説明

補正器

【課題】収差、有利には、より高次の収差を低減するためのよりよい補正を提供する。
【解決手段】軸上基準軌道(xα、yβ)の無収差中間像(9)が1番目の4極子要素(1)の4極子場(1’)に形成され、当該4極子場(1’)は、軸外基準軌道(xγ、yδ)の非点中間像(12、13)が3番目の多極子要素(3)および4番目の多極子要素(4)の両4極子場(3’、4’)の中央領域に形成されるように設定され、当該領域において、2番目の4極子要素(2)の4極子場(2’)の設定により、両軸外基準軌道(xγ、yδ)の中間像(12、13)が位置するのと同じ面(x、y)の両軸上基準軌道(xα、yβ)がそれぞれ最大を示す。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、6つの多極子要素により電子顕微鏡における色収差および球面収差を補正するための補正器であって、当該6つの多極子要素は、対称平面について対称であるようにビーム経路に連続して配置されており、その全ては4極子場の形成に用いられ、かつ、3番目および4番目の多極子要素は8極子場の形成にも用いられ、後者は同一方向に配向され、かつ、当該6つの多極子要素のすべての4極子場は1つが次のものに対して90°回転されており、かつ、これらは、場の強さ(極性ではない)に関して、光軸と対称平面との交差点について中心対称であり、2つの軸上基準軌道の軌道の交換に関する反射平面としての対称平面についての両軸上基準軌道の交換対称性と、2つの軸外基準軌道の軌道の中心対称性の交換に関する点として光軸と対称平面との交差点についての両軸外基準軌道の交換対称性とが形成され、次いで、軸上および軸外基準軌道のすべてが当該補正器の端部において再び収束され、当該3番目の多極子要素および当該4番目の多極子要素における電気的な4極子場と磁気的な4極子場との相互作用により色収差が補正可能であり、4極子場と8極子場とにより球面収差が補正可能である、補正器に関する。
【0002】
このような補正器の目的は、顕微鏡の光学要素の色収差および球面収差を補償することである。しかし、このような補正器を用いた補償は、電子顕微鏡のビーム源およびレンズの収差を補償するだけでなく、補正器自体に起因する収差をも補償するものである。
【0003】
粒子光学における全ての補正機能に関する基礎はO.Scherzer(O. Scherzer: "Sphaerische and chromatische Korrektur von Elektronen-Linsen" OPTIK, DE, JENA, 1947, pages 114-132, XP002090897, ISSN: 0863-0259)による発見による。この発見によれば、非回転対称場が形成され、当該場によって非点中間像が形成され、その後この非点収差が再び排除される場合には、粒子ビームについても色収差および球面収差を補正することができる。O.Scherzerはこれが達成される条件について述べている(上記文献参照)。Scherzerの定理として知られるこれらの条件は、粒子光学における色収差および球面収差の全ての補正の基礎である。
【0004】
DE102007049816B3には5つの多極子要素を有する補正器が開示されているが、それ自身がより高次の収差を無視できないほどに生じ、収差の補償をより困難なものとしている。
【0005】
DE4204512A1は、冒頭において述べた種類の補正器を提案しており、これは、より高次の収差をより少なく生じるものであるが、4極子場の場の変動にきわめて敏感である。これらの場の変動は「ノイズ」ともいわれるが、供給される電流および電圧の変動によるものである。この文献に従って構成された補正器のテスト段階において、これらの変動に対する感度が、妥当な技術的労力を伴う高度に安定化された電力供給によっては制御できないということがはっきりと示された。この理由により、この補正器の実現および上述の特許出願は放棄された。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の課題は、電力供給の変動の影響を受けないような、冒頭に述べた種類の補正器をさらに開発することである。
【課題を解決するための手段】
【0007】
本発明によれば、この課題は、2つの軸上基準軌道の無収差中間像が1番目の4極子要素の4極子場に形成され、当該4極子場は、2つの軸外基準軌道の非点中間像が3番目の多極子要素および4番目の多極子要素の4両極子場の中央領域に形成されるように設定され、当該領域において、2番目の4極子要素の4極子場の設定により、両軸外基準軌道の中間像が位置するのと同じ面の両軸上基準軌道がそれぞれ最大を示す、手段により、達成される。
【0008】
本補正器は、電力供給の変動に対して非常に低い感度を有し、高度に安定化された電力供給のための労力を大きく軽減させ、および/または、このような変動による画像品質の劣化を極めて良好に回避させる。
【0009】
電力供給の変動に対するこの感度、すなわち関連する場の強さは、各4極子場における基準軌道(fundamental ray)の高さから生じ、この感度は軌道高さとともに二次的に増加する。有利には、軸上基準軌道Xα、yβの中間像が1番目の4極子要素の4極子場に形成されるように補正器は電子顕微鏡のビーム経路に設けられるため、本補正器内の1番目の4極子のゼロ点を通る軸上基準軌道がビーム経路に含まれる。したがって、これらの軸上基準軌道は、2番目の4極子に対してはあまり大きく増加しない。これと比べて、DE4204512の補正器における軸上基準軌道は、1番目の4極子において相対的な高さを既に示し、基準軌道yβは2番目の4極子において最大を示す。場の中心対称性(反対称性ともいう)のため、勿論同じことは5番目および6番目の4極子に当てはまる。しかし、補正を成功させるには、このような最大は3番目または4番目の4極子においてのみ必要とされる。よって、本補正器においては、場の強さの変動がほとんど無い必要な4極子場のみが存在するため、3番目または4番目の多極子要素についてのみ高度に安定化された電力供給が必要とされる。他の全ての多極子要素にはこの電力供給精度は必要とされない。これは、電力供給に関する労力を大きく軽減させ、および/または、電力供給のこのような変動による画像品質および解像度の劣化を極めて良好に回避させる。
【0010】
このようにして、本発明は、DE4204512A1の補正器に生じる電力供給の変動による画像劣化と、DE102007049816B3の補正器に生じる、より高次の収差との両方を回避する。
【0011】
1番目、2番目、5番目および6番目の多極子要素の全ての場、および、3番目および4番目の多極子要素の8極子場は、磁場または電場あるいはこの2つの組み合わせであってよい。3番目および4番目の多極子要素の4極子場のみは協働する電場および磁場でなければならない。
【0012】
本補正器は、まず、O.Scherzerの教示(上記文献参照)に従う既知の機能に基づくものである。これによれば、1番目の4極子要素の4極子場はビームを軸外基準軌道に関して回転対称からずれたものとするため、2つの相互に垂直な主面(x面およびy面)において、ビームは、異なる、互いに外れた軌道(trajectory)を示す。4極子場における軸上基準軌道は無収差中間像を示すため、これらの軌道は影響を受けないままである。引き続く、90°回転された2番目の多極子要素の4極子場は、さらに軸上基準軌道に異なる軌道を示させ、同時に、軸外基準軌道の傾きに影響し、ここで基準軌道yδは最大を通る。3番目の多極子要素において、これは最初の2つよりも強い4極子場を生成するが、軸外基準軌道の1番目の中間像が形成され、同時に、3番目の4極子場のほぼ同じ領域にそれぞれ位置する軸上基準軌道の一方が最大となる。この配位によって、5次のコンビネーション収差は大きく低減される。
【0013】
3番目および4番目の多極子要素の間の対称平面の後で、交換対称性が生じる。この意味での交換対称性とは、x面およびy面のビーム軌道が交換されることを意味する。
【0014】
このような交換対称性はたとえば鏡面対称性である。これは、軸上基準軌道xαおよびyβの場合である。これは、対称平面の後の基準軌道yβが、対称平面の前の軸線xαを鏡に映した状態のものであること、および、逆のことを意味する。
【0015】
しかし、このような交換対称性は中心対称(または反対称)であってもよい。これは、軸外基準軌道xγおよびyδの場合である。これは、中心対称性が対称平面と光軸との交差点について生じ、対称平面の後の基準軌道yδが対称平面の前の基準軌道xγと同じ軌道を示すが、対称点に対して鏡に映した状態のものであることを意味する。逆に、対称平面の後の基準軌道xγは、対称平面の前の基準軌道yδと同じ軌道を示すが、さらに中心対称に鏡に映した状態のものである。
【0016】
上述の配位は、4番目の極子においても生じ、軸外基準軌道xγおよびyδの非点中間像(2番目の非点中間像)は軸上基準軌道の最大とほぼ同じ領域に位置する。4極子場は反対符号を有し、すなわち、90°回転されている。したがって、2番目の非点中間像は90°回転されている(図2参照)。ここで、上述の補正機能は前述の領域に関して垂直なビーム領域において働く。これは、ビームの変形による粒子ビームの補正のScherzerの定理に対応し、ビームは2つの相互に垂直な面の領域に連続的に延在する。
【0017】
1番目と6番目、2番目と5番目、3番目と4番目とが同じ絶対値を有するが反対方向に配向されているという、4極子場の反対称性または中心対称性のため、円状ビームとして補正器に入射するビームは再び円状ビームとして出射される。
【0018】
色収差の補正はこれらのビームの変形により達成される。補正は、一面たとえばx面に関して3番目の多極子要素によって行われ、他の面たとえばy面に関しては4番目の多極子要素によって行われる。色収差の補正機能は既知のウイーンフィルタに対応し、相互に重畳する電気的4極子場および磁気的4極子場を含む4極子場に基づいている。場の強さは、特定の速度の電子、すなわち特定のエネルギおよび光学用語でいえば特定の色を有する電子が所定の経路で場を通過するような大きさとされる。離れたエネルギを有する電子はこの所定の経路を離れ、したがって、電子顕微鏡の円状レンズの色収差、特に対物レンズの色収差の補償が可能である。よって、電場と磁場の組み合わせは色収差のこの補正についてのみ必要とされる。
【0019】
球面収差もまた3番目および4番目の多極子要素において8極子場により補正される。電子顕微鏡の回転対称レンズは光軸から離れたビームに、より強く影響するため、球面収差は電子顕微鏡の回転対称レンズから生じる。このため、ビームは中間像の領域において光軸との共通接続点を形成しない。非点中間像の領域において、ゼロを通過しない各面のビームは、ビームが画像面と再び交差するように8極子場により影響される。補正が各面のビームに関して連続的に行われ、これらのビームが再び円状ビームを形成するよう収束されると、球面収差が補正される。この領域で円状レンズの上流側の球面収差を補正することができるだけでなく、下流側の円状レンズの収差を先立って補償することができる。したがって、球面収差はビーム経路に依存するものであり、ビーム経路において下流側の円状レンズたとえば対物レンズの球面収差は打ち消される。
【0020】
しかし、この既知の補正によっては、補正器自体が収差を生じるという問題が生じる。これらは基本的に非球面収差であり、特に、3次の4回非点収差および5次のスター収差である。この非球面収差は、異なる次数で生じる非点収差、スター収差、ロゼット収差、コマ収差などの軸上画像収差数を形成する。残りの球面収差は5次の球面収差であり、この球面収差は、上述のように、軸外基準軌道の非点中間画像の配位、および、3番目および4番目の多極子要素において軸上基準軌道がそれぞれ同時に最大となることにより大きく排除される。
【0021】
本発明の実施形態は、収差のより良い補償、有利には、より高次の収差のさらなる低減に用いられる。
【0022】
この目的のため、付加的な多極子要素を、軸上基準軌道xαおよびyβを一致する領域に最適に配置することが提案される。
【0023】
1番目の多極子要素が基準軌道xαおよびyβを分離し、6番目の多極子要素が再度これらを収束させるため、これらの多極子要素の外側である。
【0024】
あるいは、軸上基準軌道xαおよびyβが対称平面で交差するため、対称平面内である。
【0025】
8極子場が付加的な多極子要素によって生成される場合、適切な場の強さを設定することにより、8極子場を3次の非点収差の補償に用いることができる。
【0026】
5次以下の全ての収差に関して、僅かな収差まで低下させるように補償するため、上述の配位が選択され、上述の配位が選択されたかにかかわらず、付加的な多極子要素および3番目および4番目の多極子要素が12極子場を形成し、これらの場を設定することにより上記の補正を行うことが提案される。
【0027】
本発明の以下の実施形態は、残りの収差を最大限排除することも意図されている。これらの小さい残りの収差は補正器の外側に配置された円状レンズにより生じる。これらには有利には低減されたが未だに不所望の5次の球面収差が含まれている。
【0028】
このため、より高次の収差が消えるように場を設定可能な円状レンズとして構成された2つの転送レンズが、補正器の対物レンズ側に配置される。しかし、この方法は一方で収差を生じ、有利には3次の球面収差の補正および色収差の補正が部分的に打ち消される。そのため、3番目および4番目の多極子要素の再調整が有利であり、4極子場および8極子場の両方が再調整されなければならない。4極子場の再調整において、磁場および電場は(上述のような)色収差の補正が保持される程度まで同時に調整されなければならない。しかし、繰り返される色収差が転送レンズの設定により再調整されなければならないため、この同時調整から離れることが必要である。
【0029】
転送レンズの挿入および上述の再調整などのすべての設定修正によってビーム経路は再び変えられるため、3番目および4番目の多極子の12極子場の再調整および6つの多極子要素に加えて設けられる付加的な多極子要素の12極子の再調整により、より高次の収差の繰り返しを排除することが有利である。
【0030】
3番目および4番目の多極子要素の再調整および付加的な多極子要素の再調整によって、より高次の球面収差が再度生じるため、転送レンズは再び再調整する必要があり、多極子要素も予め定められたやり方で再びその後再調整する必要がある。記載されたやり方の上記要素の調整それぞれは収差を繰り返し生じ、上記の個々のステップはすべての収差が所望の画像化に関して許容されるレベルに低減されるまで、繰り返し実行する必要がある。
【0031】
本発明の補正器は基本的に任意の電子顕微鏡に挿入可能である。しかし、走査原理に基づいて動作する電子顕微鏡、すなわち走査電子顕微鏡(SEMとして知られる)および走査透過顕微鏡(STEMとして知られる)に特に適している。本補正器は、空間構造、巻線および材料特性などの構成条件を満たすものであり、説明した設定および再調整を行うことができるように、関連する電場および/または磁場の場の強さを生成し、制御するために、必要な設定には電流および/または電圧が含まれる。
【0032】
したがって、設定および調整または再調整を可能とする補正器の場の特徴付けは以下を意味する:電極および/または電磁石、ならびに、これらに電流および電圧を印加するためのオプションは、補正器を電子顕微鏡に設置した後に記載の補正方法が可能となるように構造的に構成されている必要がある。詳細な設定は電子顕微鏡の設計、および、たとえば寸法上の不正確さおよび材料の不均一によって同じシリーズの個々の電子顕微鏡にも生じる個々のレンズの収差に依存するため、これらの設定、調整および再調整は関連する電子顕微鏡の設置および作動の後に行われる。また、汚れによる最も僅かな汚染でさえ光学特性を変化させ、再調整を必要とするため、再調整は電子顕微鏡の動作中に何度も行う必要がある。本発明は、電子ビームを補正するため、これらを可能とする補正器において実施される。設定および補正について必要とされる、特定の場合に使用可能な補正器ならびに電流および/または電圧の範囲に関する詳細な構造設計は、各電子顕微鏡の設計、特に、可能な各作動範囲のビーム電圧およびレンズ系および操作機能の詳細な設計に依存する。
【0033】
本補正器の上記特性は電子顕微鏡に搭載された後にのみ効果を奏するため、本発明は、さらに、予め定められたやり方での電子ビームの補正が可能な上記種類の補正器を有する走査電子顕微鏡および走査透過電子顕微鏡に関する。
【図面の簡単な説明】
【0034】
【図1】実施形態に関連する本発明の補正器の概略図を示す。
【図2】図1に対応する、xおよびy平面におけるビーム経路および場の構成を示す。
【図3】補正器を有する電子顕微鏡の部分概略図を示す。
【図4】上記場の全てを生成可能な12極子要素の概略図を示す。
【発明を実施するための形態】
【0035】
本発明について図面に基づいて説明する。
【0036】
図1は本発明に係る補正器10の概略図を示す。1番目の多極子要素1、2番目の多極子要素2および3番目の多極子要素3がビーム経路7の方向に光軸11に沿って配置されている。対称平面8の後に、3つの多極子要素4、5、6が続き、これらは多極子要素1、2、3とその構成において対称であり、さらに、対称平面8に関して対称に設置されていなければならない。多極子要素1は多極子要素6に対応し、多極子要素2は多極子要素5に対応し、多極子要素4は多極子要素4に対応する。
【0037】
本発明の基本的な創作の別の実施形態として、たとえば付加的な多極子要素14(破線にて示す)が対称平面8内に設けられる。あるいは、たとえば付加的な多極子要素14’(一点破線にて示す)が6つの多極子要素1、2、3、4、5、6の外側にさらに配置される。
【0038】
図2は、2つの互いに垂直な平面すなわちx面方向およびy面方向における、軸上基準軌道xαおよびyβのビーム経路および軸外基準軌道xγおよびyδのビーム経路を有する補正器10のビーム軌道を示す。基準軌道xαおよびxγはx平面内を延伸し、基準軌道yβおよびyδはy平面内、すなわちx平面に垂直に光軸11に沿って延伸する。さらに、図2は多極子要素1、2、3、4、5、6および付加的な多極子要素14によって形成される場を示す。ビーム経路は矢印7の方向に延び、光軸11は垂直方向の尺度の「0」を通って延びている。
【0039】
図1および2よりわかるように、1番目の多極子要素1、2番目の多極子要素2、5番目の多極子要素5および6番目の多極子要素6は4極子場1’、2’、5’、6’の形成のために構成されている。これらはたとえば電気的または磁気的な4極子場1’、2’、5’、6’またはこれらの2つの組み合わせである。このため、多極子要素1、2、5、6は少なくとも4つの電磁石および/または4つの電極を光軸11について鏡面対称の配置で有する必要がある。
【0040】
3番目の多極子要素3および4番目の多極子要素4は12極子要素として構成され、これらは、たとえば軟鉄芯の電磁石が電極としても用いられている場合には、電気的および磁気的な12極子場3’、4’を形成することができる。電磁石のための電流または電極の電位が、3番目および4番目の多極子要素が冒頭に記載した色収差の補正を可能とするよう相互作用する磁気的な4極子場3’、4’および電気的な4極子場3’、4’を形成するように印加される。
【0041】
さらに、3番目および4番目の多極子要素3、4は8極子場3’’、4’’および12極子場3’’’、4’’’を形成し、これらは電気的または磁気的な場あるいはこれら2つの組み合わせであってよい(図4は8極子場が12極子要素を用いてどのように生成できるかを説明している)。図2は付加的な多極子要素14の8極子場14’’および後者により生成された12極子場14’’’を示す。
【0042】
まず第1に、非点中間画像12、13を示す非円状ビーム経路の形成が色収差および球面収差の補正に不可欠であり、ここで、軸外基準軌道xγおよびyδの当該非点中間画像はScherzerの教示(上記文献参照)に従う補正の実現に用いられる。
【0043】
非点中間像12とともに、x面のビームがゼロを通るため、線焦点がy方向に形成される。非点中間像13とともに、線焦点がx方向に同様に形成される。その後、ビーム経路は円状ビームx、yを形成するよう再結合される。
【0044】
このビーム経路を形成するため、多極子要素1、2、3、4、5、6の6つの4極子場1’、2’、3’、4’、5’、6’が用いられ、これらは光学系におけるシリンダ状レンズと円状レンズの組み合わせのように機能する。1番目の多極子要素1の4極子場1’は面xおよびyの軸外基準軌道xγおよびyδを分離させるが、軸上基準軌道xαおよびyβは分離させない。軸上基準軌道xαおよびyβは1番目の4極子場1’に無収差中間像9を形成するため、これらは影響されないままである。次いで、2番目の多極子要素2の4極子場2’は軸上基準軌道xαおよびyβを分離させ、軸外基準軌道xγおよびyδの傾きを変化させる。このようにして、2つの目的が3番目の4極子要素3の4極子場3’において実現され、すなわち、軸上基準軌道xαの最大が実現され、同じ領域内に軸外基準軌道xγおよびyδの非点中間像12が実現される。一方で、この配位は5次の組み合わせの収差の低減のための上述の条件であり、他方で、色収差は電気的4極子場3’および磁気的4極子場3’の相互作用により補正され、球面収差は8極子場3’’により補正される。これらの収差補正は第1の面内において最初に行われる。
【0045】
上述のビーム軌道はさらに対称平面8内において軸上基準軌道xαおよびyβの交差点へと続き、軸上基準軌道xαおよびyβはこの点において反対の傾きを有し、同時に、光軸11に関して異なる配向の対称平面8における絶対値の等しいxγおよびyδが得られる。したがって、3次の非点収差は、対称平面8に配置された付加的な多極子要素14による8極子場14’’により補正可能である。さらに、5次以下の全ての収差の補正は付加的な多極子要素14の12極子場14’’’と、3番目の多極子要素3および4番目の多極子要素4の12極子場3’’’および4’’’との相互作用によって影響される。
【0046】
これら全ての補正において、収差の補正それぞれは、弱められるものの他の収差を生じることに留意しなければならない。このため、ここでもう一度再調整を行う必要がある。このため、全ての補正ステップは、許容される最小の大きさの収差に近づけるため、上述した方法の繰り返しにより連続して行われなければならない。
【0047】
対称平面8の後で、ビーム軌道は、2つの異なる種類の交換対称性において連続している。
【0048】
軸上基準軌道xαおよびyβは対称平面8について鏡面対称な交換対称性を示す。これは、y面の基準軌道yβが、対称平面8の前でx面における基準軌道xαを鏡に映した状態のものかのように、対称平面8の後で延伸する。同様に、対称平面8の後の基準軌道xαは、対称平面8の前の基準軌道yβを鏡に映した状態のものかのように、延伸する。
【0049】
一方で、軸外基準軌道xγおよびyβは対称または反対称の交換対称性を示す。これは、対象平面8の後のy面の基準軌道yδが、対称平面8の前のx面において中心で鏡に映した状態の基準軌道xγのように延伸することを意味する。これは、対称平面8と光軸11との交差点についての中心対称性に対応する。同様に、対称平面8の後の基準軌道xγは、対称平面8の前の中心で鏡に映した状態の基準軌道yδのように延伸する。
【0050】
これは、多極子要素4、5、6の4極子場4’、5’、6’と、多極子要素3、2、1の4極子場3’、2’、1’との対応するペアが、同じ絶対値を有するが、符号が異なる(すなわち90°回転されている)ことにより実現される。軸外基準軌道xγおよびyδは、4番目の多極子要素4の4極子場4’に非点中間像13を更に形成し、軸上基準軌道yβは最大を形成し、ここで、さらに上述の収差補正が2番目の面において行われる。最後に、軸上基準軌道xαおよびyβは、6番目の4極子要素の4極子場6’において再び無収差中間像9’を同様に形成する。
【0051】
勿論、面xおよびyはビームの変形を表すためにのみ用いており、空間条件から想像されたものでなければならない。このような非円状の場は光学系におけるシリンダ状レンズのようなものであり、ここで、対応するシリンダレンズの挿入により、ビーム経路において生じた歪曲収差を排除することもできる。全体の構成は、Scherzerの定理に従って、電子ビームの色収差および球面収差を補正するために用いられる。
【0052】
図3は電子顕微鏡、たとえば走査電子顕微鏡または走査透過電子顕微鏡の部分概略図を示す。本補正器10は、ビーム源17およびコンデンサレンズ18の後のビーム経路7に挿入される。補正器10の後には、転送レンズ15および16がその円状レンズ場をもって続き、補正器10の補正品質は上述の繰り返し設定によってさらに改善可能である。
【0053】
転送レンズ15および16の後には、偏向ビーム(すなわち走査ビーム)7’生成用の偏向系20が続いており、後者は対物レンズ21によって対象19に向けられている。走査ビーム7’による走査により、対象19の画像が生成される。
【0054】
走査透過電子顕微鏡(「STEM」として通常知られる)における画像生成は、薄くスライスされた試料を通され、画像を生成する走査ビーム7’により行われる。走査電子顕微鏡(「SEM」として通常知られる)において、二次電子が走査ビーム7’により対象19から放射されて戻る。これらは検出器(図示せず)により検出され、画像生成に用いられる。今日、走査原理に基づいて動作する電子顕微鏡は、多くは、走査透過電子顕微鏡として、または、反射原理に基づいて動作する走査電子顕微鏡のいずれかとして機能するよう設計されている。本補正器10は、両方の動作モードに非常に適している。
【0055】
図4は、多極子要素の概略図を示し、これはたとえば多極子要素1、2、3、4、5、6または付加的な多極子要素14または14’の1つである。12個の極22、22’は光軸11について鏡面対称に配置されている。12極子場3’’’、4’’’または14’’’が形成されたとき、極22、22’は、常に交互に磁場を形成する南北の極であり、または、電場を形成する正および負に荷電された電極である。
【0056】
電場と磁場との組み合わせが形成される場合、軟鉄芯の電磁石が、電圧が印加される電極として同時に用いられる。
【0057】
4極子場1’、2’、3’、4’、5’または6’を形成すべき場合、同じ極性または電荷の3つの電磁石または電極28、28’が常にグループ化され、3つのグループが南北の極としてまたは正または負に荷電された電力として交互に設けられている。ここで、電場および磁場が重畳されても良い。このような重畳は、磁場および電場3’および4’を有する色収差の補正に関して上記で説明したような、ウイーンフィルタにおけるような相互作用のために用いられても良い。しかし、このような相互作用は、場を強めるためにも用いることができる。
【0058】
勿論、多極子要素1、2、5、6のような多極子要素は、4極子場1’、2’、5’、6’だけを形成すればよく、極性が交互に入れ替わる4つの極22.22’のみを設けることによってより簡単に構成されても良い。
【0059】
一方で、8極子場3’’、4’’または14’’を形成すべき場合、極22、22’は「+」および「−」の符号で表されるように交互に設けなければならない。したがって、2つの正に荷電された電極22および1つの負に荷電された電極22’は交互に設けられ、ここで、負の荷電(2つの「−」の符号で象徴される)は歪曲収差の可能性が最も低い8極子場3’’、4’’または14’’を実現するように、対応して強められなければならない。磁気的な8極子場の形成は同様に行われる。勿論、上述の入れ替わりの順序は反対の荷電でも構成可能である。
【0060】
単一の12極子要素により形成される、4極子場、8極子場、12極子場などの重畳された場は、極22、22’、すなわち電磁石または電極において電流または電圧を合計することにより得られる。上述の全ての重畳はこのようにして形成可能である。
【符号の説明】
【0061】
1、2、3、4、5、6 多極子要素、 1’、2’、3’、4’、5’、6’ 多極子要素の4極子場、 3’’、4’’ 多極子要素3および4の8極子場、 3’’’、4’’’ 多極子要素3および4の12極子場、 7 ビーム経路、 7’ 偏向ビーム(走査ビーム)、 8 対称平面、 9、9’ 軸上基準軌道xαおよびyβの無収差中間像、 10 補正器、 11 光軸、 12、13 軸外基準軌道xγおよびyδの非点中間像、 14 (対称平面8内に設けられた)付加的な多極子要素、 14’ (多極子要素1、2、3、4、5、6の外側に設けられた)付加的な多極子要素、 14’’ 付加的な多極子要素14の8極子場、 14’’’ 付加的な多極子要素14の12極子場、 15、16 転送レンズ、 17 ビーム源、 18 コンデンサレンズ、 19 対象、 20 偏向系、 21 対物レンズ、 22 電磁石および/または電極として構成された極(正に荷電された電極の南極)、 22’ 電磁石および/または電極として構成された極(負に荷電された電極の北極)、 x、y 面、 xα、yβ 軸上基準軌道、 xγ、yδ 軸外基準軌道

【特許請求の範囲】
【請求項1】
6つの多極子要素(1、2、3,4、5、6)により電子顕微鏡における色収差および球面収差を補正するための補正器(10)であって、
前記6つの多極子要素(1、2、3,4、5、6)は、対称平面(8)について対称であるようにビーム経路(7)に連続して配置されており、その全ては4極子場(1’、2’、3’,4’、5’、6’)の形成に用いられ、かつ、3番目および4番目の多極子要素(3、4)は8極子場(3’’,4’’)の形成にも用いられ、
後者は同一方向に配向され、かつ、前記6つの多極子要素(1、2、3,4、5、6)のすべての4極子場(1’、2’、3’,4’、5’、6’)は1つが次のものに対して90°回転されており、かつ、これらは、場の強さに関して、光軸(11)と対称平面(8)との交差点について中心対称であり、
軸上基準軌道xαおよびyβの軌道の交換に関する反射平面としての対称平面(8)についての両軸上基準軌道(xα、yβ)の交換対称性と、軸外基準軌道xγおよびyδの軌道の中心対称性の交換に関する点として光軸(11)と対称平面(8)との交差点についての両軸外基準軌道(xγ、yδ)の交換対称性とが形成され、
次いで、軸上および軸外基準軌道(xα、yβ、xγ、yδ)のすべてが前記補正器(10)の端部において再び収束され、
前記3番目の多極子要素(3)および前記4番目の多極子要素(4)における電気的な4極子場(3’、4’)と磁気的な4極子場(3’、4’)との相互作用により色収差が補正可能であり、4極子場(1’、2’、3’,4’、5’、6’)と8極子場(3’’、4’’)とにより球面収差が補正可能である、補正器(10)において、
前記軸上基準軌道(xα、yβ)の無収差中間像(9)が1番目の4極子要素(1)の4極子場(1’)に形成され、当該4極子場(1’)は、前記軸外基準軌道(xγ、yδ)の非点中間像(12、13)が前記3番目の多極子要素(3)および前記4番目の多極子要素(4)の両4極子場(3’、4’)の中央領域に形成されるように設定され、
当該領域において、2番目の4極子要素(2)の4極子場(2’)の設定により、両軸外基準軌道(xγ、yδ)の中間像(12、13)が位置するのと同じ面(x、y)の両軸上基準軌道(xα、yβ)がそれぞれ最大を示す、
ことを特徴とする補正器(10)。
【請求項2】
付加的な多極子要素(14’)が前記多極子要素(1、2、3,4、5、6)の外側に設けられている、請求項1記載の補正器。
【請求項3】
付加的な多極子要素(14)が対称平面(8)内に設けられている、請求項1記載の補正器。
【請求項4】
前記付加的な多極子要素(14、14’)は、3次の非点収差を補正するように、8極子場(14’’)を形成する、請求項2または3記載の補正器。
【請求項5】
前記付加的な多極子要素(14、14’)および前記3番目および4番目の多極子要素(3、4)は、5次以下の全ての収差を補正するように、12極子場(3’’’、4’’’、14’’’)を形成する、請求項2乃至4のいずれか1項記載の補正器。
【請求項6】
より高次の球面収差が消えるように場が設定可能な円状レンズとして構成された2つの転送レンズ(15、16)が、補正器(10)の対物レンズ側に設けられている、請求項1乃至5のいずれか1項記載の補正器。
【請求項7】
前記転送レンズ(15、16)の設定により繰り返される1次の色収差および3次の球面収差が再び排除されるように、前記3番目の多極子要素(3)および前記4番目の多極子要素(4)の4極子場(3’、4’)および8極子場(3’’、4’’)の再調整、ならびに、前記付加的な多極子要素(14、14’)の8極子場(14’’)の再調整が可能である、請求項6記載の補正器。
【請求項8】
前記転送レンズ(15、16)および前記再調整により繰り返されるより高次の収差を再び排除するように、前記3番目の多極子要素(3)および前記4番目の多極子要素(4)および前記付加的な多極子要素(14、14’)の12極子場(3’’’、4’’’、14’’’)の再調整が可能である、請求項7記載の補正器。
【請求項9】
1次の色収差、3次の球面収差、ならびに、前記転送レンズ(15、16)、4極子場(3’、4’)、8極子場(3’’、4’’、14’’)、次いで、12極子場(3’’’、4’’’、14’’’)の再調整、および、従前の再調整により各ケースにおいて生じる収差を低減させるための上記ステップにおける設定の繰り返しにより生じる、より高次の収差が、所望の画像化について許容されるレベルに低減されるまで排除可能である、請求項6乃至8のいずれか1項記載の補正器。
【請求項10】
請求項1乃至9のいずれか1項記載の補正器(10)による電子ビームの補正を特徴とする、走査電子顕微鏡または走査透過電子顕微鏡。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−129208(P2012−129208A)
【公開日】平成24年7月5日(2012.7.5)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−273613(P2011−273613)
【出願日】平成23年12月14日(2011.12.14)
【出願人】(500155198)ツェーエーオーエス コレクテッド エレクトロン オプチカル システムズ ゲーエムベーハー (14)
【氏名又は名称原語表記】CEOS Corrected Electron Optical Systems GmbH
【住所又は居所原語表記】Englerstr. 28, D−69126 Heidelberg, Germany
【Fターム(参考)】