、この基準軌道とは、近軸軌道として、前記1段目の4極子21によってY方向の軌道Ryが前記2段目の4極子22の中心を通り、該2段目の4極子22によってX方向の軌道Rxが前記3段目の4極子23の中心を通り、最後に前記3段目と4段目の4極子23,24と対物レンズ3によって電子ビームが試料面にフォーカスされる軌道を意味する。
【0013】
この様な光学系で色収差は、前記基準軌道を変えない様に前記2段目の静電型4極子22の電位φq2[V]と2段目の磁場型4極子25の励磁J2[AT](或いは磁位)が調整され、レンズ系全体としてX方向の色収差が0に補正され、同様に、基準軌道を変えないように前記3段目の静電型4極子23の電位φq3[V]と前記3段目の磁場型4極子26の励磁J3[AT]が調整され、レンズ系全体としてY方向の色収差が0に補正される。
【0014】
又、この様な光学系の球面収差(3次の開口収差)は、前記色収差補正の後、前記2段目の静電型8極子28の電位φo2[V]によってレンズ系全体としてX方向の球面収差を0に補正し、前記3段目の静電型8極子29の電位φo3[V]によってレンズ系全体としてY方向の球面収差を0に補正し、XYが合成された方向の球面収差を前記1段目の静電8極子27と前記4段目の静電型8極子30で0に補正する。
【0015】
さて、前記図2に示す光学系でのフォーカス調整においては、前記1段目の4極子21によってY方向の軌道Ryが前記2段目の4極子22の中心を通り、該2段目の4極子22によってX方向の軌道Rxが前記3段目の4極子23の中心を通る軌道を作りさえすれば、最後は前記対物レンズ3を使用せずに前記3段目と4段目の4極子23,24だけで電子ビームが試料4面にフォーカスされる軌道を作成しても何ら問題はない。この様に成せば、サイズが大型化せざるを得ない磁界型の対物レンズ3を光学系から削除出来るので、装置全体がコンパクトになる。
【0016】
又、前記図2に示す光学系での色収差は2段目と3段目の静電型4極子22,23と磁場型4極子25,26の組み合わせで補正し、球面収差は4段の静電型8極子27,28,29,30で補正しているが、色収差は球面収差に比べ像分解能に対する影響が小さい(特に、加速電圧が高い場合には、この傾向が顕著である)。従って、色収差補正を行わなくても、球面収差補正を確実に行えば、像分解能の低下が少なく、十分に高い像分解能を維持出来る筈である。この様に色収差補正が省略出来れば、サイズが大型化せざるを得ない前記2段目と3段目の磁場型4極子25,26の構成を前記光学系から削除出来るので、装置全体が更にコンパクトになる。
【0017】
本発明は、以上の説明から、収差補正装置から磁場型極子の構成を、光学系から対物レンズをそれぞれ削除し、光学系のフォーカス調整を収差補正装置の4段の静電型4極子で行わせ、色収差補正をせずに、4段の静電型8極子で球面収差補正を行わせる様に成すことにより、装置全体を著しくコンパクト化出来き、更に、磁場型レンズが使用される対物レンズが削除されることから、その分、試料と収差補正装置の最下面との距離が小さくなり、色収差補正を省略して低下した像分解能分を補うことが出来(高分解能を維持したまま)る。
【0018】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0019】
図3は本発明の荷電粒子ビーム装置の1例として走査型電子顕微鏡の1概略例を示したものである。図中、図1と同一記号を付したものは同一構成要素を示す。
【0020】
図3の構成が図1の構成に対して異なるところは、図1に示した装置で用いられていた対物レンズ3を削除したこと、及び、図1で用いられていた収差補正装置13から2段目及び3段目の磁場型4極子25,26を削除し、4段の静電型4極子(21,22,23,24)と、前記4段の静電型4極子の電位分布に8極子電位を重畳させる4段の静電8極子(27,28,29,30)から構成される収差補正装置13´を試料4直上に配置したことである。尚、図中31は前記4段の静電型4極子21,22,23,24個々にそれぞれ独立した電圧を供給する電源、32は前記4段の静電型8極子27,28,29,30個々にそれぞれ独立した電圧を供給する電源で、それぞれDA変換器33,34を介して、前記中央制御装置9からの指令に基づいて作動する。
【0021】
この様な構成の装置において、中央制御装置9からの指令をDA変換器33を介して電源31に送ることにより、該電源は前記収差補正装置13´の4段の静電型4極子21,22,23,24の電圧を、図4に示す様に、光軸LOに沿って図の左側から入射した電子ビームが、前記1段目の4極子21によってY方向の軌道Ryが前記2段目の4極子22の中心を通り、該2段目の4極子22によってX方向の軌道Rxが前記3段目の4極子23の中心を通り、最後に前記3段目と4段目の4極子23,24によって試料4面にフォーカスされる軌道を描く様に制御する。
【0022】
この軌道の状態において、前記中央制御装置9からの指令をDA変換器34を介して電源32に送ることにより、該電源は前記収差補正装置13´の2段目の静電型8極子28に、該8極子の電位φo2[V]によってレンズ系全体としてX方向の球面収差が0に補正される電圧を供給し、前記3段目の静電型8極子29に、該8極子の電位φo3[V]によってレンズ系全体としてY方向の球面収差が0に補正される電圧を供給し、前記1段目の静電8極子電極27と4段目の静電型8極子30に、XYが合成された方向の球面収差が0に補正される電圧を供給する。
【0023】
この様にして、光軸LOに沿って前記収差補正装置13´に入射する電子が前記試料4面上において球面収差の補正され、フォーカスされる状況を作る。
この状況下において、前記試料4上にフォーカス且つ収差の補正された電子ビームは、走査用偏向レンズ5により前記試料上の所定領域を二次元的に走査すると、該走査により、前記所定領域から発生した二次電子は二次電子検出器6に検出される。該検出器の出力はアンプ7及びAD変換器8を介して制御装置9に送られ、表示装置12に前記走査領域の二次電子像を表示される。
尚、前記例では、収差補正装置として、静電型12極子を4段備えたものを上げ、フォーカス調整を4段の静電型4極子で、球面収差補正を4段の8極子で行う様にしたが、フォーカス調整も、球面収差補正も極数が多いほど精度を上げることが出来ると考えられるので、収差補正装置として12極子以上の静電多極子を4段以上備えたものでも良い。
又、前記例では、走査型電子顕微鏡を例に挙げて説明したが、本発明は、オージェ分光装置等他の電子ビーム装置や集束イオンビーム装置等のイオンビーム装置にも応用可能である。
【図面の簡単な説明】
【0024】
【図1】荷電粒子ビーム装置の一例である走査型電子顕微鏡の1概略例を示したものである。
【図2】図1に示す装置の動作の説明を補足するために用いた電子ビームの軌道を示す図である。
【図3】本発明の荷電粒子ビーム装置の1例として走査型電子顕微鏡の1概略例を示したものである。
【図4】本発明の動作の説明を補足するために用いた電子ビームの軌道を示す図である。
【符号の説明】
【0025】
1…電子銃
2…集束レンズ
3…対物レンズ
4…試料
5…走査用偏向レンズ
6…二次電子検出器
7…アンプ
8…AD変換器
9…中央制御装置
10…走査信号発生回路
1133,34…DA変換器
12…表示装置
13,13´…収差補正装置
21,22,23,24…静電型4極子
25,26…磁場型4極子
27,28,29,30…静電型8極子
31,32…電源
LO…光軸

【特許請求の範囲】
【請求項1】
荷電粒子ビーム発生手段、該荷電粒子ビーム発生手段からの荷電粒子ビームを集束させる集束手段、前記荷電粒子ビーム発生手段からの荷電粒子ビームで試料上を走査させる走査用偏向手段、該試料上の走査により試料から発生した荷電粒子ビームを検出する検出器、及び、該検出器で検出された荷電粒子ビームに基づいて、前記試料に関する像若しくはスペクトルを表示する表示手段を備えた荷電粒子ビーム装置において、前記試料直上に、静電型多極子を複数段配置させ、該複数段の静電型多極子により荷電粒子ビームの試料上のフォーカス調整と球面収差補正が行われる様に成した荷電粒子ビーム装置。
【請求項2】
前記静電型多極子は少なくとも12極子で成し、且つ、該静電型多極子を少なくとも4段にした請求項1記載の荷電粒子ビーム装置。
【請求項3】
前記各静電型多極子の少なくとも4極子でフォーカス調整が行われ、少なくとも8極子で球面収差補正が行われる様に成した請求項2記載の荷電粒子ビーム装置。
【請求項4】
前記格段の静電型4極子及び静電型8極それぞれに、独立に電圧を与える可変電源を設けた請求項2又は3記載の荷電粒子ビーム装置。
【請求項5】
荷電粒子ビーム発生手段、該荷電粒子ビーム発生手段からの荷電粒子ビームを集束させる集束手段、前記荷電粒子ビーム発生手段からの荷電粒子ビームで試料上を走査させる走査用偏向手段、該試料上の走査により試料から発生した荷電粒子ビームを検出する検出器、及び、該検出器で検出された荷電粒子ビームに基づいて、前記試料に関する像若しくはスペクトルを表示する表示手段を備えた荷電粒子ビーム装置において、前記試料直上に、静電型4極子と、該静電4極子の電位分布に8極子電位分布を重畳させる静電型8極子とから成る静電型12極子を4段配置させ、前記4段の静電型4極子により荷電粒子ビームの試料上のフォーカス調整を行わせ、前記4段の静電型8極子により球面収差補正を行わせる様に成した荷電粒子ビーム装置。
【請求項6】
前記各段の静電型4極子及び静電型8極子それぞれに、独立に電圧を与える可変電源を設けた請求項5記載の荷電粒子ビーム装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate