説明

複合物および複合膜並びにそれらの製造方法および使用方法、非加水分解前駆体

【課題】膜特性を向上させる。
【解決手段】本発明は、下記の物質:SO3H基、PO3H2基、COOH基、又はB(OH)2基を含む高分子酸;第1級、第2級又は第3級アミノ基、ピリジン基、イミダゾール基、ベンズイミダゾール基、トリアゾール基、ベンゾトリアゾール基、ピラゾール基、又はベンゾピラゾール基を側鎖又は主鎖に含む(任意の)高分子塩基;前記塩基性基を含む(任意の)付加高分子塩基;有機元素及び/又は有機金属の化合物を膜形成過程中に加水分解及び/又はゾル−ゲル反応させることにより、及び/又は酸性、アルカリ性、又は中性の電解水溶液中で該膜を後処理することにより得た、元素又は金属の酸化物又は水酸化物を有する、新規の有機/無機ハイブリッド膜に関する。本発明はまた、前記膜の製造方法、及び種々の用途に使用される該膜に関するものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、下記の配合を有する新規の有機/無機ハイブリッド膜に関する。
●SO3H基、PO3H2基、COOH基、又はB(OH)2基を含む高分子酸。
●第1級、第2級又は第3級アミノ基、ピリジン基、イミダゾール基、ベンズイミダゾール基、トリアゾール基、ベンゾトリアゾール基、ピラゾール基、又はベンゾピラゾール基を側鎖或いは主鎖に含む、高分子塩基(任意)。
●前記塩基性基を含む、付加的な高分子塩基(任意)。
●膜形成過程中の有機元素化合物及び/又は有機金属化合物の、加水分解及び/又はゾル−ゲル反応により、並びに/或いは、酸性、アルカリ性又は中性の電解水溶液中で該膜を後処理することにより得られた、元素酸化物又は元素水酸化物、或いは、金属酸化物又は金属水酸化物。
本発明はまた、前記膜の製造方法、及びこの型の膜の種々の使用方法に関する。
【背景技術】
【0002】
アイオノマー/無機ハイブリッド複合体に関する当該技術水準が、Mauritzのレビューの中で明らかにされている。Mauritsは有機ポリマー、特にナフィオン(登録商標)のようなアイオノマー中でゾル‐ゲル技術を実施した先駆者の1人である(例えば、非特許文献1参照)。前記方法の中核は、イオン的に機能する有機ポリマーのマトリックス中で有機元素化合物又は有機金属化合物を加水分解して、元素又は金属の酸化物或いは水酸化物の網目構造を形成することである。
【0003】
該論文に記載されたシステムのさらなる例を下記に示す。
(a)ナフィオン(登録商標)を水中及びアルコール中で予め膨張させ、その後テトラエトキシシラン(TEOS)/アルコール溶液に浸す。その後、ナフィオン膜のスルホン酸クラスター中でスルホン酸プロトンにより触媒されゾル‐ゲル反応が起こり、TEOSから水を含有するSiO2/OH網目構造(“ナノコンポジット”(nanocomposites))が形成される(例えば、非特許文献2参照)。
(b)ナフィオン(登録商標)を水中及びアルコール中で予め膨張させ、その後Zr(OBu)4のアルコール溶液に浸す。その後、ナフィオン膜のスルホン酸クラスター中でスルホン酸プロトンにより触媒されゾル‐ゲル反応が起こり、Zr(OBu)4から水を含有するZrO2網目構造(“ナノコンポジット”(nanocomposites))が形成される(例えば、非特許文献3参照)。
(c)ナフィオンフッ化スルホニル前駆体膜をぺルフルオロヒドロフェナントレン中で予め膨張させ、3‐アミノプロピルトリエトキシシランに浸す。その後、余分なシランをEtOHで洗い流す。ハイブリッドが形成され、ハイブリッド中では前記シランの加水分解及び該シランとSO2F基との反応により、部分的にポリマーで架橋したSiO2網目構造が膜マトリックスに形成される(例えば、非特許文献4参照)。
(d)Zn2+型で存在するサーリン(登録商標)アイオノマー膜を1‐プロパノール中で膨張させ、その後H2O/TEOS混合液中に浸す。その後膜マトリックス中でスルホン酸プロトンにより触媒されゾル‐ゲル反応が起こり、TEOSから水を含有するSiO2/OH網目構造(“ナノコンポジット”(nanocomposites))が形成される(例えば、非特許文献5参照)。
【0004】
既知のシステム(a)〜(d)は、ゾル−ゲル反応は予備形成した膜中で起こり、その結果ポリマー複合体を加水分解することにより形成した無機ポリマー相の含有量を任意に設定することは出来ないという不利点を有する。
【0005】
また、非イオン性ポリマー及び金属酸化物又は元素酸化物のハイブリッドシステムが該論文に記載されている。
(e)ポリ(n‐ブチルメタクリレート)及び酸化チタンの複合物を、ポリ(n‐ブチルメタクリレート)ポリマー溶液のアルコール溶液に予め加えたチタンアルコキシドを溶媒の蒸発後にポリマーマトリックス中で水蒸気により加水分解することにより作製する。(例えば、非特許文献6参照)。
(f)ポリエーテルイミド及び微分散酸化ケイ素の複合膜は、ポリエーテルイミドであるウルテム(登録商標)のN‐メチルピロリジノン(NMP)溶液に0.15MのHCl溶液を添加しTEOSの加水分解を行うことにより作製する。加水分解後、前記ポリマー溶液から緻密又は相の逆転した膜が形成される。無機相と有機相との親和性は、3‐アミノプロピルトリメトキシシラン(AS)をさらに添加することにより得られる(例えば、非特許文献7参照)。
【0006】
これらのシステムは前記と同様の不利点を有する。
【先行技術文献】
【非特許文献】
【0007】
【非特許文献1】“有機−無機ハイブリッド物質:無機アルコキシド用のゾル‐ゲル重合テンプレートとしてのパーフルオロ系アイオノマー”、K. A. Maurits、MatSci. Eng. C6、1998年、P.121-133
【非特許文献2】“In Situゾル−ゲル反応によるパーフルオロスルホン酸系アイオノマー中での酸化ケイ素相の微構造の展開(Microstructual evolution of a Silicon Oxide Phase in a Perfluorosulfonic Acid ionomer by an In Situ Sol-Gel Reaction)”、K. A. Mauritz, I. D. Stefanithis, S. V. Davis, et al.、J. Appl. Polym. Sci. 55、1995年、P.181-190
【非特許文献3】“In Situゾル−ゲル化学反応により得られた非対称ナフィオン/(酸化ジルコニウム)ハイブリッド膜(Asymmetric Nafion/(Zirconium Oxide) Hybrid Membranes via In Situ Sol-Gel Chemistry)”、W. Apichatachutapan, R. B. Moore, K. A. Mauritz、J. Appl. Polym. Sci. 62、1996年、P.417-426
【非特許文献4】“In Situゾル−ゲル反応によるナフィオンフッ化スルホニル前駆体の化学的修飾(Chemical modification of a nafion sulfonyl fluoride precursor via in situ sol-gel reactions)”、A. J. Greso, R. B. Moore, K. M. Cable, W. L. Jarrett, K. A. Mauritz、Polymer 38、1997年、P.1345-1356
【非特許文献5】“サーリン(登録商標)/[酸化ケイ素]ハイブリッド物質. 2.物理的特性の特徴付け(Surlyn(R)/[Silicon Oxide]Hybrid Materials. 2.Physical Properties Characterization)”、D. A. Siuzdak, K. A. Mauritz、J. Polym. Sci. Part B: Polymer Physics, 37、1999年、P.143-154
【非特許文献6】“ゾル−ゲル法によりチタニウムアルコキシドから作製された新規のポリ(n‐ブチルメタクリレート)/酸化チタン合金(Novel Poly(n-Butyl Methacrylate)/Titanium Oxide Alloys Produced by the Sol-Gel process for Titanium Alkoxides)”、K. A. Mauritz, C. K. Jones、J. Appl. Polym. Sci. 40、1990年、P.1401-1420
【非特許文献7】“ポリエーテルイミド及び微分散シリカの複合膜 (Membranes of poly(ether imide) and nanodispersed silica)”、S. P. Nunes, K. V. Peinemann, K, Ohlrogge, A. Alpers, M. Keller, A. T. N. Pires、J. Memb. Sci. 157、1999年、P.219-226
【発明の概要】
【発明が解決しようとする課題】
【0008】
前記に示すように、純粋有機膜でありまた無機添加物を添加された、多数のプロトン伝導膜がすでに存在する。しかし、これらのシステム及び複合膜の全ては熱的安定性及び機械的安定性に乏しく、100℃を超える温度で局所的に影響がでる。
【0009】
従って、本発明は、無機元素/金属の、酸化物/水酸化物の相を付加的に含む、陽イオン交換体ポリマー及び塩基性ポリマーの混合体である、新規の複合物及び複合膜を提供することを目的とし、下記の膜特性を向上させることを目的とするものである。
●機械的安定性。
●熱的安定性。
●100℃を超える温度においてさえ保水能が改善されること。これは100℃を超える範囲での膜燃料電池に適用するためには特に重要である。
【課題を解決するための手段】
【0010】
前記目的は、請求項1に係る膜を提供することにより解決される。
【0011】
さらに、本発明に係る方法は前記目的の解決に寄与するものである。
【図面の簡単な説明】
【0012】
【図1】TJ3膜のEDXスペクトル図である。
【図2】ポリマー1の化学構造である。
【図3】PBIセラゾール(登録商標)の化学構造である。
【図4】JOA-2膜のEDXスペクトル図である。
【発明を実施するための形態】
【0013】
本明細書では、元素/金属の酸化物/水酸化物の有機前駆体をポリマー溶液(アルコキシド/エステル、アセチルアセトネート等)に入れている。
【0014】
アイオノマーの無機相は、酸性、アルカリ性及び/又は中性水溶液の環境下で加水分解することにより前記膜が形成した後、形成される。
【0015】
驚いたことに、NMP又はDMAc中で塩の型で存在するスルホン化ポリエーテルエーテルケトン(sPEEK)及び塩基性ポリマー(例えばポリベンゾイミダゾールPBIセラゾール(登録商標))を含む溶液に、チタニウム・ジアセチルアセトナート・ジイソプロピレート/イソプロパノール(Ti diacetylacetonate diisopropylate/isopropanol)を入れると、チタニウム・ジアセチルアセトナート・ジイソプロピレートはポリマー溶液中では加水分解しないが、溶媒が蒸発すると膜マトリックスに組み込まれることが分かった。また、驚いたことに、水溶性洗剤及び/又は水及び/又は酸中でゾル‐ゲル反応により膜を連続的に後処理することにより、有機チタン化合物は加水分解し、膜マトリックスで微分散した酸化チタンを生成することができると分かった。前記酸化チタンは、膜マトリックス中でエネルギー分散型X線分析(EDX)により確認することができる。前記分析により、35重量%までの膜マトリックス中におけるTiO2の含有量を確認することができる。
【0016】
本発明に係る複合物は、
●SO3H基、PO3H2基、COOH基、又はB(OH)2基、優先的にアリール基主鎖ポリマーを幹とする高分子酸
●第1級、第2級又は第3級アミノ基、ピリジン基、イミダゾール基、ベンズイミダゾール基、トリアゾール基、ベンゾトリアゾール基、ピラゾール基、又はベンゾピラゾール基を側鎖並びに/或いは主鎖に含む、(任意の)1種又は2種の高分子塩基
●下記の分類の有機元素化合物及び/又は有機金属化合物:
・Ti、Zr、Sn、Si、B、Alの金属/元素のアルコキシド/エステル
・金属アセチルアセトネート、例えば、Ti(acac)4、Zr(acac)4
・金属/元素アルコキシド及び金属アセチルアセトネートの混合物、例えば、Ti(acac)2(OiPr)2
・Ti、Zr、Sn、Si、B、Alの有機アミノ混合物
の加水分解により得られ、且つ、膜生成過程中に生産可能な、元素又は金属の酸化物或いは水酸化物、並びに/或いは、酸性、アルカリ性、又は中性の電解水溶液中で該膜を後処理することにより得られる元素又は金属の酸化物或いは水酸化物
から成る。
【0017】
本発明に係る膜マトリックスに組み込まれた微分散無機相により、本発明に係るアイオノマー(混合)膜の物性プロフィルは大きく改善されている。
【0018】
本発明に係る新規の無機/有機ハイブリッド酸塩基混合膜は、下記の優れた物性プロフィルを示す。
●有効なプロトン伝導性
●優れた熱的安定性
●優れた機械的安定性
●制限された膨潤性
【0019】
とりわけ100℃を超える温度における膜の保水能が特に大きく改善された。これは無機酸化物/水酸化物によるものであり、無機成分が微分散して分布した状態で該無機酸化物/水酸化物が膜中に存在することによるものである。すでにいくつかの刊行物に述べられているように(“高温における液体供給固体高分子電解質燃料電池中でのエタノール酸化とメタノール酸化との比較(Comparison of Ethanol and Methanol Oxidation in a Liquid-Feed Solid Polymer Electrolyte Fuel Cell at High Temperature)”、A. S. Arico, P. Creti, P. L. Antonucci, V. Antonucci、Electrochem. Sol. St. Lett. 182、1998年、P.66‐68)、酸化物の粉末をアイオノマー膜に混入することによっては、膜マトリックス中においてのみ有機元素/有機金属の化合物が加水分解し酸化物となる本発明に係る前記方法のように、膜マトリックス中に無機成分を微細に分布させることはできない。よって、本発明に係る膜は、下記のさらなる利点を示す。
●メタノール浸透性の低下
●特に100℃を超えた温度における、プロトン伝導性への寄与
【実施例】
【0020】
下記のいくらかの例示が本発明を裏付けている。
【0021】
(アイオノマー混合膜TJ‐3の製造)
2gのスルホン化ポリエーテルエーテルケトン・ビクトレックス(登録商標)(イオン交換容量1.364meq SO3H/g)を10gのN‐メチルピロリジノン中に溶解する。次に1gのトリエチルアミンを前記溶液に添加し、前記sPEEKのスルホン酸基を中和する。次に77mgのポリ(4‐ビニルピリジン)を前記溶液に添加する。溶解後、5.1gのチタニウム(IV)ビス(アセチルアセトナート)ジイソプロピレートをイソプロパノール中75重量%溶液として前記溶液に添加する。その後前記ポリマー溶液膜を脱気し、ドクターナイフで800μmの膜厚としガラスプレートに広げる。膜乾燥機中100℃で溶媒を除く。膜が乾いた後、水の入った浴槽に該ポリマー膜を付けたガラスプレートを浸す。前記膜はガラスプレートから剥離する。1N NaOH中70℃で24時間、その後脱イオン水中70℃で24時間、前記膜に後処理をする。その後、脱イオン水中に室温で前記膜を保存する。プロトン伝導性を測定するため、前記膜を室温で0.5N H2SO4中24時間均衡化する。
【0022】
特性結果:
膜厚[μm]:100
イオン交換容量(IEC)[meq SO3H/g]:1.15
膨潤[%]:104
選択透過性(0.5N/0.1N NaCl)[%]:78.35
抵抗率(RspH+)(0.5N HCl)[Ωcm]:6.4
抵抗率(RspH+)(H2O)[Ωcm]:16.9
抵抗率(RspNa+)(0.5N NaCl)[Ωcm]:29.6
【0023】
エネルギー分散型X線分析(EDX)におけるTJ3膜のスペクトルを図1に示す。チタンのピークが明らかに分かる。
【0024】
(アイオノマー混合膜JOA‐2の製造)
3gのスルホン化ポリエーテルエーテルケトン・ビクトレックス(登録商標)(イオン交換容量1.75meq SO3H/g)を15gのN‐メチルピロリジノン中に溶解する。次に0.5gのn‐プロピルアミンを前記溶液に添加し、前記sPEEKのスルホン酸基を中和する。次に0.15gのポリマー1(図2)を前記溶液に添加する。次に1.4gの10.72重量%PBIセラゾール(登録商標)(図3)溶液を前記溶液に添加する。その後4.036gのチタニウム(IV)ビス(アセチルアセトナート)ジイソプロピレートをイソプロパノール中75重量%溶液として前記溶液に添加する。その後前記ポリマー溶液膜を脱気し、ドクターナイフで800μmの膜厚としガラスプレートに広げる。真空乾燥オーブン中、最初に75℃、800mbarの気圧で1時間、その後120℃で最初の800mbarから50mbarに圧力を下げて、溶媒を除く。膜が乾いた後、水の入った浴槽に該ポリマー膜を付けたガラスプレートを浸す。前記膜はガラスプレートから剥離する。1N NaOH中70℃で24時間、その後脱イオン水中70℃で24時間、前記膜に後処理をする。その後、脱イオン水中に室温で前記膜を保存する。プロトン伝導性を測定するため、前記膜を室温で0.5N H2SO4中24時間均衡化する。
【0025】
特性結果:
膜厚[μm]:100
イオン交換容量(IEC)[meq SO3H/g]:0.97
膨潤[%]:27.7
選択透過性[%]:94.9
抵抗率(RspH+)(0.5N H2SO4)[Ωcm]:21.8
抵抗率(RspH+)(H2O)[Ωcm]:55.6
抵抗率(RspNa+)(0.5N NaCl)[Ωcm]:79
【0026】
エネルギー分散型X線分析(EDX)におけるJOA-2膜のスペクトルを図4に示す。チタンのピークが明らかに分かる。

【特許請求の範囲】
【請求項1】
少なくとも1種の高分子酸を含む膜において、膜形成過程前、その最中又はその後に、該膜に塩、金属酸化物若しくは金属水酸化物又はこれらの有機前駆体を取り込んでなることを特徴とする膜。
【請求項2】
少なくとも1種の高分子酸と少なくとも1種の高分子塩基を含む請求項1に記載の膜において、膜形成過程中又はその後に、該膜に塩、金属酸化物若しくは金属水酸化物又はこれらの有機前駆体を取り込んでなることを特徴とする膜。
【請求項3】
前記高分子酸がアリール基を主鎖に有するポリマーであり、酸性基としてSO3H、PO3H2、COOH、若しくはB(OH)2又はこれらの塩を含み、ポリエーテルスルホン、ポリスルホン、ポリフェニルスルホン、ポリエーテルエーテルスルホン(polyetherether sulfones)、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリジフェニルフェニレンエーテル(polydiphenylphenylene ethers)、ポリフェニレンサルファイドのグループから選択されたものであるか、又は前記物質のうちの少なくとも1種を含むコポリマーであることを特徴とする、請求項1に記載の膜。
【請求項4】
高分子塩基が第1級、第2級又は第3級アミノ基、ピリジン基、イミダゾール基、ベンズイミダゾール基、トリアゾール基、ベンゾトリアゾール基、ピラゾール基、又はベンゾピラゾール基を側鎖又は主鎖に含むことを特徴とする、請求項1に記載の膜。
【請求項5】
前記膜が、膜形成過程前、その最中、又はその後に、加水分解及び/又はゾル‐ゲル反応により得られた、塩、元素酸化物又は元素水酸化物又は金属酸化物又は金属水酸化物を含み、該塩、元素酸化物又は元素水酸化物又は金属酸化物又は金属水酸化物が下記の前駆体:
●Ti、Zr、Sn、Si、B、Alの金属/元素のアルコキシド/エステル
●金属アセチルアセトネート、例えば、Ti(acac)4、Zr(acac)4
●金属/元素アルコキシド及び金属アセチルアセトネートの混合物、例えば、Ti(acac)2(OiPr)2
●Ti、Zr、Sn、Si、B、Alの有機アミノ混合物
から選択されたことを特徴とする、請求項1〜4のいずれかに記載の膜。
【請求項6】
前記膜がさらに共有結合で架橋されたものであることを特徴とする、請求項1〜5のいずれかに記載の膜。
【請求項7】
前記膜がリン酸で後処理され、金属酸化物及び/又は金属水酸化物及び/又は金属の酸化水酸化物から、プロトン伝導性に寄与する金属リン酸塩又は元素のリン酸塩又は金属のリン酸水素塩又は元素のリン酸水素塩又は金属のリン酸二水素塩又は元素のリン酸二水素塩を、膜マトリックス中に生成したものであることを特徴とする、請求項1〜6のいずれかに記載の膜。
【請求項8】
例えばN‐メチルピロリジノン(NMP)、N,N‐ジメチルアセトアミド(DMAc)、N,N‐ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)又はスルホレンのような両性‐非プロトン性溶媒中で、下記の物質:SO3X基、PO3X2基、COOX基、又はB(OX)2基(X=H、又は一価若しくは二価若しくは三価若しくは四価の金属陽イオン)を有する1種の高分子酸;第1級、第2級若しくは第3級アミノ基、ピリジン基、イミダゾール基、ベンズイミダゾール基、トリアゾール基、ベンゾトリアゾール基、ピラゾール基、又はベンゾピラゾール基を側鎖及び/又は主鎖に含む、少なくとも一種の高分子塩基;及び請求項4に記載の化合物のうち少なくとも有機金属化合物又は有機元素化合物を混合することを特徴とする、請求項1〜7のいずれかに記載の複合物及び複合膜の製造方法。
【請求項9】
請求項7に記載のポリマー溶液を支持材(ガラスプレート又は金属プレート、細胞組織、織布、不織布、フリース、多孔性膜)上に薄膜状に広げ、80〜150℃の温度で標準圧又は真空下で溶媒を蒸発させ、形成された薄膜を下記の工程により後処理する方法であって、該工程の順序を変更してもよく、任意に(1)及び/又は(2)及び/又は(3)を省略することもできることを特徴とする、請求項8に記載の方法。
(1)T=50〜100℃の水中に入れる工程
(2)T=50〜100℃の1〜100%無機酸(カリウム水素酸(hydrokalic acid)、硫酸、リン酸)に入れる工程
(3)1〜50%の塩基水溶液(例えばアンモニア溶液、アミン溶液、水酸化ナトリウム溶液、水酸化カリウム溶液、炭酸ナトリウム溶液、水酸化カルシウム溶液、水酸化バリウム溶液)又は無水液体アミン又は異なる液体アミンの混合物に入れる工程
(4)T=50〜100℃の水中に入れる工程
【請求項10】
請求項1に記載の膜を用いて、電気化学的な方法によりエネルギーを生産する方法。
【請求項11】
0〜180℃の温度で膜燃料電池(水素燃料電池又はダイレクトメタノール燃料電池)において構成要素として、請求項1に記載の膜を使用する方法。
【請求項12】
電池において、請求項1に記載の膜を使用する方法。
【請求項13】
二次電池において、請求項1に記載の膜を使用する方法。
【請求項14】
電解セルにおいて、請求項1に記載の膜を使用する方法。
【請求項15】
例えばガス分離、浸透気化、膜抽出(perstraktion)、逆浸透、電気浸透及び拡散浸透のような膜分離法において、請求項1に記載の膜を使用する方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−168785(P2011−168785A)
【公開日】平成23年9月1日(2011.9.1)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−55956(P2011−55956)
【出願日】平成23年3月14日(2011.3.14)
【分割の表示】特願2001−581367(P2001−581367)の分割
【原出願日】平成13年4月27日(2001.4.27)
【出願人】(501421498)
【Fターム(参考)】