説明

衛星測位システム

【課題】 衛星からの雑音にうずもれた超微弱な信号であっても、高精度でかつ処理速度
が極めて早い衛星測位システムを提供することを目的とする。
【解決手段】 内部発振部を有する受信機端末が衛星からの信号を受信し、受信した信号
により受信機端末が衛星との間の擬似距離を求める衛星測位システムであって、受信信号から衛星のドップラ効果による周波数誤差値を除去された信号の所定時間Tぶんのデータから微小時間iずつ遅らせて多数個のデータを取得する。次に、その多数個のデータを複数のブロックBに分割して、そのブロックB毎に相関計算とFFTの演算処理を順次行う。そして、ブロックB毎に演算したデータを同期加算して内部発振部の周波数誤差値を検出する。衛星のドップラ効果による周波数誤差値と内部発振部の周波数誤差値とを除去した受信信号から擬似距離を求める擬似距離検出部を、備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、衛星測位システムに関するものである。
【背景技術】
【0002】
測位用衛星(例えばGPS)受信機等に於ては、受信した衛星からの電波のコードに受
信機内部で発生する同一コードを同期させて、コードを復調している。
しかし、測位用衛星は動いているために、ドップラ効果が生じ、そのため受信電波の周
波数が衛星から送信したものとは異なっている。そこで、GPS受信機などにてドップラ
補正を行って、この周波数を衛星から送信した時点と同一にすることを行っている。
【0003】
また、受信機内の局部発振器(内部発振部)の周波数誤差があると、周波数変換後の周
波数は衛星自身のドップラ効果による周波数誤差のほかに局部発振器の誤差が重畳される

この際に受信機自身のみでドップラ補正を行おうとすれば、周波数誤差を自力で推定し
て考えられる周波数領域を総当りで試みる必要があり、コード復調が出来るまで繰り返す
必要が生じるため、非常に長い処理時間が必要であるという欠点があった。つまり、コー
ド復調するまで相当の時間がかかるという致命的な欠点を持っていた。
【0004】
また、外部より正確な衛星の周波数誤差をもらっても、局部発振器の誤差が不明ならば
ドップラ補正は上記の場合と同様に、周波数誤差を自力で推定して考えられる周波数領域
を総当りで試みる必要があり、コード復調が出来るまで計算を繰り返す必要が生じるとい
う欠点があった。
局部発振器の誤差を完全に排除するためには、超高安定の発振器が要求されることにな
る。例えば高価なルビジウム発振器などが必要になり、システムが高価になるという欠点
があった。
【0005】
また、この欠点を解決するために、外部から正確な周波数の信号を取り入れ、この信号
に受信機内部の発振周波数の誤差を位相検出回路により検出することが従来から広く行わ
れている。つまり、位相同期ループ回路により受信機内部の発振周波数を外部から正確な
周波数の信号にロックさせて同一周波数にする手段(電波時計、JJY等)が、一般に広
く用いられている。この手段は、一般にPLL(Phase Lock Loop )回路として広く知ら
れている(例えば、特許文献1参照。)。
【特許文献1】特開平7−321644号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
解決しようとする問題点は、外部から取り入れる信号は、周波数安定度が受信機内部の
周波数安定度より十分に正確で、かつ、信号電界強度が相応の強さ以上必要であるという
制約があった。また、この手段では、外部から取り入れる受信信号が外部からドップラ効
果を受けていたり、雑音にうずもれた信号であるなど、外部からとりいれる受信信号を基
準にし、受信機内部の発振周波数の誤差を正確に検知することは、きわめて困難であると
いう欠点をもっている。
【課題を解決するための手段】
【0007】
本発明の衛星測位システムは、衛星からの衛星信号を受信機端末が受信し、受信した受信信号により該受信機端末が該衛星との間の擬似距離を求める衛星測位システムに於て、上記受信機端末が、周波数信号を発振させる内部発振部と、上記受信信号から周波数誤差を補正するドップラ補正部と、該ドップラ補正部にて上記受信信号から上記衛星のドップラ効果による周波数誤差値が除去された信号の所定時間ぶんのデータから微小時間ずつ遅らせて多数個のデータを取得しその多数個のデータを複数のブロックに分割して該ブロック毎に相関計算とFFTと同期加算とを順次行って上記内部発振部の周波数誤差値を検出する周波数誤差検出部と、上記衛星のドップラ効果による周波数誤差値と上記内部発振部の周波数誤差値とを除去した受信信号から上記擬似距離を求める擬似距離検出部と、を備えるものである。
【0008】
また、衛星からの衛星信号を受信機端末が受信し、受信した受信信号により該受信機端
末が該衛星との間の擬似距離を求める衛星測位システムに於て、上記受信機端末が、周波
数信号を発振させる内部発振部と、上記受信信号から周波数誤差を補正するドップラ補正
部と、該ドップラ補正部にて上記受信信号から上記衛星のドップラ効果による周波数誤差
値が除去された信号の所定時間ぶんのデータから微小時間ずつ遅らせて多数個のデータを
取得しその多数個のデータを複数のブロックに分割して該ブロック毎に相関計算とFFT
と同期加算とを順次行って上記内部発振部の周波数誤差値を検出する第1段検出部と、上
記第1段検出部で検出した周波数誤差値より高精度の内部発振部の周波数誤差値を含むよ
うに複数の候補値を設定して上記ドップラ補正部にて上記衛星のドップラ効果による周波
数誤差値と上記内部発振部の周波数誤差の各候補値とを除去したそれぞれの受信信号から
上記内部発振部の高精度の周波数誤差値を検出する第2段検出部と、上記衛星のドップラ
効果による周波数誤差値と上記第2段検出部で検出した高精度の周波数誤差値とを除去し
た受信信号から上記擬似距離を求める擬似距離検出部と、を備えたものである。
【0009】
また、上記第2段検出部が、内部発振部の周波数誤差の真値が存在する周波数領域を特
定し、該周波数領域内で上記第1段検出部で示すことのできる最小の周波数単位よりも小
さい周波数単位毎に分けた周波数を内部発振部の周波数誤差の複数の候補値とし、上記ド
ップラ補正部にて衛星のドップラ効果による周波数誤差値と上記内部発振部の周波数誤差
の各候補値とを除去したそれぞれの受信信号を相関計算し、その相関計算結果の中で最大
のピーク値を示す相関計算結果から上記内部発振部の高精度の周波数誤差値を検出するも
のである。
【発明の効果】
【0010】
本発明は、雑音にうずもれた超微弱な信号であっても、信号対雑音比を著しく向上させ
た状態にすると共に、内部発振部の周波数誤差を自己検出させることができ、しかも、そ
の処理時間を短くすることができる。つまり、高精度でかつ処理速度の早いものとするこ
とができる。
【0011】
従って本発明の衛星測位システムでは、衛星からの信号を建物の中などに於て受信した場合であっても、つまり、雑音にうずもれドップラ変動を受けた超微弱な衛星からの信号であっても、超高感度でかつ応答性よく、受信機端末が有する内部発振器の発振周波数誤差を検出することができる。
つまり、従来ではドップラ補正を正確に早く応答させるために超高精度で高価な発振器
が必要であったが、本発明では、一般的によく使用される安価な発振器であっても、ドッ
プラ補正を正確かつ迅速に行なうことができる。
【0012】
また、雑音にうずもれた超微弱な信号から内部発振部の周波数誤差を自己検出させるこ
とについては、特願2003−297572号に記載された発明も提案しているが、本発
明の衛星測位システムは、内部発振部の周波数誤差を検出するための演算処理時間を著しく短くでき、かつ、その演算処理を小規模の回路(メモリ)で行うことができる点で優れている。
【発明を実施するための最良の形態】
【0013】
図1は、本発明の衛星測位システムの実施の一形態の概略を示す全体ブロック図であり、図3は、衛星信号を受信してから擬似距離を求めるまでの本発明のフローチャート図である。
図1に於て、A1 ,A2 ,A3 ,A4 は衛星(測位衛星)を示し、1は基地局である。
基地局1は、受信機端末11に各測位衛星Aのドップラ情報を送るために設けられたもので
ある。
基地局1は、見晴らしの良い環境に設置された受信アンテナ2を備え、GPS基準信号
をサーバ受信機3にて受信し、演算部4にてGPS信号からの衛星Aのドップラ効果によ
る周波数誤差値(ドップラ情報)を抽出する。
【0014】
そして、送信部(送信機)5により演算部4での情報を、受信機端末11側に送信する。
Lは通信回線であり、演算部4の情報は通信回線Lにて受信機端末11に送信する。通信回
線Lは、受信機端末11側に演算部4の情報を送る通信路であり、通信回線Lは、考えられ
る通信回線はすべて対象としており、電磁的通信手段等でもよく、例えば、地上放送、携
帯電話通信、通信衛星を介して情報を垂れ流しで放送する通信、インターネット回線でも
良い。
【0015】
受信機端末11は、基地局1からの演算部4の情報を放送などで受信する。演算部4の情
報はGPS受信機端末11が備える受信部12にて受信される。
GPS受信機端末11は、放送などの情報(携帯電話、インターネットなど)に対して、
多くの端末11が同時に受信できることを想定している。なお、図1は説明を容易とするた
めに、受信機端末11が1台の場合を示している。
【0016】
14は受信機端末11のアンテナ部である。受信機端末11(アンテナ部14)の場所は、衛星
Aが直接見えるところのみならず、通常の開けた野外以外に、木の陰や、建物の中などG
PS電波の強さがかなり弱い場所なども想定している。
13はGPS信号をダウンコンバートし(搬送波を除去し)たPN信号(C/Aコード)
をA/D変換するGPS受信部であり、15はその信号を蓄積する部分(メモリ:RAM)
である。16はPN信号(信受信号)から周波数誤差を補正するドップラ補正部である。そ
して、ドップラ補正部16は、蓄積されたGPS信号のPN信号(I成分、Q成分)につい
て、基地局1からの搬送波のドップラ情報から、搬送波のドップラ補正を行なう。つまり
、ドップラ補正部16にて、受信信号から衛星Aのドップラ効果による周波数誤差値を除去
する。なお、ドップラ補正部16は、複数個備えられており、例えば、地球を回る衛星Aの
数に対応する個数を備えていてもよい。
【0017】
このドップラ補正部16で補正された受信信号は、(図2に示す)内部発振部(局部発振
器)34の周波数誤差によるドップラ成分を含んだPN信号(I成分、Q成分)である。
このドップラ成分を含んだPN信号、すなわち内部発振部34の周波数誤差により生じて
いるドップラ成分を含んだPN信号(I成分、Q成分)について、周波数誤差検出部6に
て内部発振部34の周波数誤差検出を行なう。
【0018】
そして、この局部周波数誤差値が求まれば、検出された周波数誤差から、容易にPN信
号のドップラ補正を行なうことが出来る。つまり、周波数誤差検出部6にて検出された局
部周波数誤差値をドップラ補正部16に入力し、ドップラ補正部16で受信信号から局部周波
数誤差値を除去する。
そして、周波数誤差(衛星Aのドップラ効果による周波数誤差値と局部周波数誤差値)
がキャンセルされた信号により、擬似距離検出部19にて、受信機端末11と衛星Aとの擬似
距離を求める。ここで得られた擬似距離と、受信部12からの基地局位置、各衛星位置、基
地局1と各衛星Aとの擬似距離の情報により位置計算部20で受信機端末11の自己位置を知
ることができる。
【0019】
また、受信機端末11は、周波数誤差検出部6で検出された局部周波数誤差値より高精度
の周波数誤差値を得るために第2段検出部7を有している。周波数誤差検出部6にて局部
周波数誤差値を検出した後、第2段検出部7にて高精度の周波数誤差値を検出し、第2段
検出部7にて検出された局部周波数誤差値をドップラ補正部16に入力し、ドップラ補正部
16で受信信号から局部周波数誤差値を除去する。そして、周波数誤差(衛星Aのドップラ
効果による周波数誤差値と局部周波数誤差値)がキャンセルされた信号により、擬似距離
検出部19にて、受信機端末11と衛星Aとの擬似距離を求める。
即ち、周波数誤差検出部6を第1段検出部66とし、第1段検出部66で粗めの局部周波数
誤差値を求めた後(第1段検出工程)、第2段検出部7にて高精度の局部周波数誤差値を
検出する(第2段検出工程)。
【0020】
以下、各処理ブロックに於ける動作を詳細に説明する。図2は、受信機端末11の構成を
示すブロック図である。
14は受信アンテナ部であり、32は受信アンテナ部14によるPN信号を受信する高周波増
幅部であり、33は周波数をダウンコンバートする周波数変換部である。
内部発振部34は、局部発振部(周波数シンセサイザ)等であり、35はI信号変換部(I
信号変換搬送波除去部)、36はQ信号変換部(Q信号変換搬送波除去部)、37は90度移相
器、38と39はA/Dコンバータ部、15は信号を一時記憶するためのメモリ部(RAM)、
41はDSP部、42はCPU部、22はパターン演算部、44はDSP部41用のROM、45はR
AM、46はCPU部42と接続されたROMである。
また、12は図1の基地局1からの情報を、放送等の通信回線Lを通じて得るための受信
部である。
なお、図1のドップラ補正部16と周波数誤差検出部6(第1段検出部66)と第2段検出
部7と擬似距離検出部19と位置計算部20とは、図2の信号処理部21に対応する。
【0021】
図4は、周波数変換部33にて処理した信号からI信号とQ信号とを得るI信号変換(搬
送波除去)部35とQ信号変換(搬送波除去)部36に於ける動作概要を示す図である。図4
に於て、47と48は乗算器であり、49と50は低域フィルタである。
【0022】
図2と図4とにより、動作について説明すると、受信アンテナ部14からPN信号でスペ
クトラム拡散変調された 1.5GHz帯のGPS信号を高周波増幅部32にて受信する。内部
発振部(周波数シンセサイザ)34と周波数変換部33によりPN信号がダウンコンバートさ
れ、例えば70MHz帯の周波数領域に変換する。
これに内部発振部34と90度移相器37にて互いに90度位相の異なる70MHzの搬送波で掛
け算する部分───すなわちI信号変換部35、Q信号変換部36の部分───で互いに搬送
波70MHzが除去され互いに直交するI成分とQ成分のPN符号(C/Aコード符号)が
それぞれ取り出される。
内部発振部34は、局部発振器(周波数シンセサイザ)であり、一般に使用される安価な
水晶発振器を用いることができる。なお、内部発振部34は周波数誤差を持っている。
【0023】
搬送波を除去する動作を図4にて説明すると、70MHz帯にダウンコンバートされたG
PS信号はPN.cos((W+ΔW)t+Φ) で表される。ΔW はドップラ周波数であり、ΔW はア
ンテナ部14で捕らえられる衛星信号のドップラ周波数変動分と内部発振部34(周波数シン
セサイザ)の周波数変動分とが合成されたものである。ここで衛星信号のドップラ周波数
変動分(衛星Aのドップラ周波数誤差)をΔ WC とし、内部発振部34の周波数変動分(局
部周波数誤差値)をΔ WL とすると、ΔW=Δ WC + Δ WL となる。
【0024】
そして、図2の内部発振部34からの信号および90度移相器37にて、90度位相の異なる信
号が、互いに直交する搬送波cos(Wt) とsin(Wt) として表される。これら直交する信号と
周波数変換部33からの信号PN.cos((W+ΔW)t+Φ) とを乗算器47,48にて乗算し、低域フ
ィルタ49,50を通すと、PN.cos (ΔWt+ Φ) ,−PN.sin (Δwt+ Φ) が得られる。これら
の変換はI,Q変換器として汎用的に使われているものである。
図4では、I,Q信号変換部35,36それぞれに於て、入力信号PN.cos((W+ΔW)t+Φ)
に対して、互いに直交する搬送波cos(Wt) ,sin(Wt) を乗算することで、搬送波周波数W
が両者とも同一であるため、両者とも搬送波成分が除去されている。
【0025】
次に、これら搬送波成分が除去された互いに直交する信号(アナログ信号)は、それぞ
れA/Dコンバータ部38,39にてアナログ信号からデジタル化された離散化信号に変換さ
れる。そして、これら2つの信号を一定時間、メモリ部(RAM)15に蓄積する。
以上述べた高周波増幅部32、周波数変換部33、内部発振部34、I信号変換部35、Q信号
変換部36、90度移相器37、A/Dコンバータ部38,39は、汎用的な部分であり一般に広く
使われているものであり、具体的構成の説明は省略する。
また、本発明の実施例に於ては、PN信号を搬送波成分が除去されたPN信号として説
明しているが、PN信号を搬送波成分が含まれたPN信号として構成してもよい。
つまり、図2に於てI信号変換部35、Q信号変換部36で、搬送波を除去しない回路とし
て構成してもよい。
さらにこの場合、図4に於けるI信号変換部35の中の低域フィルタ49,Q信号変換部36
の中の低域フィルタ50はバンドパスフィルタ(BPF)でも構成できる。
【0026】
図2に於て、デジタル信号処理部21は、受信部12を介して得られるデータを処理するた
めに受信部12に接続されたCPU部42、CPU部42と接続されたRAM(メモリ)45とR
OM(メモリ)46、またメモリ部(RAM)15に接続されたDSP部41、DSP部41に接
続されたROM(メモリ)44、そしてパターン演算部22から構成されている。
パターン演算部22は、内部PN符号パターンを発生させ、予め記憶する演算記憶部分で
ある。また、CPU部42とDSP部41は互いに接続され、CPU部42、RAM45、ROM
46とでマイクロプロセッサとして動作する。
また、パターン演算部22は、あらかじめ作成しておいた内部PN符号パターンをメモリ
に蓄積した部分で構成してもよい。
【0027】
なお、内部PN符号パターン(レプリカPN信号)について簡単に説明する。
一般に測位用衛星(例えばGPS)は地球上を複数個回っており、各衛星からは、搬送
波(GPSの場合1575.42 MHz)を、それぞれ個別の衛星に対応したPN信号(C/A
コードとも呼ばれる)でスペクトラム拡散変調がなされ、地球上に送信している。
例えば、1575.42 MHzを衛星A1 はPN信号aで、衛星A2 はPN信号bでスペクト
ラム拡散変調して送信しているとする。衛星A1 の信号を受信機端末11にて取り出す(復
調させる)ためには、受信機端末11であらかじめPN信号aと同一のPN信号a′を記憶
させておき、このPN信号a′により衛星A1 はPN信号aを受信機端末11にて復調させ
る。
そして衛星A2 からのPN信号bを受信するためには、あらかじめ受信機端末11に、P
N信号bと同じPN信号b′を記憶しておかなければならない。
したがって、受信機端末11にはあらかじめ各衛星Aから送信される各衛星Aに対応する
すべてのPN信号を持っていなければ各衛星Aの信号を受信できない。
そして、本発明に於てこのあらかじめ用意されているPN信号を内部PN符号パターン
(レプリカPN信号)としている。
【0028】
ROM46は、主にデジタル信号処理の実行プログラムを記憶している部分であり、デジ
タル信号処理部21のハードウェア部が、DSP部41、CPU部42、RAM45、ROM46、
ROM44の構成であり、また、これら構成は、従来からCPU、DSPとメモリ(RAM
とROM)を使った汎用的なデジタル信号処理構成として広く一般に使われたものであり
、説明を省略する。
【0029】
そして、デジタル信号処理部21のハードウェア部により、図1のドップラ補正部16と周
波数誤差検出部6との機能ブロックを実行させる。この機能ブロックをソフトウェアによ
るデジタル信号処理にて実行する場合ついて説明する。
I信号変換部35とQ信号変換部36とにより得られた信号は、ドップラ成分を含んでいる
。このドップラ周波数ΔW は基地局(サーバ)1からの情報であり、受信機端末11の受信
部12より情報を得る。
【0030】
なお、ドップラ補正部16にて行なう補正は、外部ドップラ情報により、若しくは、内部
処理により行なうことができる。つまり、受信機端末11が基地局1から外部ドップラ情報
を受信して行なってもよく、又は、受信機端末11が有する図示省略の演算部にて受信PN
信号から演算を行なってドップラ補正を行なってもよい。
【0031】
そして、図5では外部からのドップラ補正情報によりドップラ補正を行う動作を示す。
図5に於て、26,27,28,29は乗算器、30は加算器、31は減算器を示す。ここでの入力
信号はそれぞれメモリ部15に蓄積された離散化されたデータである。また、tは離散化さ
れた値を示すものとする。
図5の入力信号I信号、Q信号のデータはそれぞれPN.cos( ΔWt +Φ) 、―PN.sin( Δ
Wt +Φ) で表される。
【0032】
これらの信号に対して、受信部12より得られた受信信号のドップラ周波数変動成分ΔWc
より得られる信号cos(ΔWct)、sin(ΔWct)を、図5に示すように、乗算器26,27,28,29
にて乗算し、加算器30と減算器31を通すと、―PN.sin (Δ WL t+Φ) と、PN.cos (Δ WL
t+Φ) が得られる。これらの信号は離散化されたデジタル信号である。なお、この出力さ
れたPN符号は内部発振部34の周波数誤差によるドップラがかかっている。
そして、このPN符号を図1に示す周波数誤差検出部6への入力信号とする。
【0033】
次に、図6に於て、周波数誤差検出部6(第1段検出部66)で局部周波数誤差値を検出
する動作について説明する。
ドップラ補正部16にて衛星Aのドップラ周波数誤差値が除去された信号が、周波数誤差
検出部6(第1段検出部66)に送られる。周波数誤差検出部6では、送られた信号の所定
時間Tぶんのデータから微小時間iずつ遅らせて多数個のデータを取得し、その多数個の
データを複数のブロックBに分割する。
例えば、所定時間Tを1sec 、微小時間iを1msecとし、20msec毎にブロックBに分割
した場合について説明する。
所定時間Tぶんのデータを1sec ぶんのデータとし、微小時間iを1msecとして合計10
00個のデータをサンプリングする。そして、このデータを20msec毎にブロックBに分割し
、1sec ぶんのデータは50個のブロックBに分けられる。
【0034】
次に、周波数誤差検出部6でブロックB毎に相関計算とFFTの演算処理を順次行って
いく。
信号処理部21が有する相関計算部9にて、ブロックB毎(20msec毎)に受信機端末11が
予め有しているレプリカPN符号(C/Aコード信号)とで相関計算を行う。相関計算は
広く知られた内容であるが、以下簡単に説明する。
【0035】
一般にGPS衛星Aは地球上を複数個回っており、各衛星Aからは、1575.42 MHz の搬
送波を、それぞれ個別の衛星Aに対応したPN信号信号でスペクトラム拡散変調がなされ
地球上に送信している。例えば1575.42 MHz を、衛星A1 はPN信号aで、衛星A2 はP
N信号bで、スペクトラム拡散変調して送信しているとする。衛星A1 の信号を受信機端
末11にて取り出す(復調させる)ためには受信機端末11側であらかじめPN信号aと同一
のPN信号a′を記憶させておき、このPN信号a′により衛星A1 はPN信号aを受信
機端末11にて復調させる。
【0036】
そして、衛星A2 を受信するためには、あらかじめ受信機端末11側にPN信号bと同じ
PN信号b′を記憶しておかなければならない。したがって受信機端末11側には、あらか
じめ各衛星Aから発射される各衛星Aに対応するすべてのPN信号をもっていなければ、
各衛星Aの信号を受信できない。そして本発明において、このあらかじめ用意されている
PN信号をレプリカPN符号としている。
そして、各GPS衛星Aに対応する(衛星受信信号を復調させる)各レプリカPN符号
は、あらかじめGPS受信機端末11が備える信号処理部21のROM46に記憶させている。
【0037】
また、一般にデータXをx(n)(ただし n=0:N )、データYをh(n)(ただし n=0:N )
、kを整数として0≦k≦Nとしたとき、数1の式のように表現する。
【0038】
【数1】

【0039】
そして、y(1),y(2),y(3) …y(N) を計算する。ここでy (k) の計算においてデー
タの加算回数はN個である。従って、このとき信号に重畳している雑音が統計的性質に合
うガウス性のものとすると、N回の加算により雑音の成分は1/√Nに減少することが知
られている。このためこの計算による雑音低減は1/√Nである。そして、この計算を相
関計算という。(等価な相関計算は高速演算としてFFTを用いて一般によく知られて用
いられる方法があるが、ここでは原理説明のために一般的な計算法を示した。)
【0040】
図7(a)に示すように、1個のブロックBについての相関計算結果は、1msecのデー
タであるx 0 19毎にピーク値がP0 〜P19まで検知される。また、図7(b)は、こ
のP0 〜P19のピーク値を時間(t)軸上に並べたものである。図7(b)に於て、Zは
、P0 〜P19のピーク値のそれぞれの頂点を通るうなり線であり、このうなり線Zは局部
周波数誤差値を表したものである。つまり、ピーク値P0 〜P19は局部周波数誤差値を表
す波形の振幅を示している。
【0041】
図7(b)の離散化データは1ブロックBぶんのデータ(ピーク値P0 〜P19)である
が、1sec ぶんのデータでは1msecのデータが1000個ある。次に、1000個のデータのピー
ク値P0 〜P999 を数2の式に入力して、信号処理部21が有するフーリエ変換部8にてF
FTする。つまり、Pn (n=0〜999 )の値をx(n) として数2の式に入力する。
【0042】
【数2】

【0043】
x(n) にピーク値P0 〜P999 を入力してFFTすると局部周波数誤差値Xm を算出で
きる。なお、数2の式のn及びmは、0,1,…,N−1の整数であり、この実施例では
N=1000である。
【0044】
そして、それぞれのブロックB毎にFFTして得た周波数成分を、信号処理部21が有す
る同期加算部10で同期加算し、雑音にうずもれた信号であっても局部周波数誤差値Δ WL
を検出することができる。
一般に同期加算はデジタル信号処理回路で周期信号における雑音軽減の方法として広く
知られている。この計算について述べると、一般に周期信号に対して1周期の信号をs個
のサンプリングパルスでサンプリングしてm周期分データを取ると、D(1:m,1:s) のデ
ータを取得できる(sは標本個数、mは加算回数)。このときM行目の同期加算平均結果
は数3に示す式となる。
【0045】
【数3】

【0046】
信号に重畳している雑音が統計的性質に合うガウス性のものとすると、m回の加算によ
り雑音の成分は1/√mに減少することが知られている。本発明の実施例ではm=1000で
ある。そのため本発明の同期加算による雑音軽減は1/√1000である。
【0047】
周波数誤差検出部6で局部周波数誤差値Δ WL が検出されると、その局部周波数誤差値
Δ WL のデータをドップラ補正部16に送り、ドップラ補正部16にて受信信号から衛星Aの
ドップラ周波数誤差値Δ WC と、局部周波数誤差値Δ WL とを除去する。
具体的には、図5に示す入力信号I信号PN.cos( ΔWt +Φ) と、Q信号―PN.sin( ΔWt
+Φ) に対して、衛星Aのドップラ周波数誤差値Δ WC より得られる信号cos(ΔWct)とsi
n(ΔWct)以外に、局部周波数誤差値Δ WL より得られる信号cos(Δ WL t )とsin(Δ WL
t )を乗算器26,27,28,29にて乗算し、加算器30と減算器31を通す(図示省略)。そし
て、受信信号から衛星Aのドップラ周波数誤差値と局部周波数誤差値を除去した信号であ
る―PN.sinΦとPN.cosΦが得られる。―PN.sinΦとPN.cosΦの各信号はRAM45に記憶さ
れる(図2参照)。
【0048】
このRAM45に記憶された信号(―PN.sinΦとPN.cosΦを)同期加算部10にて同期加算
し、同期加算された信号を相関計算部9にてレプリカPN符号とで相関計算する。そして
、I信号とQ信号の合成を行い、これをRAM45に記憶させる。
【0049】
次に、擬似距離検出部19の動作について説明する。擬似距離検出部19は、相関計算部9
で相関計算されかつRAM45に記憶されているデータに於て、絶対値が最大となるデータ
を検索する。そして、絶対値が最大となる相関ピーク値の絶対値と、遅延値τが検出結果
である。
【0050】
この遅延値τが求まれば、この遅延値τから擬似距離(衛星SとGPS受信機端末11と
の間の距離)を求めることができる。なお、相関計算部9にて行う相関計算、I信号・Q
信号の合成、遅延値τから擬似距離を求める手段は、一般に広く知られており説明を省略
する。
その後、図1の位置計算部20のブロックにて、基地局1からの基地局位置、各衛星位置
、各衛星と基地局間の擬似距離の情報を受信機端末11の受信部12で取得して自己位置が決
定される。なお、位置計算部20もここで求めた擬似距離と、基地局位置、各衛星位置、各
衛星と基地局間の擬似距離から自己位置を決定する方法は一般に広く知られており容易に
実現できる。
【0051】
また、周波数誤差検出部6で検出した局部周波数誤差値より高精度の周波数誤差値を得
るには、周波数誤差検出部6(第1段検出部66)にて局部周波数誤差値を検出した後(第
1段検出工程後)、第2段検出部7にて高精度の周波数誤差値を検出する(第2段検出工
程を行う)。
具体的には、まず、内部発振部34の周波数誤差の真値が存在する周波数領域を特定する
。上述した実施例で説明すると、20msec毎のブロックBに分割しているので、50Hzより
小さい周波数単位は測定できない。この場合、例えば、第1段検出部66で局部周波数誤差
値が 150Hzと検出されたとすると、50Hz毎にしか測定できないので、周波数誤差の真
値は 150Hzより一段階上と一段階下の測定可能値である 100Hzと 200Hzの間にある
。 100Hzより大きく 200Hz未満の領域が、特定する周波数領域となる。
【0052】
次に、特定した周波数領域( 100Hzより大きく 200Hz未満)内で第1段検出部66で
示すことのできる最小の周波数単位(50Hz)よりも小さい周波数単位毎に分けた周波数
を内部発振部34の高精度の周波数誤差の複数の候補値とする。例えば、50Hzよりも小さ
い10Hz毎に分けると、候補値は 110Hz、 120Hz、…、 180Hz、 190Hzと設定す
る。
そして、衛星Aのドップラ周波数誤差値Δ WC より得られる信号cos(ΔWct)とsin(ΔWc
t)と、それぞれの候補値Δ WL ′より得られる信号cos(Δ WL t )′とsin(Δ WL t )′
とを合わせて、入力信号F1、F2、…、Fxとする。図8に示すように、この入力信号
(F1、F2、…、Fx)を複数のドップラ補正部16に入力して(図5参照)、受信信号
から衛星Aのドップラ周波数誤差値と各候補値とを除去する。それぞれのドップラ補正部
16で処理された受信信号を相関計算部9にて相関計算し、その相関計算結果の中から最大
のピーク値を示す相関計算結果を選んで内部発振部34の高精度の周波数誤差値を検出する

【0053】
衛星Aのドップラ効果による周波数誤差値と第2段検出部7で検出した高精度の周波数
誤差値とを除去した受信信号データを擬似距離検出部19に入力し、擬似距離検出部19にて
遅延値τを検出し、その遅延値τから擬似距離を求める。
なお、第1段検出工程で受信したデータを分割するブロックBは、20msec毎以外に、例
えば40msec毎に分割してもよく、受信機端末11の性能等に応じた分割の仕方であればよい
。さらに、第2段検出工程を行わず、第1段検出工程のみ行っても実用的な局部周波数誤
差値を検出可能である。
【0054】
また、本発明の衛星測位システムは設計変更自由であり、周波数誤差検出部6(第1段検出部66)及び第2段検出部7にて検出した内部発振部34の周波数誤差値、高精度の周波数誤差値又は候補値を、図5に示すドップラ補正部16に衛星Aのドップラ周波数誤差値と共に入力して処理を行っているが、衛星Aのドップラ周波数誤差値のみを除去した信号から、ドップラ補正部16にて上記内部発振部34の周波数誤差値等を除去するようにしてもよい。つまり、ドップラ補正部16にて、衛星Aのドップラ周波数誤差と内部発振部34の周波数誤差の補正をそれぞれ独立して行ってもよい。
また、図6に示すブロックB毎の相関計算とFFTの演算処理は、それぞれ複数の処理
装置を用いて並行させて処理してもよく、また、単数の処理装置でブロックB毎に演算処
理を繰り返し行うようにしてもよい。
【0055】
以上のように、本発明である衛星測位システムは、衛星Aからの衛星信号を受信機端末11が受信し、受信した受信信号により受信機端末11が衛星Aとの間の擬似距離を求める衛星測位システムに於て、受信機端末11が、周波数信号を発振させる内部発振部34と、受信信号から周波数誤差を補正するドップラ補正部16と、ドップラ補正部16にて受信信号から衛星Aのドップラ効果による周波数誤差値が除去された信号の所定時間Tぶんのデータから微小時間iずつ遅らせて多数個のデータを取得しその多数個のデータを複数のブロックBに分割してブロックB毎に相関計算とFFTと同期加算とを順次行って内部発振部34の周波数誤差値を検出する周波数誤差検出部6と、衛星Aのドップラ効果による周波数誤差値と内部発振部34の周波数誤差値とを除去した受信信号から擬似距離を求める擬似距離検出部19と、を備えるので、衛星Aからの信号を建物の中などにおいて受信した場合であっても、つまり、雑音にうずもれたドップラ変動を受けた超微弱な衛星Aからの信号であっても、超高感度でかつ応答性よく、受信機端末11が有する内部発振部34の発振周波数誤差を自己検知することができる。
つまり、従来ではドップラ補正を正確に早く応答させるために超高精度で高価な発振器
が必要であったが、本発明では、一般的によく使用される安価な発振器であっても、ドッ
プラ補正を正確かつ迅速に行なうことができる。
さらに、ブロックB毎に相関計算とFFTの演算を行うので、内部発振部34の周波数誤
差を検出するための演算処理時間を著しく短くでき、かつ、その演算処理を小規模の回路
(メモリ)で行うことができる。
【0056】
また、衛星Aからの衛星信号を受信機端末11が受信し、受信した受信信号により受信機
端末11が衛星Aとの間の擬似距離を求める衛星測位システムに於て、受信機端末11が、周
波数信号を発振させる内部発振部34と、受信信号から周波数誤差を補正するドップラ補正
部16と、ドップラ補正部16にて受信信号から衛星Aのドップラ効果による周波数誤差値が
除去された信号の所定時間Tぶんのデータから微小時間iずつ遅らせて多数個のデータを
取得しその多数個のデータを複数のブロックBに分割してブロックB毎に相関計算とFF
Tと同期加算とを順次行って内部発振部34の周波数誤差値を検出する第1段検出部66と、
第1段検出部66で検出した周波数誤差値より高精度の内部発振部34の周波数誤差値を含む
ように複数の候補値を設定してドップラ補正部16にて衛星Aのドップラ効果による周波数
誤差値と内部発振部34の周波数誤差の各候補値とを除去したそれぞれの受信信号から内部
発振部34の高精度の周波数誤差値を検出する第2段検出部7と、衛星Aのドップラ効果に
よる周波数誤差値と第2段検出部7で検出した高精度の周波数誤差値とを除去した受信信
号から擬似距離を求める擬似距離検出部19と、を備えるので、衛星Aからの信号を建物の
中などにおいて受信した場合であっても、つまり、雑音にうずもれたドップラ変動を受け
た超微弱な衛星Aからの信号であっても、超高感度でかつ応答性よく、受信機端末11が有
する内部発振部34の発振周波数誤差を自己検知することができる。
つまり、従来ではドップラ補正を正確に早く応答させるために超高精度で高価な発振器
が必要であったが、本発明では、一般的によく使用される安価な発振器であっても、ドッ
プラ補正を正確かつ迅速に行なうことができる。
さらに、ブロックB毎に相関計算とFFTの演算を行うので、内部発振部34の周波数誤
差を検出するための演算処理時間を著しく短くでき、かつ、その演算処理を小規模の回路
(メモリ)で行うことができる。
また、第2段検出部7が、高精度の内部発振部34の周波数誤差値を検出できるので、正
確な擬似距離を測定できる。
【0057】
また、第2段検出部7が、内部発振部34の周波数誤差の真値が存在する周波数領域を特
定し、周波数領域内で第1段検出部66で示すことのできる最小の周波数単位よりも小さい
周波数単位毎に分けた周波数を内部発振部34の周波数誤差の複数の候補値とし、ドップラ
補正部16にて衛星Aのドップラ効果による周波数誤差値と内部発振部34の周波数誤差の各
候補値とを除去したそれぞれの受信信号を相関計算し、その相関計算結果の中で最大のピ
ーク値を示す相関計算結果から内部発振部34の高精度の周波数誤差値を検出するので、内
部発振部34の周波数誤差値検出の精度を一層向上させることができ、正確な擬似距離を測
定できる。
【図面の簡単な説明】
【0058】
【図1】本発明の実施の一形態の概略を示す全体ブロック図である。
【図2】受信機端末の構成を示すブロック図である。
【図3】衛星信号を受信してから擬似距離を得るまでのフローチャート図である。
【図4】I信号変換部とQ信号変換部を説明する動作説明図である。
【図5】IQ信号から搬送波のドップラ補正を行うドップラ補正部を説明する動作説明図である。
【図6】周波数誤差検出部で局部周波数誤差値を検出するまでの動作説明図である。
【図7】周波数誤差検出部での相関計算結果を示すグラフ図である。
【図8】ドップラ補正部及び第2段検出部で高精度の局部周波数誤差値を検出するまでの動作説明図である。
【符号の説明】
【0059】
6 周波数誤差検出部
7 第2段検出部
11 受信機端末
16 ドップラ補正部
19 擬似距離検出部
34 内部発振部
66 第1段検出部
A 衛星
B ブロック
i 微小時間
T 所定時間
τ 遅延値

【特許請求の範囲】
【請求項1】
衛星(A)からの衛星信号を受信機端末(11)が受信し、受信した受信信号により該受
信機端末(11)が該衛星(A)との間の擬似距離を求める衛星測位システムに於て、
上記受信機端末(11)が、周波数信号を発振させる内部発振部(34)と、上記受信信号
から周波数誤差を補正するドップラ補正部(16)と、該ドップラ補正部(16)にて上記受
信信号から上記衛星(A)のドップラ効果による周波数誤差値が除去された信号の所定時
間(T)ぶんのデータから微小時間(i)ずつ遅らせて多数個のデータを取得しその多数
個のデータを複数のブロック(B)に分割して該ブロック(B)毎に相関計算とFFTと
同期加算とを順次行って上記内部発振部(34)の周波数誤差値を検出する周波数誤差検出
部(6)と、上記衛星(A)のドップラ効果による周波数誤差値と上記内部発振部(34)
の周波数誤差値とを除去した受信信号から上記擬似距離を求める擬似距離検出部(19)と
、を備えることを特徴とする衛星測位システム。
【請求項2】
衛星(A)からの衛星信号を受信機端末(11)が受信し、受信した受信信号により該受
信機端末(11)が該衛星(A)との間の擬似距離を求める衛星測位システムに於て、
上記受信機端末(11)が、周波数信号を発振させる内部発振部(34)と、上記受信信号
から周波数誤差を補正するドップラ補正部(16)と、該ドップラ補正部(16)にて上記受
信信号から上記衛星(A)のドップラ効果による周波数誤差値が除去された信号の所定時
間(T)ぶんのデータから微小時間(i)ずつ遅らせて多数個のデータを取得しその多数
個のデータを複数のブロック(B)に分割して該ブロック(B)毎に相関計算とFFTと
同期加算とを順次行って上記内部発振部(34)の周波数誤差値を検出する第1段検出部(
66)と、上記第1段検出部(66)で検出した周波数誤差値より高精度の内部発振部(34)
の周波数誤差値を含むように複数の候補値を設定して上記ドップラ補正部(16)にて上記
衛星(A)のドップラ効果による周波数誤差値と上記内部発振部(34)の周波数誤差の各
候補値とを除去したそれぞれの受信信号から上記内部発振部(34)の高精度の周波数誤差
値を検出する第2段検出部(7)と、上記衛星(A)のドップラ効果による周波数誤差値
と上記第2段検出部(7)で検出した高精度の周波数誤差値とを除去した受信信号から上
記擬似距離を求める擬似距離検出部(19)と、を備えることを特徴とする衛星測位システ
ム。
【請求項3】
上記第2段検出部(7)が、内部発振部(34)の周波数誤差の真値が存在する周波数領
域を特定し、該周波数領域内で上記第1段検出部(66)で示すことのできる最小の周波数
単位よりも小さい周波数単位毎に分けた周波数を内部発振部(34)の周波数誤差の複数の
候補値とし、上記ドップラ補正部(16)にて衛星(A)のドップラ効果による周波数誤差
値と上記内部発振部(34)の周波数誤差の各候補値とを除去したそれぞれの受信信号を相
関計算し、その相関計算結果の中で最大のピーク値を示す相関計算結果から上記内部発振
部(34)の高精度の周波数誤差値を検出する請求項2記載の衛星測位システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2008−224683(P2008−224683A)
【公開日】平成20年9月25日(2008.9.25)
【国際特許分類】
【出願番号】特願2008−128171(P2008−128171)
【出願日】平成20年5月15日(2008.5.15)
【分割の表示】特願2005−164256(P2005−164256)の分割
【原出願日】平成17年6月3日(2005.6.3)
【出願人】(501141253)マゼランシステムズジャパン株式会社 (15)
【Fターム(参考)】