説明

超音波診断装置

【課題】弾性特性の計測時において、超音波振動子からの音響線が血管断面の中心を通るように、超音波振動子と血管との位置関係を調整するための構成を提供する。
【解決手段】
超音波診断装置は、超音波を送信し、生体の組織で反射した超音波を受信する振動子、および、振動子の位置を変化させる駆動装置を有する超音波プローブと接続可能である。超音波診断装置は、駆動装置を制御して、振動子が超音波を送信する方向および位置の少なくとも一方を変化させ、振動子の位置に応じて、振動子に超音波を複数回送信する。超音波診断装置は、血管で反射された超音波を、振動子を用いて繰り返し受信して複数の受信信号を生成し、血管の長軸方向の像を得るように超音波振動子を配置した状態で得られる複数の受信信号に基づいて、反射波の強度分布に関する強度情報を生成し、強度情報に基づいて、反射強度が最大になったときの振動子の位置を特定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波診断装置および超音波プローブに関し、特に、生体内の組織の性状特性を測定する超音波診断装置およびその制御方法、当該超音波診断装置に利用される超音波プローブの構造および制御方法に関する。
【背景技術】
【0002】
近年、心筋梗塞や脳梗塞などの循環器系疾病を患う人々が増加してきており、このような疾病の予防および治療を行うことが大きな課題となっている。心筋梗塞や脳梗塞の発病には、動脈硬化が深く関係している。そのため、動脈硬化が進行する早期段階において、動脈硬化の度合いを診断する診断方法あるいは診断装置が求められている。
【0003】
従来、動脈硬化病変の診断は、血管カテーテルを用いて血管内部の様子を直接観察することによって行われていた。しかし、この診断では、血管カテーテルを血管に挿入する必要があるため、被験者への肉体的な負荷が大きいという問題があった。このため、血管カテーテルによる観察は、動脈硬化病変が存在していることが確かである被験者に対して、その場所を特定するために用いられ、例えば、健康管理のための検査として、この方法が用いられることはなかった。
【0004】
被験者への肉体的な負担が少ない非侵襲の医療診断装置として、超音波診断装置やX線診断装置が従来用いられている。超音波やX線を体外から照射することによって、被験者に苦痛を与えることなく、体内の形状情報、あるいは形状の時間変化情報を得ることができる。体内の測定対象物の形状の時間変化情報(運動情報)が得られると、測定対象物の性状情報を求めることができる。たとえば、血管の弾性率は、心拍による大振幅変位運動に重畳されている血管の微小な厚みの変化、つまり血管の歪み量と、血圧差とに基づいて求められる。したがって、運動情報を得ることにより、生体内の血管の弾性特性を求めることができ、動脈硬化の程度を直接知ることが可能となる。
【0005】
特に超音波診断は、X線診断と比較した場合、被験者に超音波プローブをあてるだけで測定できるので、被験者への造影剤投与が不要である点やX線被爆のおそれがない点で優れている。
【0006】
近年のエレクトロニクス技術の進歩によって、超音波診断装置の測定精度を飛躍的に向上させることも可能になってきた。これに伴って、生体組織の微小運動を計測する超音波診断装置の開発が進んでいる。生体組織の微小運動を高精度に計測することにより、動脈壁の弾性特性の二次元分布を詳細に測定することが可能となる。
【0007】
例えば、特許文献1は、制約付き最小二乗法を用いて超音波エコー信号の振幅と位相を解析することにより、測定対象を高精度でトラッキングする技術を開示している。この技術を位相差トラッキング法と呼ぶ。この技術によれば、血管運動による振幅が数ミクロンであり、周波数が数百Hzまでの速い振動成分を高精度に計測できる。このため、血管壁の厚さ変化や歪みを数ミクロンのオーダーで高精度に計測をすることが可能になると報告されている。
【0008】
また、特許文献2は、被検体に対して複数の走査区画を規定して超音波を走査し、走査区画ごとの血管弾性率を計測する技術を開示している。
【0009】
一方、特許文献3の超音波診断装置は、弾性特性とは異なる血管の特性、具体的には頸動脈の厚さを示す値を、被験者が動脈硬化であるか否かを判断するための指標として測定している。頸動脈は、内側から順に内膜、中膜、外膜の3層を有する構造を備えていることが知られている。特許文献3の超音波診断装置は、この内膜と中膜をあわせた厚さ(内中膜複合体厚:以下IMTと呼ぶ)の値を計測している。
【0010】
なお、特許文献3の超音波診断装置には血管3の変位(歪み)を計測する手段がないため、血管の弾性特性を測定することはできない。また、この超音波診断装置にはIMT値を計測前の段階で血管の3次元表示するための機能が必須であり、処理に時間を要するとともに、高コスト化が避けられない。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開平10−5226号公報
【特許文献2】特開2001−292995号公報
【特許文献3】特開2006−000456号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
血管の弾性特性を正確に計測するためには、血管の形状に関する正確な時間変化情報(運動情報)が必要である。そのためには、超音波の音響線が血管断面の中心を通る状態で血管の変位計測を行わなければならない。
【0013】
たとえば、図27の(a1)は、血管3に対して理想的に配置されたプローブ100の上面図であり、(a2)はその断面図である。プローブ100内に設けられた振動子101から出力される超音波の音響線が、血管3の断面の中心oを通っている。この状態であれば、心拍によって血管3の厚さが変化する方向と音響線の方向とは一致するため、血管の正確な歪み量を測定できる。よって、正確な弾性率を測定することができる。
【0014】
しかしながら、従来の超音波診断装置では、超音波の音響線が血管断面の中心oを通っているか否かに関して特に注意が払われていなかった。これは、超音波診断装置の使用者が操作に熟達していることを前提としているためと考えられるが、操作に慣れていない使用者による使用も当然に予想されるため、このような前提は適切ではない。
【0015】
操作に慣れていない使用者は、超音波の音響線が血管断面の中心を通るようにプローブを配置することは困難である。たとえば、図27の(b1)は、血管3の中心からずれた位置に配置されたプローブ100の上面図を示す。そして図27の(b2)はその断面図を示す。この状態では、血管3の厚さが変化する方向と音響線の方向とが一致していないため、血管の正確な歪み量を測定できない。
【0016】
さらに図28(a)および(b)は、血管3とは平行でない状態で配置されたプローブ100の上面図を示す。振動子101からの音響線が血管断面の中心を常に通っていないため、やはり血管の正確な歪み量を測定できない。
【0017】
上述の図27(b1)および(b2)、図28(a)および(b)のいずれの場合であっても、特に装置の操作に慣れていない使用者は、画像を見ながら手技で血管断面の中心を探し出すことは困難である。これでは測定された弾性特性は不正確になる。
【0018】
本発明の目的は、弾性特性の計測時において、超音波振動子からの音響線が血管断面の中心を通るように、超音波振動子と血管との位置関係を調整するための構成を提供することである。
【課題を解決するための手段】
【0019】
本発明による超音波プローブは、超音波診断装置に接続される超音波プローブであって、超音波を送信し、生体の組織で反射した前記超音波を受信する振動子と、前記振動子の位置を変化させる駆動装置とを備え、前記超音波診断装置が血管の性状特性を測定する時において、前記駆動装置は、前記超音波診断装置からの制御信号に基づいて前記振動子の位置を変化させ、前記超音波を送信する方向および位置の少なくとも一方を変化させる。
【0020】
前記振動子には可動範囲が規定されており、前記振動子が前記超音波の送受信を行っている間に、前記駆動装置は前記範囲内で前記振動子の位置を変化させてもよい。
【0021】
前記駆動装置は、前記超音波プローブが接触している生体の表面に平行な方向に前記振動子を移動させて、前記超音波を送信する位置を変化させてもよい。
【0022】
前記振動子は、第1方向に沿って配列された少なくとも1列の超音波振動子群を備えており、前記駆動装置は、前記超音波プローブが接触している生体の表面に平行な平面上であって、かつ、前記第1方向と垂直な第2方向に前記振動子を移動させてもよい。
【0023】
前記振動子は、第1方向に沿って配列された少なくとも1列の超音波振動子群を備えており、前記駆動装置は、前記超音波プローブが接触している生体の表面に平行な平面上で前記振動子を回転させてもよい。
【0024】
前記駆動装置は、前記振動子と一体的に移動するラックまたはワイヤに駆動力を伝達するモータであってもよい。
【0025】
前記駆動装置は、前記超音波プローブが接触している生体の表面に平行な方向の支軸を中心に前記振動子を揺動させ、前記超音波を送信する角度を変化させてもよい。
【0026】
前記駆動装置は、回転軸が前記支軸に接続されたモータであってもよい。
【0027】
前記駆動装置は、前記生体の表面に平行な第1方向、前記生体の表面に平行で、かつ前記第1方向に垂直な第2方向、前記第1方向および前記第2方向のいずれにも垂直な第3方向、前記第1方向に沿った軸を中心とする第1回転方向、前記第2方向に沿った軸を中心とする第2回転方向、および、前記第3方向に沿った軸を中心とする第3回転方向のうちの複数の方向に、前記振動子の位置を変化させてもよい。
【0028】
前記駆動装置は、各々が前記振動子を移動させるための駆動力を発生させる複数のアクチュエータと、複数のリンクとを備えており、前記複数のリンクを介して、前記複数のアクチュエータによって発生された駆動力が前記振動子に伝達されてもよい。
【0029】
前記駆動装置は、パラレルリンク機構を有していてもよい。
【0030】
前記振動子は、音響カップリング液が充填された袋部内に設置されていてもよい。
【0031】
本発明による超音波診断装置は、超音波を送信し、生体の組織で反射した前記超音波を受信する振動子、および、前記振動子の位置を変化させる駆動装置を有する超音波プローブと、前記駆動装置を制御して、前記振動子が前記超音波を送信する方向および位置の少なくとも一方を変化させるプローブ制御部と、前記振動子の位置に応じて、前記振動子に超音波を複数回送信させる送信部と、前記血管で反射された前記超音波を、前記振動子を用いて繰り返し受信して複数の受信信号を生成する受信部と、前記複数の受信信号に基づいて、前記反射波の強度分布に関する強度情報を生成する強度情報生成部と、前記強度情報に基づいて、前記反射強度が最大になったときの前記振動子の位置を特定する判定部とを備え、特定された前記位置で前記超音波を送信して前記血管の性状特性値を演算する。
【0032】
前記強度情報生成部は、前記振動子上の離間した受信部AおよびBによってそれぞれ受信された前記反射波の強度分布を示す強度情報を生成し、前記判定部は、前記受信部Aの強度情報および前記受信部Bの強度情報が同時に最大を示しているか否かを判定し、前記受信部Aの強度情報および前記受信部Bの強度情報が同時に最大を示していない場合において、前記プローブ制御部は、体表と平行な平面上で前記振動子を所定の角度だけ回転させてもよい。
【0033】
前記受信部Aの強度情報および前記受信部Bの強度情報が同時に最大を示していない場合において、前記プローブ制御部は、前記受信部Aの強度情報が最大になるときの前記振動子の位置と、前記受信部Bの強度情報が最大になるときの前記振動子の位置と、受信部AおよびBの距離とに基づいて、前記振動子が前記血管と略平行になるよう前記振動子を回転させてもよい。
【0034】
前記判定部が、前記受信部Aの強度情報および前記受信部Bの強度情報が同時に最大を示していると判定するまで、前記プローブ制御部は、前記所定の角度だけ繰り返し前記振動子を回転させてもよい。
【0035】
前記判定部が、前記受信部Aの強度情報および前記受信部Bの強度情報が同時に最大を示していると判定した後、前記判定部は、前記反射強度が最大になったときの前記振動子の位置を特定してもよい。
【0036】
前記超音波診断装置は、前記送信部および前記受信部に対して、前記超音波の送信および受信を指示する制御部と、前記受信部において受信された前記超音波に基づいて、前記血管の性状特性値を演算する演算部とをさらに備え、前記制御部は、前記振動子が前記判定部によって特定された前記位置に存在するとき、前記超音波の送信および受信を指示してもよい。
【0037】
前記超音波診断装置は、前記振動子の位置を変化させるための制御信号を出力する操作部をさらに備え、前記プローブ制御部は、前記制御信号に基づいて前記振動子の位置を変化させてもよい。
【0038】
前記プローブ制御部は、前記操作部からネットワークを介して前記制御信号を受け取ってもよい。
【0039】
本発明による超音波診断装置は、第1方向に沿って配列された2列の超音波振動子群AおよびBからそれぞれ超音波を送信し、生体の組織で反射した各超音波を受信する振動子、および、前記振動子の位置を変化させる駆動装置を有する超音波プローブと、前記駆動装置を制御して、前記超音波プローブが接触している生体の表面に平行で、かつ、前記振動子の位置を前記第1方向と垂直な第2方向に変化させ、前記振動子が前記超音波を送信する方向および位置の少なくとも一方を変化させるプローブ制御部と、前記振動子の位置に応じて、前記超音波振動子群AおよびBに超音波を複数回送信させる送信部と、血管で反射された前記超音波を、前記超音波振動子群AおよびBの各々を用いて繰り返し受信して、受信信号AおよびBをそれぞれ生成する受信部と、前記受信信号AおよびBに基づいて、前記反射波の強度の差分値を示す強度情報を生成する強度情報生成部と、前記強度情報に基づいて前記反射強度が0になったときの前記振動子の位置を特定する判定部とを備え、特定された前記位置で前記超音波を送信して前記血管の性状特性値を演算する。
【0040】
本発明による超音波診断装置は、超音波を送信し、生体の組織で反射した前記超音波を受信する振動子、および、前記振動子の位置を変化させる駆動装置を有する超音波プローブと接続可能な超音波診断装置であって、前記駆動装置を制御して、前記振動子が前記超音波を送信する方向および位置の少なくとも一方を変化させるプローブ制御部と、前記振動子の位置に応じて、前記振動子に超音波を複数回送信させる送信部と、前記血管で反射された前記超音波を、前記振動子を用いて繰り返し受信して複数の受信信号を生成する受信部と、血管の長軸方向の像を得るように前記超音波振動子を配置した状態で得られる前記複数の受信信号に基づいて、前記反射波の強度分布に関する強度情報を生成する強度情報生成部と、前記強度情報に基づいて、前記反射強度が最大になったときの前記振動子の位置を特定する判定部とを備えている。
【0041】
前記プローブ制御部は、前記判定部で特定する前記位置の情報に基づいて前記振動子の移動を制御してもよい。
【0042】
前記超音波診断装置は、前記判定部で特定する前記位置で前記超音波を送信して前記血管の性状特性又は形状特性を演算する演算部をさらに備えていていもよい。
【0043】
本発明による超音波診断装置は、超音波を送信し、生体の組織で反射した前記超音波を受信する振動子、および、前記振動子の位置を変化させる駆動装置を有する超音波プローブと接続可能な超音波診断装置であって、前記駆動装置を制御して、前記振動子が前記超音波を送信する方向および位置の少なくとも一方を変化させるプローブ制御部と、前記振動子の位置に応じて、前記振動子に超音波を複数回送信させる送信部と、それぞれ離間して配置され、それぞれ前記血管で反射された前記超音波を前記振動子を用いて繰り返し受信して複数の受信信号を生成する第1の受信部および第2の受信部を含む受信部と、前記第1の受信部および前記第2の受信部によってそれぞれ受信された前記複数の受信信号に基づいて、前記反射波の強度分布に関する強度情報を生成する強度情報生成部と、前記第1の受信部の強度情報および前記第2の受信部の強度情報が同時に最大を示しているか否かを判定する判定部とを備え、前記第1の受信部の強度情報および前記第2の受信部の強度情報が同時に最大を示していない場合において、前記プローブ制御部は、体表と平行な平面上で前記振動子を所定の角度だけ回転させる。
【0044】
前記第1の受信部の強度情報および前記第2の受信部の強度情報が同時に最大を示していない場合において、前記プローブ制御部は、前記第1の受信部の強度情報が最大になるときの前記振動子の位置と、前記第2の受信部の強度情報が最大になるときの前記振動子の位置と、第1の受信部および第2の受信部の距離とに基づいて、前記振動子が前記血管と略平行になるよう前記振動子を回転させてもよい。
【0045】
前記判定部が、前記第1の受信部の強度情報および前記第2の受信部の強度情報が同時に最大を示していると判定するまで、前記プローブ制御部は、前記所定の角度だけ繰り返し前記振動子を回転させてもよい。
【0046】
前記判定部が、前記第1の受信部の強度情報および前記第2の受信部の強度情報が同時に最大を示していると判定した後、前記判定部は、前記反射強度が最大になったときの前記振動子の位置を特定してもよい。
【0047】
前記超音波診断装置は、前記送信部および前記受信部に対して、前記超音波の送信および受信を指示する制御部をさらに備え、前記制御部は、前記振動子が前記判定部によって特定された前記位置に存在するとき、前記超音波の送信および受信を指示してもよい。
【0048】
前記超音波診断装置は、前記振動子の位置を変化させるための第2の制御信号を出力する操作部をさらに備え、前記プローブ制御部は、前記第2の制御信号に基づいて前記振動子の位置を変化させてもよい。
【0049】
前記プローブ制御部は、前記操作部からネットワークを介して前記第2の制御信号を受け取ってもよい。
【0050】
本発明による超音波診断装置は、第1方向に沿って2列に配列された第1の超音波振動子群および第2の超音波振動子群からそれぞれ超音波を送信し、生体の組織で反射した各超音波を受信する振動子、および、前記振動子の位置を変化させる駆動装置を有する超音波プローブと接続可能な超音波診断装置であって、前記駆動装置を制御して、前記振動子が前記超音波を送信する方向および位置の少なくとも一方を変化させるプローブ制御部と、前記振動子の位置に応じて、前記第1の超音波振動子群および第2の超音波振動子群に超音波を複数回送信させる送信部と、血管で反射された前記超音波を、前記第1の超音波振動子群および第2の超音波振動子群の各々を用いて繰り返し受信して、第1の受信信号および第2の受信信号をそれぞれ生成する受信部と、前記第1の受信信号および第2の受信信号に基づいて、前記反射波の強度の差分値を示す強度情報を生成する強度情報生成部と、前記強度情報に基づいて前記反射強度の差分値が0になったときの前記振動子の位置を特定する判定部とを備える。
【0051】
前記駆動装置は、前記超音波プローブが接触している生体の表面に平行な平面上であって、かつ、前記第1方向と垂直な第2方向に前記振動子の位置を変化させてもよい。
【0052】
前記超音波診断装置は、前記判定部で特定する前記位置で前記超音波を送信して前記血管の性状特性又は形状特性を演算する演算部をさらに備えていてもよい。
【発明の効果】
【0053】
本発明の超音波プローブは、血管の弾性特性が測定される時において、超音波プローブ内の駆動装置は、超音波診断装置からの制御信号に基づいて振動子を動かし、超音波を送信する方向および位置の少なくとも一方を変化させる。超音波診断装置の判定部は、反射波の強度を示す強度情報に基づいて反射強度が最大になったときの振動子の位置を特定する。これにより、弾性特性の計測時において、超音波振動子からの音響線が血管断面の中心を通るように、超音波振動子と血管との位置関係を調整することが可能となる。そして、その位置における血管の弾性特性を演算することにより、血管の正確な弾性特性を得ることができる。
【図面の簡単な説明】
【0054】
【図1】超音波診断装置11を用い、血管3の弾性特性の計測を行うための構成を示すブロック図である。
【図2】超音波プローブ13に内蔵された超音波振動子群30を示す図である。
【図3】(a1)および(b1)は、x方向に沿って配列された複数の超音波振動子を用いて焦点を形成したときの超音波集束波の模式図であり、(a2)および(b2)は超音波集束波の簡略図である。
【図4】生体の組織を伝播する超音波ビームを模式的に示す図である。
【図5】超音波診断装置11の内部構成を示すブロック図である。
【図6】演算部19の内部構成を示すブロック図である。
【図7】表示部21上に示された血管壁40およびROI41の模式図である。
【図8】血管壁40のROI41で規定される領域における弾性特性を示す図である。
【図9】超音波を発生させながら超音波プローブ13内を移動する振動子30を示す図である。
【図10】振動子30の移動に伴って強度情報生成部23が生成した超音波反射波の反射強度を示す図である。
【図11】(a)および(b)は、実施形態1による超音波プローブ13の物理的な構成を示す斜視図および上面図である。
【図12】実施形態1による超音波診断装置11において血管3の弾性特性を計測する処理の手順を示すフローチャートである。
【図13】(a)および(b)は、点KaおよびKbを支点としてケース50を振り子のように移動させる超音波プローブ13の構成例を示す図である。
【図14】振動子30の変形例である振動子35を示す。
【図15】y軸方向への振動子35の移動量yと、超音波振動子群35aおよび超音波振動子群35bにおいて検出された反射強度の差分値Tとの関係を示す図である。
【図16】振動子30と血管3とが平行に配置されていない例を示す図である。
【図17】受信部AおよびBにおいて検出されたそれぞれの反射強度の波形を示す図である。
【図18】振動子30を回転させた結果、振動子30と血管3とが平行に配置された例を示す図である。
【図19】受信部AおよびBで検出された双方の反射強度がともにyoで最大値になったときの波形を示す図である。
【図20】(a)および(b)は実施形態2による超音波プローブ13の物理的な構成を示す図である。
【図21】実施形態2による超音波診断装置11において血管3の弾性特性を計測する処理の手順を示すフローチャートである。
【図22】(a)〜(d)はそれぞれ、形状および配置が異なる受信部AおよびBを有する振動子30a〜30dの例を示す図である。
【図23】(a)および(b)は、振動子30の多軸動作と超音波プローブ13の構成を示す図である。
【図24】超音波プローブ13の具体的な構成例を示す図である。
【図25】超音波プローブ13の具体的な構成例を示す図である。
【図26】超音波プローブ13の具体的な構成例を示す図である。
【図27】(a1)および(a2)は血管3に対して理想的に配置されたプローブ100の上面図および断面図であり、(b1)および(b2)は血管3の中心からずれた位置に配置されたプローブ100の上面図および断面図である。
【図28】(a)および(b)は、血管3とは平行でない状態で配置されたプローブ100の上面図である。
【発明を実施するための形態】
【0055】
以下、添付の図面を参照して、本発明による超音波診断装置の実施形態を説明する。
【0056】
図1は、超音波診断装置11を用い、血管3の弾性特性の計測を行うための構成を示すブロック図である。この構成は各実施形態において共通である。
【0057】
超音波プローブ13は被験者の体表2に密着するよう支持され、1または複数の超音波振動子を利用して血管外組織1および血管3を含む体組織内部へ超音波(音響線)を送信する。血管外組織1は脂肪や筋肉等により構成される。送信された超音波は血管3や血液5にて反射、散乱し、その一部が超音波プローブ13へ戻り、エコーとして受信される。
【0058】
超音波プローブ13は、アレー状に配列された複数の超音波振動子(超音波振動子群)を内蔵している。後述の実施形態においては、本発明による超音波プローブ13の特徴的な構造および動作を説明するが、ここでは超音波プローブ13の基本的な動作原理を概説する。
【0059】
図2は、超音波プローブ13に内蔵された超音波振動子群30を示す。超音波振動子群30は、たとえば各超音波振動子が一方向に沿って並べられており、いわゆる1Dアレイ振動子を構成している。以下、超音波振動子群30のユニットを「振動子30」と記述する。
【0060】
振動子30は、各超音波振動子を順次揺動させて超音波の送受信を行い、所定範囲を走査することができる。また振動子30は、複数の超音波振動子からの各超音波の位相を所定の位置(焦点位置)において重ね合わせ、焦点位置において反射した信号を受信することもできる。後者の例を図3に示す。
【0061】
図3の(a1)および(b1)は、x方向に沿って配列された複数の超音波振動子を用いて焦点を形成したときの超音波の集束波を模式的に示している。超音波の集束波は図示されるような所定の幅を持っており、z軸方向の所定の深さにおいて焦点を有する。
【0062】
なお、本願図面上では記載を簡略化することもある。たとえば図3(a1)に対応する超音波の集束波に代えて、図3(a2)において「音響線」として示される超音波ビームの中心軸のみを記載することがある。また図3(b1)に対応する超音波の集束波に代えて、図3(b2)において「音響線」として示される超音波ビームの中心軸のみを記載することがある。
【0063】
図4は、生体の組織を伝播する超音波ビームを模式的に示す。超音波プローブ13から出射した超音波送信波は、ある有限の幅を持つ超音波ビーム67としてz軸方向に進行し、生体組織60の血管外組織1および血管3中を伝播する。そして、伝播の過程において血管外組織1および血管3によって反射または散乱した超音波の一部が超音波プローブ13へ戻り、超音波反射波として受信される。超音波反射波は時系列信号として検出され、超音波プローブ13に近い組織から得られる反射の時系列信号ほど、時間軸上で原点近くに位置する。超音波ビーム67の幅(ビーム径)は、遅延時間を変化させることにより制御することができる。
【0064】
上述したように超音波反射波は血管外組織1、血管3、および血液5より生じる。音響線66上に位置する血管前壁の複数の測定対象位置Pn(P1、P2、P3、Pk・・・Pn、nは3以上の自然数)は、ある一定間隔で超音波プローブ13に近い順にP1、P2、P3
、Pk・・・Pnと配列されている。図4の上方を正、下方を負とする座標軸を深さ方向に設け、測定対象位置P1、P2、P3、Pk・・・Pnの座標をそれぞれZ1、Z2、Z3、Zk
、・・・Znとすると、測定対象位置Pkからの反射は、時間軸上でtk=2Zk/cに位置することになる。ここでcは体組織内での超音波の音速を示す。反射波信号(時系列信号)は測定対象位置の状態を表す情報として利用される。
【0065】
超音波診断装置11は、血管の弾性特性や歪みなどの、血管3の性状特性を測定する前に、血管3に対して超音波を送信して反射波信号を取得する。そして後述する実施形態1および2として説明する方法によって超音波プローブ13の振動子30から送信される超音波(音響線)が血管3の断面の中心を通るように、超音波プローブ13または振動子30と血管3との位置関係を調整する。
【0066】
両者の位置関係の調整が完了すると、超音波診断装置11は、超音波を体組織内部へ再度送信し、受信したエコーによる受信信号の解析および演算を行う。超音波診断装置11は、たとえば特許文献1に開示されている方法によって、検波信号の振幅および位相の両方を用い、制約付最小二乗法によって対象の瞬時の位置を決定し、高精度な(位置変化量の測定精度は±0.2ミクロン程度)位相トラッキングを行う。これにより、超音波診断装置11は、血管外組織1や血管3の運動情報、たとえば血管3の壁における微小部位の位置および厚さの時間変化を十分な精度で測定することができる。
【0067】
超音波診断装置11には血圧計12が接続されており、血圧計12が測定した被験者の血圧値に関する情報が超音波診断装置11へ入力される。血圧計12から得た血圧に関する情報を用いることによって、血管3の壁における微小部位の弾性特性を求めることができる。
【0068】
また、超音波診断装置11には心電計22が接続されている。超音波診断装置11は、心電計22から心電波形を受け取り、測定データの取得やデータリセットのタイミングを決定するトリガー信号として心電波形を使用する。
【0069】
以下の実施形態においては、超音波診断装置を利用して血管の弾性特性を求める例を説明するが、血管の弾性特性以外の血管の性状特性、たとえば血管の歪みなどを測定することも可能である。
【0070】
(実施形態1)
以下、本実施形態による超音波診断装置11を説明する。
【0071】
図5は、超音波診断装置11の内部構成を示すブロック図である。
【0072】
超音波診断装置11は、送信部14、受信部15、遅延時間制御部16、位相検波部17、フィルタ部18、演算部19、演算データ記憶部20、表示部21、強度情報生成部23、中心位置判定部24、および、プローブ制御部25を備えている。また、これら各構成要素を制御するため、マイコンなどからなる制御部26を備えている。
【0073】
超音波診断装置11の各構成要素のうち、強度情報生成部23、中心位置判定部24およびプローブ制御部25は、主として、超音波が血管断面の中心を通るように振動子30と血管との位置関係を調整するために設けられている。一方、位相検波部17、フィルタ部18、演算部19、演算データ記憶部20および表示部21は、主として血管3の弾性特性を測定し、測定結果を表示するために設けられている。送信部14、受信部15、遅延時間制御部16および制御部26は、振動子30と血管との位置関係の調整、および、血管の弾性特性の測定のいずれの動作時においても動作する。
【0074】
なお、図5に示す超音波診断装置11は超音波プローブ13を含んでいない。しかしながら、超音波プローブ13は超音波診断装置11の動作に必須であるため、超音波プローブ13を超音波診断装置11の構成要素として捉えてもよい。
【0075】
以下、超音波診断装置11の各構成要素の機能を説明する。
【0076】
送信部14は、所定の駆動パルス信号を生成し、超音波プローブ13に出力する。駆動パルス信号により超音波プローブ13から送信される超音波送信波は、血管3等の体組織において反射、散乱し、生じた超音波反射波が超音波プローブ13により検出される。超音波を発生させる駆動パルスの周波数は、時間軸上で隣接している前後の超音波パルスが重ならないように、測定対象の深さと超音波の音速とを考慮して決定される。
【0077】
受信部15は超音波プローブ13を用いて超音波反射波を検出し、検出によって得られた信号を増幅することにより、受信信号を生成する。受信部15はA/D変換部を含み、受信信号をさらにデジタル信号に変換する。送信部14および受信部15は電子部品などを用いて構成される。
【0078】
遅延時間制御部16は送信部14および受信部15に接続されており、送信部14から超音波プローブ13の超音波振動子群に与える駆動パルス信号の遅延時間を制御する。これにより、超音波プローブ13から送信される超音波送信波の超音波ビームの音響線の方向や焦点深度を変化させる。また、超音波プローブ13によって受信され、受信部15によって生成した受信信号の遅延時間を制御することにより、開口径を変化させたり、焦点位置を変化させたりすることができる。遅延時間制御部16の出力は位相検波部17に入力される。
【0079】
位相検波部17は、遅延時間制御部16で遅延制御された受信信号を位相検波し、実部信号と虚部信号とに分離する。分離された実部信号および虚部信号はフィルタ部18に入力される。フィルタ部18は、高周波成分、測定対象以外からの反射成分およびノイズ成分等を除去する。位相検波部17およびフィルタ部18はソフトウエアによってもハードウエアによっても構成することができる。これにより、血管3の組織内部に設定された複数の測定対象位置にそれぞれ対応し、実部信号と虚部信号を含む位相検波信号を生成する。
【0080】
演算部19は、種々の演算を行う。図6は、演算部19の演算処理を実現する機能ブロックを示す。演算部19は、形状測定値演算部31および性状特性値演算部32とを含む。心電計22から得られる心電波形は、演算部19へ入力され、測定データの取得やデータリセットのタイミングを決定するトリガー信号として使用される。この目的においては、心電計22は他の生体信号検出手段である心音計や脈波計と置き換えることも可能であり、心電波形の替わりに心音波形や脈波波形をトリガー信号として用いることも可能である。
【0081】
形状測定値演算部31は、位相検波信号の実部信号および虚部信号を用いて、血管3の組織内部に設定された複数の測定対象位置における位置変位量(位置の時間変位量)を求める。位置変位量は、測定対象位置(トラッキング位置)の運動速度を求め、この運動速度を積分することによっても同様に求めることもできる。そして複数の位置変位量から選ばれる任意の2つの位置における位置変位量の差分を求めることにより、その2点間の厚さ変化量を求めることができる。2つの位置の初期値あるいは、2つの位置における位置変位量の差分の初期値が与えられる場合には、2点間の厚さを求めることができる。
【0082】
なお、厚さまたは厚さ変化量を規定する2点は、血管3の組織内部に設定された測定対象位置と一致していなくてもよい。たとえば、複数の測定対象位置の中心の位置を用いてもよい。この場合には、中心を求めた複数の測定対象位置の位置変位量を平均し、平均した位置変位量を用いることが好ましい。複数の測定対象位置を用いる場合には、複数の測定対象位置を代表する位置および位置変位量は、単純な平均によって求めてもよいし、重み付けを行ってもよく、複数の測定対象位置に基づいて、2つの位置およびその位置における位置変位量が求められておればよい。
【0083】
性状特性値演算部32は、求めた厚さ変化量の最大値と最小値との差分から、最大厚さ変化量を計算し、血圧計12から得られる血圧データとから、2点間に位置する組織の弾性特性を求める。
【0084】
具体的には、性状特性値演算部32は、対象組織Tkの厚さHk(最低血圧時の値)、対象組織の厚さ変化量Dk(t)の最大値と最小値との差Δhkおよび最低血圧値と最高血圧値との差である脈圧Δpを用い、対象組織Tkにおける血管のスティフネスを表わす弾性指標Ekを下記の式として表わす。
【0085】
Ek=Δp×(Δhk/Hk)
【0086】
なお、任意の2点で挟まれた1点の弾性特性を求めてもよい。ただし、本実施の形態で用いている超音波プローブ13は、アレー状に配列された複数の超音波振動子を有しているため、断層面内の任意の領域内すべての箇所の弾性特性を求めることが可能である。
【0087】
なお、性状特性値演算部32は弾性特性を求めるためにのみ設けられているのではなく、たとえばΔhk/Hを演算して、血管の性状特性のひとつである歪みを求めてもよい。
【0088】
再び図5を参照する。表示部21は、求められた生体組織の最大厚さ変化量、歪み、あるいは弾性特性をマッピングし、形状測定値または性状測定値の空間分布を示す心周期毎の空間分布画像を表示する。空間分布画像は1次元であってもよいし、2次元あるいは3次元であってもよい。形状測定値または性状測定値に応じた色あるいは諧調によって表示すれば、測定結果を把握し易い。
【0089】
このとき、操作者は、形状測定値または性状測定値を求めたい任意領域を表示部21上において指定することによって決定できる。この領域はROI(Region Of Interestの略)と呼ばれる。ROIは、操作者が測定値を求めたい領域を指定するための表示で、その大きさや位置を表示部21上で確認しながら、超音波診断装置11のインターフェース部(図示せず)を介して自由に設定することが可能である。
【0090】
図7は、表示部21上に示された血管壁40とROI41とを模式的に示している。ROI41が規定する領域には、血管壁40以外の組織も含まれている。血管壁40の画像はたとえば上述の演算とは別に受信信号を振幅強度に応じた輝度で変調することにより得られる。図8は、血管壁40のROI41で規定される領域における弾性特性を示している。ROI41で規定される領域には、例えば、6行×5列にマッピングされた画像データf(k)11〜f(k)65が配置され、画像データf(k)11〜f(k)65が空間分布画像Fkを構成している。前述したように画像データf(k)11〜f(k)65は、生体組織の最大厚さ変化量などの形状測定値あるいは歪みや弾性特性などの性状特性値である。
【0091】
演算部19で演算された位置変位量、厚さ変化量、弾性特性等のデータは、図5に示す演算データ記憶部20に記憶され、随時読み取ることが可能である。また、演算部19で演算された位置変位量、厚さ変化量、弾性特性等のデータは、表示部21に入力され、データを二次元画像などに可視化することができる。さらに、表示部21と演算データ記憶部20とを接続することによって、記憶された各種データを表示部21に随時表示することもできる。演算部19で演算された各種データは、表示部21へ出力され、記憶部20へも出力されことにより、リアルタイムでデータを表示しつつ、データを後で利用することができるよう保存されることが好ましい。しかし、どちらか一方のみの出力を行ってもよい。
【0092】
強度情報生成部23は、遅延時間制御部16で遅延制御された受信信号の振幅に基づいて、反射波の強度(反射強度)を測定し、反射強度の分布を示す強度情報を生成する。後述のように、本実施形態においては、振動子30のx軸(たとえば図4)と血管3が伸びる方向に沿った血管3の軸(以下「長軸」と呼ぶ。)とが実質的に平行に配置されており、その状態で振動子30が超音波を発生させながら、超音波プローブ13内を移動する。移動方向は、体表2に平行な平面内で、x軸に垂直な方向である。強度情報生成部23は、振動子30の移動に伴って得られる反射強度を測定して強度情報を生成する。
【0093】
中心位置判定部24は、強度情報に基づいて最も強い反射強度が得られたときの超音波プローブ13内の振動子30の位置を特定する。
【0094】
プローブ制御部25は、超音波プローブ13内の振動子30の移動を制御するための制御信号を出力する。たとえばプローブ制御部25は、制御部26からの指示に基づいて振動子30の移動開始および終了、移動方向および移動速度を制御する。またプローブ制御部25は、中心位置判定部24によって特定された位置に、振動子30を移動させる。
【0095】
以下、図9および10を参照しながら、振動子30と血管3との位置関係を調整する処理の原理を説明する。この処理によれば、振動子30から送信される超音波(音響線)が血管3の断面の中心を通過するため、血管3の弾性特性を正確に計測可能となる。
【0096】
なお、本実施形態においては振動子30のx軸(たとえば図4)と血管3の長軸とが実質的に平行に配置されているとする。
【0097】
図9は、超音波を発生させながら超音波プローブ13内を移動する振動子30を示す。振動子30はケース50に収納されており、振動子30およびケース50は図示されるy軸方向に移動する。その可動範囲を「D」として示す。なお、振動子30およびケース50が移動している間は、超音波プローブ13の位置は固定されている。
【0098】
プローブ制御部25からの制御信号に基づいて、振動子30は可動範囲Dの左端の位置でz軸方向への超音波の送信を開始し、超音波を送信しながらy軸方向に移動する。そして可動範囲Dの右端の位置まで移動すると、超音波の送信を停止する。なお、超音波の送信とy軸方向への移動とは同時に行われなくてもよい。振動子30をy軸方向へ移動させて一旦停止させ、その位置で超音波を送信し、その後再び振動子30をy軸方向へ移動させてもよい。
【0099】
図10は、振動子30の移動に伴って強度情報生成部23が生成した超音波反射波の反射強度の分布を示す。横軸は振動子30の位置であり、縦軸が反射強度である。可動範囲D内の反射強度が得られると、中心位置判定部24は最大の反射強度Rmaxが得られたときの振動子30の位置yoを特定する。
【0100】
中心位置判定部24によって特定された位置yoが、超音波送信波が血管3の断面の中心を通過する位置に対応する。その理由は以下のとおりである。送信波が断面の中心から離れた位置を通過するほど、送信波は、血管3の外壁および内壁において、入射方向に対して90度に近づく角度で反射されるため、血管3からの反射波の検出強度は小さくなる。一方、超音波送信波が断面の中心oに近い位置を通過するほど、血管3の外壁および内壁において超音波は入射してきた方向に反射されるため、血管3からの反射波の検出強度は大きくなる。そして超音波送信波が断面の中心oを通過するとき、超音波の入射方向と反射方向は血管3の外壁および内壁において一致するため、反射波の検出強度は最大になる。よって、反射強度が最大になるときの振動子30の位置が、超音波送信波が断面の中心oを通過する位置であるといえる。
【0101】
位置yoが特定された後は、プローブ制御部25は振動子30をその位置yoに移動させて固定し、以後、血管3の弾性特性の計測を行えばよい。
【0102】
図11(a)および(b)は本実施形態による超音波プローブ13の物理的な構成を示す。(a)は斜視図であり、(b)は上面図である。超音波プローブ13は、ラック110およびモータ111を備えている。ラック110は、歯が設けられた平板状の棒であり、ケース50と物理的に結合されている。モータ111の回転軸にはピニオンが設けられており、ラック110の歯と噛み合わされている。モータ111が回転することにより、そのラック110とともにケース50がy軸方向に移動する。これにより、図9に示す振動子30の移動が実現される。
【0103】
図12は、本実施形態による超音波診断装置11において血管3の弾性特性を計測する処理の手順を示すフローチャートである。
【0104】
ステップS1において、プローブ制御部25が超音波プローブ13に制御信号を送ると、振動子30は超音波を発生しながら超音波プローブ13内をy軸方向に移動する。そしてステップS2において、強度情報生成部23は、振動子30の移動に応じて繰り返し超音波反射波を検出し、反射強度を取得する。そして、たとえば振動子30が可動範囲を1往復することによって反射強度分布が得られる。
【0105】
次のステップS3では、中心位置判定部24は、反射強度が最大となる振動子30の位置を、超音波が血管中央oを通過する位置(中心位置)として特定する。
【0106】
ステップS4において、プローブ制御部25が振動子30を中心位置に移動させると、制御部26はその中心位置における血管3の弾性特性の計測を指示する。この指示に基づいて、位相検波部17、フィルタ部18、演算部19および演算データ記憶部20が動作して、血管3の弾性特性を計測する。
【0107】
そしてステップS5において、表示部21は血管長軸の断面図を表示するとともに、演算部19によって計測された弾性特性を、その断面図上に重畳して表示する。
【0108】
上述したステップS1〜3の処理によって、反射強度が最大となる振動子30の位置が、中心位置として特定され、その中心位置において血管3の弾性特性が計測されるため、血管の正確な歪み量を測定できる。よって、正確な弾性率を測定することができる。
【0109】
本実施形態においては、振動子30を超音波プローブ13内で所定の軸方向に沿って移動させ、血管3の断面中心を特定するとした。しかし、振動子30を所定の軸方向に平行に移動させない構成も採用できる。
【0110】
たとえば図13(a)は、ケース50の比較的上方の点Kaを支軸としてケース50を振り子のように振動させる超音波プローブ13の構成例を示す。また図13(b)は、ケース50の比較的下方の点Kbを支軸としてケース50を振り子のように振動させる超音波プローブ13の構成例を示す。いずれの例でも支軸は体表に平行であり、モータの回転軸を支点KaまたはKbに一致させている。ただし、モータの回転軸は必ずしも支点KaまたはKbに一致しなくてもよい。たとえばモータの回転がギヤやベルトなどの伝達機構を介して支点KaまたはKbに伝わるように構成してもよい。これにより、振動子30から送信される超音波の送信方向を変化させることができる。なお、図9の可動範囲Dに対応する図13(b)の例における可動範囲(可動角度)は−180度から180度である。図13(a)の例における可動範囲(可動角度)はそれよりも狭くなる。
【0111】
このように構成された超音波プローブ13を用いる場合には、最大反射強度に基づいて、振動子30から送信される超音波が血管3の断面中心を通過するときの回転角を特定すれば、中心位置において血管3の弾性特性を計測できる。この構成によれば、超音波プローブ13の直下に血管3が存在していなくてもよいため、超音波プローブ13に不慣れなために血管3上に超音波プローブ13を配置できない使用者が使用しても正確な弾性率を測定することができる。
【0112】
なお、体表に平行に振動子30を移動させて超音波の送信位置を変化させる構成(図11等)と、振動子30を振り子のように振動させて超音波の送信角度を変化させる構成(図9)とを組み合わせてもよい。これにより、超音波を送信できる範囲がさらに広くなり、測定可能範囲を広くすることができる。換言すれば、超音波プローブ13を体表に当てる位置に関して、その許容範囲が広くなる。
【0113】
上述の実施形態の説明においては、最大反射強度を利用して、超音波が血管3の断面中心を通過する中心位置を特定した。しかし、最大反射強度を利用しなくても、中心位置を特定することは可能である。
【0114】
図14は、振動子30を変形した振動子35を示す。振動子35は、いわゆる1.5Dアレイ振動子であり、2列の超音波振動子群35aおよび35bを有する。超音波振動子群35aおよび35bは、超音波プローブ13内の移動方向(y軸方向)に沿って配列されている。
【0115】
振動子35を利用すると、超音波振動子群35aにおいて検出された反射強度、および、超音波振動子群35bにおいて検出された反射強度の差分Tに基づいて中心位置を特定することができる。その原理は以下のとおりである。
【0116】
図15は、y軸方向への振動子35の移動量yと、超音波振動子群35aおよび超音波振動子群35bにおいて検出された反射強度の差分値Tとの関係を示す。振動子35が図14に示すy軸方向に移動して血管3に接近すると、まず超音波振動子群35bにおいて検出される反射強度が増加し始める。超音波振動子群35aに関しては、超音波振動子群35aが血管3上に位置していないときは検出される血管3からの反射強度は0である。よって、出力差分Tは徐々に増加する。
【0117】
その後、超音波振動子群35aが血管3上に移動して超音波振動子群35aの反射強度が増加し始めると、出力差分Tは徐々に減少する。そして超音波振動子群35aおよび35bの出力が等しくなると、出力差分Tは0になる。出力差分Tが0になっているときは、図14に示す方向からみると超音波振動子群35aおよび35bが血管3の中心軸に関して対称に配置されている状態にある。よって、このときの超音波振動子35の位置が中心位置に対応する。
【0118】
振動子35を用いて反射強度の差分に基づいて中心位置を判定する方法によれば、図10に示す最大強度を判定する方法のような反射強度のピーク検出が不要であるため、処理時間が短縮化される。また、振動子35を移動させる前に信号の正負を確認し、たとえば正ならば左で、負なら右であると定めておけば、振動子35が血管の左右のどちらかに位置しているかが分かる。なお本実施形態においては、超音波振動子群35aおよび35bの反射強度の差分の計算は、強度情報生成部23によって行われる。
【0119】
なお、図14および図15に示す中心位置の判定方法に利用される超音波プローブ13として、図13に示す超音波プローブ13を用いることも可能である。
【0120】
図10および図15を参照しながら説明した中心位置を特定する処理のうち、可動範囲D内で振動子30を移動させて反射強度を取得する処理は、他の測定にも応用できる。たとえば、血管3の形状測定や、血管3の直径測定にも利用できる。これは、測定した形状からも血管の中心位置を特定できることを意味する。血管3の形状を測定する処理に利用するときは、血管3の長軸に沿って複数の断面の形状のデータを蓄積することにより、形状データを取得する。形状データは、血管3が心拍によって変化する血管3の前壁の厚さ変化を含んでもよい。また血管3の直径を測定する処理は、これまで説明した中心位置における血管3の超音波プローブ13に近い側の壁からの反射波と、遠い側の壁からの反射波との差を演算することによって実行される。上述の反射強度を取得する処理を、超音波プローブ13が被験者の体表に当てられたときに予め実行しておくと、その後の処理を迅速に行うことができる。
【0121】
(実施形態2)
実施形態1においては、超音波振動子群の配列方向(たとえば図4のx軸方向)と血管3の長軸とが実質的に平行に配置されているという前提のもとで、振動子30を超音波プローブ13内で移動させ、血管の断面中心を通過する中心位置を特定した。
【0122】
しかしながら、装置の操作に慣れていない使用者が操作するときは、超音波振動子群の配列方向と血管の長軸方向とがずれる可能性があり、かつ、そのずれの修正が迅速に行われることを期待することは困難である。
【0123】
本実施形態においては、超音波振動子群の配列方向と血管の長軸とが平行に配置されていないときであっても、血管の中心位置を特定し、かつ、弾性特性を正確に測定できる超音波診断装置を説明する。
【0124】
以下、図16〜19を参照しながら、振動子と血管との位置関係を調整する処理の原理を説明する。なお、実施形態1と同様、本実施形態においても振動子は超音波プローブ内を移動する。振動子の移動中は、超音波プローブの位置は被検者の表皮に固定されているとする。
【0125】
図16は、振動子30と血管3とが平行に配置されていない例を示す。いま、振動子30と血管3とが図示される配置関係にあるとき、超音波を送信させながら振動子30をy軸方向に移動させると仮定する。
【0126】
振動子30の両端に位置する適切な数(たとえば5枚)の超音波振動子群をそれぞれ受信部AおよびBとし、受信部AおよびBにおいて検出される反射波の強度に注目する。
【0127】
図17は、受信部AおよびBにおいて検出されたそれぞれの反射強度分布の波形を示す。これらの波形は、強度情報生成部23が生成する。受信部Aにおいて検出される反射強度に着目すると、振動子30が位置yAになったとき、最大値になる。また受信部Bにお
いて検出される反射強度に着目すると、振動子30が位置yBになったとき、最大値にな
る。受信部Aは、受信部Bよりも先に血管3からの反射波を検出し始め、また先に血管3の断面中心を通過した反射波を受信するため、yA<yBである。なお、位置yAにおける
最大値と、位置yBにおける最大値とが同じ値であるとは限らない。その理由は、超音波
が送信される対象は生体(血管3)であり、反射波にはばらつきが含まれるためである。
【0128】
超音波振動子群の配列方向と血管3の長軸とが平行に配置されているか否かは、使用者のみならず超音波診断装置にも不明である。しかし、振動子30の両端の受信部AおよびBで検出される反射強度を測定して、図17に示す波形が得られた場合には、振動子30と血管3とは図16に示す配置関係にあることがわかる。
【0129】
そこでそのような場合には、振動子30を回転させて、振動子30が血管3と平行な方向になるように調整すればよい。
【0130】
たとえば、予め定められた角度だけ振動子30を回転させた後、再度y軸方向に移動させて、受信部AおよびBで反射強度分布を取得する。その結果、受信部AおよびBで検出された反射強度が異なっており、図17に示す波形が得られた場合には、再度予め定められた角度だけ回転させる。そして、受信部AおよびBで検出された双方の反射強度が、同じ位置でともに最大値になるまでこの処理を繰り返す。
【0131】
図18は、振動子30を回転させた結果、振動子30と血管3とが平行に配置された例を示す。また図19は、受信部AおよびBで検出された双方の反射強度がともにyoで最大値になったときの波形を示す。受信部AおよびBで検出された双方の反射強度は同時に最大となり、このとき、振動子30と血管3とは平行である。この後、実施形態1において説明した処理を行って、反射強度が最大となる振動子30の位置を、超音波が血管中心を通過する位置(中心位置)として特定することにより、血管3の弾性特性を正確に計測可能となる。
【0132】
図20(a)および(b)は本実施形態による超音波プローブ13の物理的な構成を示す。(a)は斜視図であり、(b)は上面図である。本実施形態による超音波プローブ13の構成要素のうち、図11(a)および(b)の超音波プローブ内の構成要素と同じものには同じ参照符号を付し、その説明は省略する。
【0133】
実施形態1による超音波プローブに対して、本実施形態による超音波プローブ13は、ラック112およびモータ113をさらに備えている。ラック112は歯が設けられた平板状の棒であり、ケース50と物理的に結合されている。モータ113の回転軸にはピニオンが設けられており、ラック112の歯と噛み合わされている。説明の便宜のため、本実施形態においてはモータ111および113は同じ性能を有しており、その回転軸には同じピニオンが設けられているとする。またラック110の歯数および112の歯数も同一とする。
【0134】
本実施形態においては、ケース50は、ラック110およびラック112とそれぞれ接続されている。特に、ケース50はラック110に対して回転できるように接続され、ラック112に対しても回転できるように接続されている。なお、ケース50およびラック112の接続点は、x軸方向に若干量だけ移動可能な遊びを有するように構成されている。その理由は、ケース50がx−y平面内で回転したとき、支点間の長さが変わり得るためである。
【0135】
モータ111の回転およびモータ113の回転は、プローブ制御部25からの制御信号に基づいて独立して制御される。いま、ケース50が図20(b)に示されるx軸と平行に配置されているとする。このとき、モータ111とモータ113とを互いに逆方向に同じ回転数で回転させると、ケース50はx軸と平行の状態を保ったままy軸方向に移動する。この移動制御は、図16に示す振動子30の移動時に行われる。
【0136】
一方、モータ111とモータ113とを異なる回転数で回転させると、ケース50はx軸と平行でなくなり、x軸に対して回転数の差に応じた角度で傾く。すなわち、ケース50はx−y平面内で所定の角度だけ回転する。所定の傾きが得られた時点でモータ111および113の回転を止め、その後、モータ111とモータ113とを互いに逆方向に同じ回転数で回転させると、ケース50はその傾きを保ったままy軸方向に移動する。この移動制御は、図18に示す振動子30の移動時に行われる。
【0137】
図21は、本実施形態による超音波診断装置11において血管3の弾性特性を計測する処理の手順を示すフローチャートである。このフローチャートでは、図12に示すフローチャートに対してステップS11およびS12が付加されている。以下、そのステップS11およびS12を説明する。
【0138】
ステップS11は、振動子30と血管3とが傾いているか否かを判定する処理に対応する。たとえば、中心位置判定部24は、振動子の両端の受信部(図18の受信部AおよびB)で検出された双方の反射強度が最大か否かを判定する。双方の反射強度が最大のときは、処理はステップS3に進み、それ以外のときは、処理はステップS12に進む。なお、反射強度は、振動子の両端の受信部の各出力に基づいて強度情報生成部23が生成する。
【0139】
次のステップS12において、プローブ制御部25は、振動子30を含むケース50をx−y平面上、所定角度(たとえば10度)だけ回転させる。その後、処理はステップS1に戻り、そこから同じ処理が実行される。なお、x−y平面とは音響線に垂直な平面である。超音波プローブ13が体表に当てられているときは、x−y平面と体表と平行な平面とは一致する。
【0140】
ステップS1、S2、S11およびS12のループは、ステップS11において振動子の両端の受信部で検出された反射強度がともに同時に最大になるまで継続される。すなわち、振動子30が血管3と平行になるまで、x−y平面内で振動子30の角度が変更される。この後、ステップS3からS5までの各処理が実行され、血管の弾性特性が正確に測定され、表示される。
【0141】
図21では、ステップS1、S2、S11およびS12をループさせているが、他には、ループさせない処理も考えられる。たとえば、振動子30を血管3に対して一度走査させれば、反射強度が最大値になるときの位置yAおよびyBを利用して回転すべき角度を算出することも可能である。具体的には、プローブ制御部25は、求める角度(回転すべき角度)θを、θ=tan-1((yA−yB)/T)によって算出する。ここでTは受信部AおよびBの距離を表す。
【0142】
振動子30を血管3に対して一度走査させるだけで回転すべき角度を算出できるため、振動子30を血管3に対して迅速かつ確実に平行または略平行になるまで回転させることができる。よって、超音波プローブ13が体表に当てられてから測定開始までの時間を短縮できる。
【0143】
本実施形態においては、振動子30両端の受信部の例として、図16および図18に示す受信部AおよびBを挙げた。しかし、受信部AおよびBの形状や配置は種々考えられる。
【0144】
たとえば、図22(a)〜(d)はそれぞれ、形状および配置が異なる受信部AおよびBを有する振動子30a〜30dの例を示す。図22(a)は、図16および図18に示す振動子30と同じである。破線によって囲まれた領域の2つの受信部において検出される反射波の強度を用いて、振動子30と血管3とが平行か否かが判定される。また、図22(b)〜(d)は、物理的に独立した受信部AおよびBを設けたときの配置および形状の例を示す。振動子30a〜30dのいずれを用いても、振動子30と血管3とが平行か否かを判定するために必要な反射強度を検出できる。
【0145】
上述の例はいずれも、振動子の両端に受信部AおよびBを設けた例である。しかしながら、受信部AおよびBは、振動子の両端に存在しなくてもよい。たとえば受信部Aを振動子の中央部に設け、受信部Bを振動子の一方の端部に設けてもよい。図17に示す反射強度の波形を観測できる程度に受信部AおよびBが離れていれば、振動子の両端に設けられる必要はない。
【0146】
実施形態1および2においては、いわゆるラック&ピニオン方式で振動子30を超音波プローブ13内で移動させるとしたが、これは例である。モータ111および/またはモータ113とケース50とをベルトで結び、モータの回転によってベルトを巻き、または送ることにより、ケース50および振動子30の移動および回転を制御してもよい。また、駆動装置であるモータの種類も任意であり、たとえばリニアモータやボイスコイルモータを用いてもよい。使用するモータの駆動方式に応じて、振動子30を移動させるための超音波プローブ13内の構造を変えることは当業者であれば容易である。
【0147】
実施形態1および2において説明したとおり、図12および図21の弾性特性を計測する処理の手順を示すフローチャートでは、開始後プローブが中心位置に移動されると、弾性率が計測され、計測した弾性率が表示されて終了した。しかしながら、一回だけの計測で終了するだけではなく、連続またはある周期でこの処理を行っておいてもよい。これにより、プローブ保持による手ぶれなどによる位置ずれが起きたとしても、その都度、中心位置に移動して弾性率を計測することで、血管の正確な弾性特性を得ることができる。このとき、振動子の可動範囲は、最初の可動範囲よりも小さくすることで、処理時間を短くすることができる。また、一度手順を終了した後、図12のS1と図21のS1の移動を行わないで、図12のS2と図21のS2で取得した反射強度の変化から、手ぶれなどによる位置ずれを検出することもできる。この反射強度の変化がある値よりも大きくなった場合に、再度、弾性特性を計測する処理の手順を実行してもよい。
【0148】
実施形態1および2においては、振動子30の移動方向は1方向または2方向であった。1方向とは生体の表面に平行な方向または回転方向であり、2方向とは生体の表面に平行な方向および平面上での回転方向である。
【0149】
しかしながら、振動子30は、上述の1方向または2方向の移動だけでなく、他の方向にも移動できる多軸動作をしてもかまわない。他の方向の例として、図23(a)は、x軸方向およびz軸方向に沿って移動するとともに、y軸と平行な軸を中心として回転する振動子30を示す。以下では、y軸と平行な軸を中心とする回転を「y軸方向の回転」と呼ぶ。
【0150】
y軸方向の回転は、生体の表面から生体内部に向かう深さ方向に血管が傾いていた場合に利用される。また、z軸方向の移動は、深さ方向の物理的な焦点位置を変えるために利用される。x軸方向の移動は、血管軸方向の計測箇所を変えるために利用される。
【0151】
上述の多軸動作を実現するための駆動装置は、複数のリンクと、複数のジョイントと、複数のアクチュエータとで構成できる。たとえば、そのような構成の一つであるパラレルリンク機構を利用することが望ましい。パラレルリンク機構とは、複数のリンクと複数のジョイントと複数のアクチュエータで構成され、少なくとも2つのリンクが横に並ぶ構成を持つ機構である。
【0152】
図23(b)は、パラレルリンク機構を備えた超音波プローブ13のyz平面と平行な平面による断面図である。
【0153】
超音波プローブ13には袋部130が設けられている。袋部130内には音響カップリング液131とともに振動子30が封止されている。超音波プローブ13の前面(生体の表面に当たる面)のウィンドウ部132と振動子30との間の音響カップリング液131は、振動子30によって発生された超音波を伝播する。袋部130は、音響カップリング液131を通さず、かつ柔軟性を持つ材料、例えばゴム材や樹脂膜材などが望ましい。
【0154】
パラレルリンク機構では、振動子30とアクチュエータ123とが、動作点となる動作点部133に関して反対側に互いに離れて配置されている。また、アクチュエータ123の動力を動作点部133に伝達するためのリンク121およびジョイント122も動作点部133のアクチュエータ123側に配置されている。よって、リンク121、ジョイント122、アクチュエータ123は袋部130に封止されることもなく、よって音響カップリング液131に浸かることもない。振動子30から離れた位置にアクチュエータ123を設置できることはパラレルリンク機構の利点であり、ロボットアームなどのように各関節にアクチュエータを持つシングルリンク機構と異なる点である。
【0155】
図24は、6自由度の直動型パラレルリンク機構で構成された超音波プローブ13を示す。この超音波プローブ13では、可動ベース部124の一方の側に振動子30が取り付けられている。また、可動ベース部124の他方の側にジョイント122が取り付けられている。ジョイント122とリンク121とは接続されており、アクチュエータ123の駆動力を伝達する。
【0156】
6つの直動式のアクチュエータを駆動させることにより、可動ベース部124の位置および角度は、x方向、y方向、z方向および、それぞれの軸を中心とした回転方向の計6自由度で変化する。これにより、振動子30を生体の表面に対して平行だけでなく、計6方向に移動および回転をさせることができる。
【0157】
直動式のアクチュエータ(図示せず)は超音波プローブ13の筐体に固定されている。直動式のアクチュエータは、モータをボールネジで直動させる機構でも、リニアモータなどでもかまわない。例として図25および図26に示す超音波プローブ13を説明する。図25は回転型のパラレルリンク機構を示し、図26は伸縮型のパラレルリンク機構を示す。図25および図26にそれぞれ示すとおり、アクチュエータ123を駆動させると、その駆動力はジョイント122およびリンク121を介して可動ベース部124に伝達される。可動ベース部124の位置および角度は、振動子30を生体の表面に対して平行な方向だけでなくx方向、y方向、z方向とそれぞれの軸の回転方向の計6自由度で変化する。回転型のパラレルリンク機構では回転型のアクチュエータが採用され、伸縮型のパラレルリンク機構では伸縮型アクチュエータが採用されている。
【0158】
なお、パラレルリンク機構の自由度は常に6つである必要はない。プローブの操作上、必要な数の自由度があればよく、たとえば上述の6自由度のうちの2自由度を与える可動軸を有していればよい。ジョイントの数やリンクの数も自由度に応じて変化し得る。アクチュエータの設置位置、リンクの長さ等に応じてジョイントを省略してもよい。
【0159】
振動子の位置変化の自由度は、振動子30を駆動することができる軸の数によって定まる。なお、操作部は、ジョイスティックなどの入力機器であってもかまわない。振動子の位置や向きを変更する動作は、血管の中央位置の判定処理時や弾性特性計測時に行われてもよい。例えば、初めに血管の中央位置の判定処理を行い、その後に血管軸方位にずらして、より広い範囲で弾性特性計測の動作を行うことが可能である。
【0160】
また、超音波診断装置の本体に操作部(図示せず)を設けてもよい。操作部は、使用者が操作することによって、超音波プローブ内の振動子の位置や向きを変化させるための制御信号を出力する。振動子の位置はその制御信号に基づいて変化する。
【0161】
なお、操作部は超音波診断装置の本体に設けられる必要はない。たとえばネットワークを介して、操作部と超音波診断装置とを接続してもよい。このとき超音波プローブは、操作部からの制御信号に基づいて遠隔操作される。
【0162】
なお、プローブまたは超音波診断装置の本体にスイッチ(図示せず)を設け、超音波プローブ内の振動子の移動および/または回転を行うか否かを切り替えられるようにしてもよい。プローブの使用に熟達した操作者であれば、表示された弾性特性の画像を見れば弾性特性の測定結果が正確といえるか否か、すなわちプローブが適切に配置され、血管の断面中心において血管の弾性特性が測定されているか否かを容易に判断できるためである。中心位置の判定処理を行うか否かを切り替えることができることにより、超音波診断装置を使用者の習熟度に応じて動作させることができ、利便性を高めることができる。
【産業上の利用可能性】
【0163】
本発明の超音波診断装置は、生体組織の性状特性および形状特性の測定に好適に用いられ、正確な弾性特性の測定に適している。また、血管壁の弾性特性を測定し、動脈硬化病変の発見や動脈硬化の予防に好適に用いられる。
【符号の説明】
【0164】
1 血管外組織
2 体表
3 血管
4 血管前壁
5 血液
11 超音波診断装置
12 血圧計
13 超音波プローブ
14 送信部
15 受信部
16 遅延時間制御部
17 位相検波部
18 フィルタ部
19 演算部
20 演算データ記憶部
21 表示部
22 心電計
23 強度情報生成部
24 中心位置判定部
25 プローブ制御部
26 制御部
30、35 振動子
31 形状測定値演算部
32 性状特性値演算部
40 血管壁
41 ROI
50 ケース
110、112 ラック
111、113 モータ
121 リンク
122 ジョイント
123 アクチュエータ
124 可動ベース部
125 ベース部
130 袋部
131 音響カップリング液
132 ウィンドウ部
133 動作点部

【特許請求の範囲】
【請求項1】
超音波を送信し、生体の組織で反射した前記超音波を受信する振動子、および、前記振動子の位置を変化させる駆動装置を有する超音波プローブと接続可能な超音波診断装置であって、
前記駆動装置を制御して、前記振動子が前記超音波を送信する方向および位置の少なくとも一方を変化させるプローブ制御部と、
前記振動子の位置に応じて、前記振動子に超音波を複数回送信させる送信部と、
前記血管で反射された前記超音波を、前記振動子を用いて繰り返し受信して複数の受信信号を生成する受信部と、
血管の長軸方向の像を得るように前記超音波振動子を配置した状態で得られる前記複数の受信信号に基づいて、前記反射波の強度分布に関する強度情報を生成する強度情報生成部と、
前記強度情報に基づいて、前記反射強度が最大になったときの前記振動子の位置を特定する判定部と
を備える、超音波診断装置。
【請求項2】
前記プローブ制御部は、前記判定部で特定する前記位置の情報に基づいて前記振動子の移動を制御する、請求項1に記載の超音波診断装置。
【請求項3】
前記判定部で特定する前記位置で前記超音波を送信して前記血管の性状特性又は形状特性を演算する演算部をさらに備える、請求項1または2に記載の超音波診断装置。
【請求項4】
超音波を送信し、生体の組織で反射した前記超音波を受信する振動子、および、前記振動子の位置を変化させる駆動装置を有する超音波プローブと接続可能な超音波診断装置であって、
前記駆動装置を制御して、前記振動子が前記超音波を送信する方向および位置の少なくとも一方を変化させるプローブ制御部と、
前記振動子の位置に応じて、前記振動子に超音波を複数回送信させる送信部と、
それぞれ離間して配置され、それぞれ前記血管で反射された前記超音波を前記振動子を用いて繰り返し受信して複数の受信信号を生成する第1の受信部および第2の受信部を含む受信部と、
前記第1の受信部および前記第2の受信部によってそれぞれ受信された前記複数の受信信号に基づいて、前記反射波の強度分布に関する強度情報を生成する強度情報生成部と、
前記第1の受信部の強度情報および前記第2の受信部の強度情報が同時に最大を示しているか否かを判定する判定部とを備え、
前記第1の受信部の強度情報および前記第2の受信部の強度情報が同時に最大を示していない場合において、前記プローブ制御部は、体表と平行な平面上で前記振動子を所定の角度だけ回転させる超音波診断装置。
【請求項5】
前記第1の受信部の強度情報および前記第2の受信部の強度情報が同時に最大を示していない場合において、
前記プローブ制御部は、前記第1の受信部の強度情報が最大になるときの前記振動子の位置と、前記第2の受信部の強度情報が最大になるときの前記振動子の位置と、第1の受信部および第2の受信部の距離とに基づいて、前記振動子が前記血管と略平行になるよう前記振動子を回転させる、請求項4に記載の超音波診断装置。
【請求項6】
前記判定部が、前記第1の受信部の強度情報および前記第2の受信部の強度情報が同時に最大を示していると判定するまで、前記プローブ制御部は、前記所定の角度だけ繰り返し前記振動子を回転させる、請求項4に記載の超音波診断装置。
【請求項7】
前記判定部が、前記第1の受信部の強度情報および前記第2の受信部の強度情報が同時に最大を示していると判定した後、前記判定部は、前記反射強度が最大になったときの前記振動子の位置を特定する、請求項6に記載の超音波診断装置。
【請求項8】
前記送信部および前記受信部に対して、前記超音波の送信および受信を指示する制御部をさらに備え、
前記制御部は、前記振動子が前記判定部によって特定された前記位置に存在するとき、前記超音波の送信および受信を指示する、請求項1から7のいずれか1項に記載の超音波診断装置。
【請求項9】
前記振動子の位置を変化させるための第2の制御信号を出力する操作部をさらに備え、
前記プローブ制御部は、前記第2の制御信号に基づいて前記振動子の位置を変化させる、請求項1から8のいずれか1項に記載の超音波診断装置。
【請求項10】
前記プローブ制御部は、前記操作部からネットワークを介して前記第2の制御信号を受け取る、請求項9に記載の超音波診断装置。
【請求項11】
第1方向に沿って2列に配列された第1の超音波振動子群および第2の超音波振動子群からそれぞれ超音波を送信し、生体の組織で反射した各超音波を受信する振動子、および、前記振動子の位置を変化させる駆動装置を有する超音波プローブと接続可能な超音波診断装置であって、
前記駆動装置を制御して、前記振動子が前記超音波を送信する方向および位置の少なくとも一方を変化させるプローブ制御部と、
前記振動子の位置に応じて、前記第1の超音波振動子群および第2の超音波振動子群に超音波を複数回送信させる送信部と、
血管で反射された前記超音波を、前記第1の超音波振動子群および第2の超音波振動子群の各々を用いて繰り返し受信して、第1の受信信号および第2の受信信号をそれぞれ生成する受信部と、
前記第1の受信信号および第2の受信信号に基づいて、前記反射波の強度の差分値を示す強度情報を生成する強度情報生成部と、
前記強度情報に基づいて前記反射強度の差分値が0になったときの前記振動子の位置を特定する判定部と
を備える、超音波診断装置。
【請求項12】
前記駆動装置は、前記超音波プローブが接触している生体の表面に平行な平面上であって、かつ、前記第1方向と垂直な第2方向に前記振動子の位置を変化させる請求項11に記載の超音波診断装置。
【請求項13】
前記判定部で特定する前記位置で前記超音波を送信して前記血管の性状特性又は形状特性を演算する演算部をさらに備える請求項11または12に記載の超音波診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate


【公開番号】特開2013−46857(P2013−46857A)
【公開日】平成25年3月7日(2013.3.7)
【国際特許分類】
【出願番号】特願2012−265995(P2012−265995)
【出願日】平成24年12月5日(2012.12.5)
【分割の表示】特願2008−123681(P2008−123681)の分割
【原出願日】平成20年5月9日(2008.5.9)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】