説明

遺伝子導入のためのウイルスエンベロープベクター

【課題】ウイルスエンベロープを使用する、安全、安定、かつ広範囲の生体内組織に遺伝子導入可能な、高遺伝子導入活性を有する遺伝子導入ベクターの提供。
【解決手段】ウイルスエンベロープに対して、凍結融解処理または界面活性剤との混合によって、外来遺伝子を導入し、遺伝子導入ベクターを調製する。この遺伝子導入ベクターを含む遺伝子治療のための薬学的組成物、この遺伝子導入ベクターを含むキット、およびこの遺伝子導入ベクターを用いた遺伝子導入方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、インビトロおよび生体内での遺伝子導入のための安全かつ高効率のベクターに関する。特に、本発明は、ウイルス、不活性化ウイルス、特に不活性化HVJ(センダイウイルス)を用いて調製する遺伝子導入ベクターに関する。また、本明細書の遺伝子導入ベクターは、遺伝子治療および高スループットスクリーニングにも使用され得る。
【背景技術】
【0002】
遺伝子治療のために、遺伝子導入のための多くのウイルスおよび非ウイルス(合成)法が開発されている(Mulligan、Science、260、926〜932(1993)およびLedley、Human Gene Therapy、第6巻、1129〜1144(1995))。一般に、細胞への遺伝子送達のために、ウイルス法は、非ウイルス法より効果的である。しかし、ウイルスベクターは、親ウイルスからの必須遺伝子要素の同時導入、ウイルス遺伝子のリーキーな発現、免疫原性、および宿主ゲノム構造の改変のため安全性での問題を生じ得る。一般に、非ウイルスベクターは、細胞傷害性および免疫原性がより少ない。しかし、大部分の非ウイルス法は、ウイルスベクターのいくつかに比べ、特に生体内への遺伝子導入効率はより悪い。
【0003】
従って、ウイルスおよび非ウイルスベクターの両方は、制限とともに長所を持っている。それ故、高効率および低毒性を持つ生体内への遺伝子導入ベクターを開発することで、1つのタイプのベクターシステムの制限を、別のタイプのシステムの有利な点を導入することにより補償すべきである。
【0004】
一方、HVJは免疫原性が高く、特にNPタンパク質が大量に産生されるとCTLを誘導することが知られている(Cole、G.A.ら、J.Immunology 158、4301〜4309(1997))。また宿主のタンパク質合成が阻害される懸念もある。
【0005】
HVJについて、ウイルス融合タンパク質を遠心やカラム操作で融合タンパク質を精製して脂質膜に再構成する方法で作成された粒子は、再構成させることによってウイルスの持つ他のタンパク質(主としてMタンパク質)が失われることにより、融合活性に必要なFlとHNタンパク質の比率が野生型のウイルスと同様には保たれないために、融合活性が低くなるという欠点もある。また再構成したときに融合タンパク質が脂質膜に挿入される方向性が野生型ウイルスと同様であるとは限らないために未知の抗原提示がなされる可能性もある。
【0006】
また、新たな分子を加えて再構成する方法も報告されているが(Uchida,T.ら、J.Cell.Biol.80、10〜20、1979)、この方法では完成粒子の膜組成は本来のウイルス粒子とは大きく異なるために本来のウイルス機能が喪失される危険性は大きい。
【0007】
従来のHVJ−リポソームに代表されるように遺伝子やタンパク質をリポソームに封入し、これと不活性化HVJを融合して作成される融合粒子を用いる方法は、培養細胞や生体組織への非侵襲の遺伝子導入を可能とし、世界的にもこの手法が動物実験レベルでは頻用されるようになった(Dzau,V.J.ら、Proc.Natl.Acad.Sci.USA、93、11421〜11425(1996)およびKaneda,Y.ら、Molecular Medicine Today、5、298〜303(1999))。しかしウイルスとリポソームという2つの異なるベシクルを準備する必要があり手法が複雑であること、リポソームと融合することによってウイルス粒子より平均直径が1.3倍大きくなった粒子は融合活性がウイルスの10%以下に落ちてしまうことなどの欠点も合わせ持つことがわかった。
【0008】
さらに、従来のHVJに基づくベクターでは、遺伝子導入が不可能な組織や極めて効率の低い組織も存在した。このことは、従来法に基づく遺伝子治療の対象となる組織を限定し得ることを示す。
【発明の開示】
【発明が解決しようとする課題】
【0009】
ヒト遺伝子治療のために、安全、高効率かつ簡便に調製でき、かつ広範囲の生体内組織に対して遺伝子導入が可能なウイルスベクターの開発が望まれている。
【0010】
従って、本発明の目的は、従来の再構成HVJベクター法またはHVJ−リポソーム法の欠点を克服し、広範囲の培養細胞や生体組織に対する、安全、高効率かつ簡便なウイルスベースの遺伝子導入ベクターを開発することにある。
【課題を解決するための手段】
【0011】
本発明の1つの局面において、不活性化ウイルスを使用する安全かつ高効率な遺伝子導入ベクターが提供される。ウイルスのゲノムが不活性化されている不活性化ウイルスでは、ウイルスタンパク質の複製がないため安全で細胞毒性・抗原性も低い。不活性化ウイルスを用いる遺伝子導入ベクターであるウイルスエンベロープベクター中に遺伝子を封入することにより、培養細胞や生体組織に対する、安全、高効率かつ簡便な遺伝子導入ベクターが調製される。
【0012】
本発明のさらなる局面において、広範囲の生体内組織に遺伝子導入が可能であるウイルスエンベロープベクターが提供される。1つの実施態様において、使用されるウイルスは、HVJである。本発明のウイルスエンベロープベクターによって生体内で遺伝子導入される組織としては、肝臓、骨格筋、子宮、脳、眼部、頚動脈、皮膚、血管、肺、心臓、腎臓、脾臓、癌組織、神経、Bリンパ球、および呼吸器官の組織が挙げられるが、これらに限定されない。
【0013】
本発明の別の局面において、浮遊細胞に簡便に遺伝子導入する方法が提供される。本発明のウイルスエンベロープベクターを使用する、好ましい浮遊細胞への遺伝子導入方法としては、浮遊細胞とウイルスエンベロープベクターとを硫酸プロタミン存在下で混合する工程、およびその混合液に遠心力を加える工程を包含する、遺伝子導入方法が挙げられる。
【0014】
本発明の1つの局面において、本発明の遺伝子導入ベクターを用いて、大量の遺伝子を短時間で封入することによる、高効率で迅速な培養細胞及び生体組織への遺伝子導入が可能となる。従って、本発明のさらなる局面において、本発明の遺伝子導入ベクターを用いるゲノムの高スループットの大量迅速解析システムが可能となる。
【0015】
本発明の特定の局面において、遺伝子導入ベクターは、−20℃で凍結した状態で長期間(少なくとも2〜3ヶ月以上)の保存が可能である。そしてこの遺伝子導入ベクターは、例えば凍結状態で密封し、貯蔵し、輸送することができる。
【0016】
本発明の別の局面において、インビトロにおいて好ましくは70%以上、より好ましくは80%以上、さらにより好ましくは90%以上、最も好ましくは95%以上の細胞に遺伝子導入活性を有する遺伝子導入ベクターが提供される。
【0017】
本発明のある局面において、不活性化ウイルスの調製の2ヶ月後に遺伝子導入ベクターであるウイルスエンベロープベクターを形成した場合に、60%以上、好ましくは70%以上、より好ましくは80%以上、最も好ましくは90%以上の遺伝子導入活性を保持する遺伝子導入ベクターが提供される。
【0018】
本発明の別の局面において、生体内での局所投与において好ましくは30%以上、より好ましくは40%以上、さらにより好ましくは50%以上、最も好ましくは60%以上の組織中の細胞に対して遺伝子導入活性を有する遺伝子導入ベクターが提供される。
【0019】
本発明の局面において、不活性化ウイルスエンベロープを含む遺伝子導入ベクターが提供される。
【0020】
本発明の1つの局面において、遺伝子導入ベクターの調製のために使用されるウイルスは、野生型ウイルスであっても、組換え型ウイルスであってもよい。
【0021】
本発明のさらなる局面において、使用されるウイルスは、レトロウイルス科、トガウイルス科、コロナウイルス科、フラビウイルス科、パラミクソウイルス科、オルトミクソウイルス科、ブニヤウイルス科、ラブドウイルス科、ポックスウイルス科、ヘルペスウイルス科、バキュロウイルス科、およびヘパドナウイルス科からなる群から選択される科に属するウイルスである。また、本発明の特定の局面において、使用されるウイルスは、HVJである。また、本発明のさらなる局面において、Hasan,M.K.ら(Journal of General Virology,78、2813〜2820(1997))またはYonemitsu,Y.ら(Nature Biotechnology 18、970〜973(2000))に記載される組換え型センダイウイルスを用いて、遺伝子導入ベクターが調製される。
【0022】
本発明の別の局面において、動物生体内の組織に遺伝子導入するための遺伝子導入ベクターが提供される。
【0023】
本発明の遺伝子導入ベクターを調製する方法において、ウイルスを不活性化する工程は必ずしも必要ではない。従って、本発明の1つの局面において、ウイルスを不活性化する工程を行わずに、
1)ウイルスを外来遺伝子と混合する工程、および
2)この混合液を凍結融解するか、もしくはこの混合液を、さらに界面活性剤と混合する工程、
を包含する方法によって遺伝子導入ベクターを作成し得る。
【0024】
本発明の別の局面において、遺伝子導入のための不活性化ウイルスエンベロープベクターの調製方法であって、以下;
ウイルスを不活性化する工程、
不活性化ウイルスを外来遺伝子と混合する工程、および
混合液を凍結融解する工程、
を包含する、方法が提供される。
【0025】
本発明のさらなる局面において、遺伝子導入のための不活性化ウイルスエンベロープベクターの調製方法であって、以下;
ウイルスを不活性化する工程、および
不活性化ウイルスを界面活性剤の存在下で外来遺伝子と混合する工程、
を包含する、方法が提供される。
【0026】
本発明のさらなる局面において、使用される界面活性剤は、オクチルグルコシド、Triton−X100、CHAPSおよびNP−40からなる群から選択される。
【0027】
本発明の特定の局面において、不活性化ウイルスエンベロープとの混合前に、硫酸プロタミンを外来遺伝子に添加する工程をさらに包含する、不活性化ウイルスエンベロープベクターの調製方法が提供される。
【0028】
本発明のさらなる局面において、単離された動物組織に遺伝子を導入する方法であって、以下;
所望の遺伝子を含有する遺伝子導入ベクターを調製する工程、
遺伝子導入ベクターによって、該動物組織に遺伝子を導入する工程、
を包含する、方法が提供される。
【0029】
本発明の別の局面において、浮遊細胞に外来遺伝子を導入する方法が提供され、この方法は、以下:
浮遊細胞と遺伝子導入ベクターとを、硫酸プロタミン存在下で混合する工程、
混合液を遠心する工程
を包含する。
【0030】
本発明のさらに別の局面において、本発明の遺伝子導入ベクターを含有する、遺伝子治療のための薬学的組成物が提供される。
【発明の効果】
【0031】
操作が簡便で、しかも遺伝子導入効率の優れた新しい遺伝子導入方法が提供される。これにより、遺伝子ライブラリーの迅速なスクリーニングが可能になると考えられる。本発明のウイルスエンベロープベクターを含む、高スループットスクリーニングのためのキットもまた提供される。また、本出願によって提供されるウイルスエンベロープベクターは長期間の凍結保存が可能であり、要事調製の必要がないため、作業工程が大幅に簡略化できるとともに、導入ベクターの大量調製による均質な遺伝子導入が可能となる。さらに、本発明の遺伝子導入ベクターは、従来のHVJを基に調製されたベクターよりも、高効率の遺伝子導入を可能にし、かつ従来の方法よりもより広範囲の生体内組織に対する遺伝子導入を可能とする。
【0032】
本発明の遺伝子導入ベクターを含む、医薬品投与のためのドラッグデリバリーシステム、薬物のスクリーニング系、および遺伝子治療用ベクターも提供される。
【発明を実施するための最良の形態】
【0033】
(定義)
本明細書で使用される場合、「遺伝子導入」とは、生体内またはインビトロにおいて、標的細胞内に、天然、合成または組換えの所望の遺伝子または遺伝子断片を、導入された遺伝子がその機能を維持するように、導入することをいう。本発明において導入される遺伝子または遺伝子断片は、特定の配列を有するDNA、RNAまたはこれらの合成アナログである核酸を包含する。また、本明細書において使用される場合、遺伝子導入、トランスフェクション、およびトランスフェクトは、互換可能に使用される。
【0034】
本明細書で使用される場合、「遺伝子導入ベクター」、「遺伝子ベクター」または「ウイルスエンベロープベクター」とは、ウイルスエンベロープ中に外来遺伝子を封入したベクターをいう。遺伝子導入ベクターの調製のために使用されるウイルスとしては、野生型ウイルスであっても、組換え型ウイルスであってもよい。
【0035】
本発明の1つの局面において、使用されるウイルスは、レトロウイルス科、トガウイルス科、コロナウイルス科、フラビウイルス科、パラミクソウイルス科、オルトミクソウイルス科、ブニヤウイルス科、ラブドウイルス科、ポックスウイルス科、ヘルペスウイルス科、バキュロウイルス科、およびヘパドナウイルス科からなる群から選択される科に属するウイルスである。また、本発明の特定の局面において、使用されるウイルスは、HVJである。
【0036】
本明細書で使用される場合、「遺伝子導入活性」とは、ベクターによる「遺伝子導入」の活性をいい、導入された遺伝子の機能(例えば、発現ベクターの場合、コードされるタンパク質の発現および/またはそのタンパク質の活性など)を指標として検出され得る。
【0037】
本明細書で使用される場合、「不活性化」とは、ゲノムを不活性化したウイルスをいう。この不活性化ウイルスは、複製欠損である。好ましくは、この不活性化は、UV処理またはアルキル化剤による処理によって、なされる。
【0038】
本明細書で使用される場合、「外来遺伝子」とは、遺伝子導入ベクター内に含まれる、ウイルス以外の起源の核酸配列をいう。本発明の1つの局面において、この外来遺伝子は、遺伝子導入ベクターによって導入された遺伝子が発現するために適切な調節配列(例えば、転写に必要なプロモーター、エンハンサー、ターミネーター、およびポリA付加シグナル、ならびに翻訳に必要なリボゾーム結合部位、開始コドン、終止コドンなど)と作動可能に連結される。本発明の別の局面において、外来遺伝子は、この外来遺伝子の発現のための調節配列を含まない。本発明のさらなる局面において、外来遺伝子は、オリゴヌクレオチドまたはデコイ核酸である。
【0039】
遺伝子導入ベクター内に含まれる外来遺伝子は、代表的にはDNAまたはRNAの核酸分子であるが、導入される核酸分子は、核酸アナログ分子を含んでもよい。遺伝子導入ベクター内に含まれる分子種は、単一の遺伝子分子種であっても、複数の異なる遺伝子分子種であってもよい。
【0040】
本明細書で使用される場合、「遺伝子ライブラリー」とは、天然より単離された核酸配列または合成の核酸配列を含む、核酸ライブラリーである。天然より単離された核酸配列の供給源としては、真核生物細胞、原核生物細胞、またはウイルス由来の、ゲノム配列、cDNA配列が挙げられるが、これらに限定されない。天然より単離された配列に、任意の配列(例えば、シグナル、タグなど)を付加したライブラリーもまた、本発明の遺伝子ライブラリーに含まれる。1つの実施態様において、遺伝子ライブラリーは、その中に含まれる核酸配列の、転写および/または翻訳をもたらすプロモーターなどの配列を含む。
【0041】
本明細書において、「HVJ」および「センダイウイルス」は、互換可能に用いられ得る。
【0042】
本明細書において、「HAU」とは、ニワトリ赤血球0.5%を凝集可能なウイルスの活性をいい、1 HAUは、ほぼ2400万ウイルス粒子に相当する(Okada,Y.ら、Biken Journal 4、209〜213、1961)。
【0043】
(遺伝子治療)
治療的な核酸構築物は、本発明の遺伝子導入ベクターを用いて局所的にまたは全身的にのいずれかで投与され得る。そのような核酸構築物がタンパク質のコード配列を包含する場合、そのタンパク質の発現は、内因性の哺乳類のプロモーターまたは異種のプロモーターの使用により誘導され得る。コード配列の発現は、構成的であり得るか、または調節され得る。
【0044】
本発明の遺伝子導入ベクターを遺伝子治療のための組成物として使用する場合、本発明のベクターの投与は、PBS(リン酸緩衝化生理食塩水)または生理食塩水などに懸濁したベクター懸濁液の局所(例えば、癌組織内、肝臓内、筋肉内および脳内など)への直接注入か、または血管内(例えば、動脈内、静脈内および門脈内)への投与によりなされる。
【0045】
1つの実施態様において、遺伝子導入ベクターは、一般には、この遺伝子導入ベクターを単位用量注入可能な形態(溶液、懸濁液または乳濁液)で、薬学的に受容可能なキャリア(すなわち、使用された投薬量および濃度においてレシピエントに対して非毒性であり、そして処方物の他の成分と適合性であるもの)とを混合することによって処方され得る。例えば、処方物は、好ましくは、酸化剤および遺伝子導入ベクターにとって有害であることが公知である他の化合物を含まない。
【0046】
キャリアは、等張性および化学的安定性を増強する物質のような微量の添加物を適宜含む。このような物質は、使用された投薬量および濃度においてレシピエントに対して非毒性であり、そしてリン酸、クエン酸、コハク酸、酢酸、および他の有機酸またはそれらの塩のような緩衝剤;アスコルビン酸のような抗酸化剤;低分子量(約10残基未満の)ポリペプチド(例えば、ポリアルギニンまたはトリペプチド);タンパク質(例えば、血清アルブミン、ゼラチン、またはイムノグロブリン);親水性ポリマー(例えば、ポリビニルピロリドン);アミノ酸(例えば、グリシン、グルタミン酸、アスパラギン酸、またはアルギニン);単糖、二糖および他の炭水化物(セルロースまたはその誘導体、グルコース、マンノース、またはデキストリンを含む);キレート剤(例えば、EDTA);糖アルコール(例えば、マンニトールまたはソルビトール);対イオン(例えば、ナトリウム);および/または非イオン性界面活性剤(例えば、ポリソルベート、ポロキサマー)、またはPEGを含み得る。
【0047】
遺伝子導入ベクターを含む薬学的組成物は、代表的には、単位または多用量容器、例えば、密封アンプルまたはバイアルにおいて、水溶液として貯蔵され得る。
【0048】
本発明はまた、本発明の薬学的組成物の1以上の成分を満たした1以上の容器を含む薬学的パックまたはキットを提供する。さらに、本発明のポリペプチドは、他の治療化合物とともに使用され得る。
【0049】
本発明の遺伝子導入ベクターを含む薬学的組成物は医療実施基準(good medical practice)に一致した様式で、個々の患者の臨床状態(例えば、予防または処置されるべき状態)、遺伝子導入ベクターを含む組成物の送達部位、標的組織、投与方法、投与計画および当業者に公知の他の因子を考慮しつつ処方され、そして投与される。従って、本明細書の遺伝子導入ベクターの「有効量」または適切な投与量は、このような考慮事項によって決定される。
【0050】
例えば、マウスに本発明の遺伝子ベクターを投与する場合、マウス一匹あたり、20〜20,000HAU相当の、好ましくは60〜6,000HAU相当の、より好ましくは200〜2,000HAU相当の遺伝子ベクターが投与される。投与される遺伝子ベクター中に含有される外来遺伝子の量は、マウス一匹あたり、0.1〜100μg、好ましくは0.3〜30μg、より好ましくは1〜10μgである。
【0051】
また、ヒトに本発明の遺伝子ベクターを投与する場合、被験体あたり、400〜400,000HAU相当の、好ましくは1,200〜120,000HAU相当の、より好ましくは4,000〜40,000HAU相当の遺伝子ベクターが投与される。投与される遺伝子ベクター中に含有される外来遺伝子の量は、被験体あたり、2〜2,000μg、好ましくは6〜600μg、より好ましくは20〜200μgである。
【0052】
以下の実施例は、例示であって、本発明を限定しないことが意図される。
【実施例】
【0053】
(1.凍結融解を使用する遺伝子導入ベクターの調製およびその使用)
(実施例1:凍結融解によるHVJエンベロープベクターの調製)
外来遺伝子としてルシフェラーゼ遺伝子を用い、組換えHVJウイルスを様々な回数で凍結融解した後、培養細胞に遺伝子導入した。
【0054】
TE500μ1に、750μgのルシフェラーゼ発現ベクターpcOriPLuc(SaekiおよびKanedaら、Human Gene Therapy、11、471〜479(2000))と様々な濃度のHVJウイルスを混合した。HVJウイルス濃度は、10、25、50、100HAU/μlに調製した。この溶液を12分割し、それぞれをドライアイスによって4℃に保存して凍結させた後、融解することを最大30回まで繰り返した。所定回数の凍結融解を終えた溶液を、BHK−21細胞(24ウェルディッシュ、4×104細胞/ディッシュ、0.5ml DMEM,10%FCS)の培地に添加し、37℃、5%CO2にて20分間反応後、PBSにより洗浄し、新たに培養液を0.5ml加えて24時間培養した。
【0055】
培地を除去し、1×Cell Culture Lysis Reagent(Promega社)500μlを細胞上に加えて細胞を溶解した後、マイクロチューブに移して遠心し、得られた上清20μlから、Promega Luciferase Assay SystemとLumat LB9501 Luminophotometerを用いてルシフェラーゼ活性を測定した。測定は各溶液について3回行い、平均値を求めた。
【0056】
結果は図1に示したとおりである。組換えHVJウイルスの凍結融解の回数が増加するに従ってルシフェラーゼ活性が上昇し、3回の凍結融解に比べ20回の凍結融解では10倍以上のルシフェラーゼ発現が観察された。この結果から、この実施例に用いた条件では、組換えHVJウイルスの凍結融解の回数は好ましくは5回以上、さらに好ましくは15〜20回程度であることが確認された。
【0057】
(実施例2:凍結融解により調製されたHVJエンベロープベクターの遺伝子導入効率)
実施例1と同様の組換えHVJウイルスを30回凍結融解した後、宿主細胞に添加するウイルス数を同一条件として、細胞への遺伝子導入効率を調べた。
【0058】
結果は図2に示したとおりである。この図2において、例えばX軸が500HAUの場合では、ウイルス濃度10HAU/μlの溶液の添加量は50μlであり、100HAU/μlの溶液は5μlとなる。この図2に示したとおり、ウイルス濃度が100HAU/μlの溶液は10〜50HAU/μl濃度の場合に比較して遺伝子発現の効率が約50%低下した。この結果から、この実施例の条件では、組換えウイルス濃度はl0〜50HAU/μlの範囲とすることが好ましいことが確認された。
【0059】
また、組換えHVJウイルスを29回凍結融解した後、30回目の凍結を行い、その凍結状態で1週間保存した後、融解して細胞に添加した。その結果、この1週間冷凍保存した組換えHVJウイルスも、30回の凍結融解を連続で行ったウイルスと同程度のルシフェラーゼ遺伝子発現を示した。
【0060】
(実施例3:ルシフェラーゼ発現ベクターを用いる遺伝子導入効率の測定)
ルシフェラーゼ発現ベクターの量を様々に変えてHVJエンベロープベクターを調製し、宿主細胞への遺伝子導入効率を調べた。
【0061】
HVJウイルス量は1μl TE当たり50HAUとした。ルシフェラーゼ発現ベクターpcOriPLucの量は、1μlのTE当たり0.05、0.1、0.25、0.5、1.0、1.5、2.0、3.0、5.5μgとした。最終溶液量を100μlとして20回の凍結融解を行った後、実施例1と同一の方法によりルシフェラーゼ活性を測定した。
【0062】
結果は図3に示したとおりである。外来遺伝子である発現ベクターpcOriPLuc(約9.5kb)の添加量が1.5μgまでは量依存的に発現量が増加し、これ以降は発現量にはほとんど変化はなかった。以上の結果から、この実施例で用いた条件では、1.5μg/μl以上の外来遺伝子DNAを遺伝子導入に用いることが好ましいことが確認された。
【0063】
(実施例4:遺伝子導入効率に対する緩衝液の種類の影響)
HVJエンベロープベクター調製に用いる緩衝液の種類を変えて、宿主細胞への遺伝子導入効率を調べた。
【0064】
HVJウイルス量は緩衝液1μl当たり50HAU、ルシフェラーゼ発現ベクターpcOriPLuc量は15μg/μlとした。緩衝液はTE、PBS、BSS(137mM NaCl、5.4mM KCl、10mM Tris−HCl、pH7.5)、並びにこれらの緩衝液に最終濃度0mM、20mM、40mM、60mMのショ糖を添加したものを使用した。最終溶液量を100μlとして20回の凍結融解を行った後、実施例1と同一の方法によりルシフェラーゼ活性を測定した。
【0065】
結果は図4に示したとおりであり、この実施例で用いた条件では、組換えHVJウイルスの調製のための緩衝液としてはTE単独が好ましいことが確認された。
【0066】
(実施例5:AVE(Artificial Viral Envelop)型のベクターと本願発明のHVJエンベロープベクターとの比較)
従来の遺伝子導入ベクターである不活性化HVJ−リポソーム(最も遺伝子導入効率の優れたAVE型(Saeki,Y.ら、Human Gene Therapy、8、2133〜2141(1997))を用いた遺伝子導入と、この発明の方法とを比較した。
【0067】
HVJ一リポソームまたはHVJウイルス量はTE 1μl当たり50HAU、ルシフェラーゼ発現ベクターpcOriPLucの量は1.5μg/μlとした。また、組換えHVJウイルスの凍結融解の回数は2回または15回とした。その他の条件は、宿主細胞をヒト胎児腎細胞株HEK293とした以外は実施例1と同様とした。
【0068】
結果は図5に示したとおりである。HVJエンベロープベクターの凍結融解を15回繰り返すこの発明の方法は、遺伝子導入効率においてHVJ一リポソームを用いた従来方法よりはるかに優れていることが確認された。
【0069】
(実施例6:合成オリゴヌクレオチドの導入効率)
FITC(イソチオシアン酸フルオレッセイン)で蛍光標識した合成オリゴヌクレオチド(20bp)を1mg/m1の濃度で不活性化HVJウイルスと混合し、この溶液を20回凍結融解した後、BHK−21細胞と20分間反応させた。17時間後に蛍光シグナルを観察した結果、ほぼ100%の細胞の核内に蛍光の集積が認められた。この結果から、この発明の方法は、合成核酸の細胞内導入にも有効であることが確認された。
【0070】
(実施例7:GFP遺伝子の導入効率)
GFP(グリーン蛍光タンパク質)遺伝子と不活性化HVJウイルスの混合溶液を20回凍結融解した後、2ng−5μ1をラット大脳に注入した。その結果、注入部位に蛍光シグナルが観察された。また、GFP遺伝子によるHVJエンベロープベクターを凍結して3ヶ月保存した後、ラット大脳に注入したが、同じく注入部位にGFP遺伝子発現による蛍光シグナルが観察された。
【0071】
以上の結果から、この発明の方法は、生体内においても確実に遺伝子導入が可能であることが確認された。また、HVJエンベロープベクターの凍結保存が可能であることも確認された。
【0072】
(2.界面活性剤を使用する遺伝子導入ベクターの調製およびその使用)
(実施例8:界面活性剤を用いる不活性化HVJエンベロープベクターの調製)
界面活性剤を用いる不活性化HVJエンベロープベクターの調製方法の概略を図6に示す。
【0073】
(1:HVJの増殖)
HVJは鶏の受精卵への種ウイルスの接種により増殖されたものが一般に使用され得るが、サル、ヒトなどの培養細胞、培養組織へのウイルスの持続感染系(トリプシンなどの加水分解酵素を培養液中に添加)を利用して増殖させたもの、クローニングされたウイルスゲノムを培養細胞に感染させ持続感染をおこさせて増殖させたもの、全てが利用可能である。
【0074】
本実施例において、HVJの増殖を以下のようにおこなった。
【0075】
HVJの種ウイルスを、SPF(Specific pathogen free)の受精卵を使って増殖させ分離・精製したHVJ(Z種)を細胞保存用チューブに分注し、10% DMSOを加えて液体窒素中に保存し、調製した。
【0076】
受精直後のニワトリ卵を入荷し、インキュベーター(SHOWA−FURANKI P−03型;約300鶏卵収容)にいれ、36.5℃,湿度40%以上の条件で10〜14日飼育した。暗室中で、検卵器(電球の光が口径約1.5cmの窓を通して出るようになっているもの)を用いて、胚の生存及び気室と漿尿膜を確認し、漿尿膜の約5mm上方に鉛筆でウイルス注入箇所の記しをつけた(太い血管を除いた場所を選定する)。ポリペプトン溶液(1%ポリペプトン、0.2% NaClを混合し、1M NaOHでpH7.2に調整してオートクレーブ滅菌し、4℃保存したもの)で種ウイルス(液体窒素からとりだしたもの)を500倍に希釈し、4℃においた。卵をイソジン及びアルコールで消毒し、ウイルス注入箇所に千枚通しで小孔をあけ、希釈した種ウイルス0.lmlを26ゲージの針付き1mlシリンジを用いて、漿尿腔内に入るように注入した。溶かしたパラフィン(融点50〜52℃)をパスツールピペットを用いて孔の上に置きこれをふさいだ。卵をインキュベーターにいれ、36.5℃、湿度40%以上の条件で3日飼育した。次に、接種卵を一晩4℃においた。翌日、卵の気室部分をピンセットで割り、18ゲージの針を付けた10mlシリンジを漿尿膜の中にいれて、漿尿液を吸引し、滅菌ボトルに集め、4℃に保存した。
【0077】
(2:HVJの精製)
HVJは、遠心分離による精製方法、カラムによる精製方法、または当該分野において公知のその他の精製方法によって、精製され得る。
(2.1:遠心分離による精製方法)
手短には、増殖させたウイルス液を回収し低速遠心で培養液や漿尿液中の組織・細胞片を除去した。その上清を高速遠心(27,500×g,30分間)とショ糖密度勾配(30〜60%w/v)を利用した超遠心(62,800×g,90分間)により精製した。精製の間にウイルスをできるだけ穏和に扱い、4℃で保存することに注意すべきである。
【0078】
本実施例において、具体的には、以下の方法によってHVJを精製した。
【0079】
HVJ含有漿尿液(HVJ含有のニワトリ卵の漿尿液を集め4℃にて保存)の約100m1を広ロの駒込ピペットで50mlの遠心チューブ2本に入れ(Saeki,Y.,およびKaneda,Y:Protein modified liposomes(HVJ−1iposomes)for the delivery of genes,oligonucleotides and proteins. Cell Biology;A laboratory handbook(第2版)J.E.Celis編(Acadcmic Press Inc.,SanDiego)第4巻、127〜135,1998を参照のこと)、低速遠心機で3000rpm,10分、4℃で遠心し(ブレーキはオフ)、卵の組織片を除去した。
【0080】
遠心後、上清を35ml遠心チューブ4本(高速遠心用)に分注し、アングルローターで27,000g,30分遠心した(アクセル、ブレーキはオン)。上清を除き、沈殿にBSS(10mM Tris−HCl(pH7.5)、137mM NaC1、5.4mM KC1;オートクレーブし、4℃保存)(BSSのかわりにPBSでも可能)をチューブ当たり約5ml加え、そのまま4℃で一晩静置した。広ロの駒込ピペットでゆるやかにピペッテイングして沈殿をほぐし1本のチューブに集め、同様にアングルローターで27,000g、30分遠心した。上清をのぞき沈殿にBSS約10mlを加え、同様に4℃で一晩静置した。広ロの駒込ピペットでゆるやかにピペッテイングして沈殿をほぐし、低速遠心機で3000rpm,10分、4℃で遠心し(ブレーキはオフ)、除ききれなかった組織片やウイルスの凝集塊をのぞいた。上清を新しい滅菌済みチューブに入れ精製ウイルスとして4℃で保存する。
【0081】
このウイルス液0.lmlにBSSを0.9ml加え、分光光度計で540nmの吸収を測定し、ウイルス力価を赤血球凝集活性(HAU)に換算した。540nmの吸収値1がほぼ15,000HAUに相当した。HAUは融合活性とほぼ比例すると考えられる。また実際にニワトリ赤血球液(0.5%)を用いて、赤血球凝集活性を測定してもよい(動物細胞利用実用化マニュアル、REALIZE INC.(内田、大石、古沢編集)P259〜268、1984を参照のこと)。
【0082】
さらにショ糖密度勾配を用いたHVJの精製も必要に応じて行い得る。具体的には、ウイルス懸濁液を60%、30%のショ糖溶液(オートクレーブ滅菌)を重層した遠心チューブにのせ、62,800×gで120分間密度勾配遠心を行う。遠心後、60%ショ糖溶液層上にみられるバンドを回収する。回収したウイルス懸濁液をBSSもしくはPBSを外液として4℃で透析を一晩行い、ショ糖を除去する。すぐに使用しない場合は、ウイルス懸濁液にグリセロール(オートクレーブ滅菌)と0.5M EDTA液(オートクレーブ滅菌)をそれぞれ最終濃度が10%と2〜10mMになるように加えて−80℃で穏やかに凍結し、最終的に液体窒素中で保存する(凍結保存はグリセロ一ルと0.5M EDTA液の代わりに10mM DMSOでも可能)。
(2.2:カラムおよび限外濾過による精製方法)
遠心分離による精製方法に代えて、カラムによるHVJの精製も本発明に適用可能である。
【0083】
手短には、分子量カットオフが50,000のフィルターによる限外濾過による濃縮(約10倍)とイオン交換クロマトグラフィー(0.3M〜lM NaCl)による溶出を用いて精製した。
【0084】
具体的には、本実施例において、以下の方法を使用して、HVJをカラムによって精製した。
【0085】
漿尿液を採集した後、80μm〜10μmのメンブランフィルターにてろ過した。0.006〜0.008% BPL(最終濃度)を漿尿液に加え(4℃、1時間)、HVJを不活性化した。漿尿液を37℃、2時間インキュベートすることによって、BPLを不活性化した。
【0086】
500KMWCO(A/G Technology、Needham、Massachusetts)を用いたタンジェンシャルフロー限外ろ過法により約10倍濃縮した。緩衝液として、50mM NaCl、1mM MgCl2、2%マンニトール、20mM Tris(pH 7.5)を用いた。HAUアッセイにより、ほぼ100%のHVJ回収率であり優れた結果がえられた。
【0087】
QSepharoseFF(アマシャムファルマシアバイオテクKK、Tokyo)によるカラムクロマトグラフィー法(緩衝液:20mM TrisHCl(pH7.5)、0.2〜1M NaCl)でHVJを精製した。40〜50%の回収率であり、純度は99%以上であった。
【0088】
500KMWCO(A/G Technology)を用いたタンジェンシャルフロー限外ろ過法によりHVJの画分を濃縮した。
【0089】
(3:HVJの不活性化)
HVJの不活性化が必要な場合、以下に記載するように、紫外線照射またはアルキル化剤処理により行った。
【0090】
(3.1:紫外線照射法)
HVJ懸濁液1mlを30mm径のシャーレにとり、99または198ミリジュール/cm2を照射した。ガンマー線照射も利用可能である(5〜20グレイ)が完全な不活性化がおこらない。
【0091】
(3.2:アルキル化剤による処理)
使用直前に、10mM KH2PO中に0.01% β−プロピオラクトンの調製をした。作業中は低温下に保ち素早く作業を行った。
【0092】
精製直後のHVJの懸濁液に最終0.01%になるようにβ−プロピオラクトンを添加し、氷上で60分間でインキュベートした。その後2時間、37℃でインキュベートした。エッペンドルフチューブにチューブあたり10,000HAU分ずつ分注し、15,000rpm,15分遠心し、沈殿を−20℃で保存する。上記の不活性化法によらず、沈殿を−20℃で保存せず、そのまま界面活性剤処理によりDNAを取り込ませ、ベクターを作成することも可能である。
【0093】
(4:HVJエンベロープベクターの作成)
保存してあったHVJに外来DNA200〜800μgを含む溶液92μlを加えてピペッティングでよく懸濁した。この溶液は、−20℃で、少なくとも、3ヶ月保存可能である。HVJとの混合前にDNAに硫酸プロタミンを添加すると、発現効率が2倍以上増強した。
【0094】
この混合液を氷上に1分間置き、オクチルグルコシド(10%)を8μl加えて15秒氷上でチューブを振盪し、45秒氷上に静置した。界面活性剤での処理時間は、1〜5分間が好ましい。オクチルグルコシド以外に、Triton−X100(t−オクチルフェノキシポリエトキシエタノール)、CHAPS(3−[(3−コラミドプロピル)−ジメチルアンモニオ]−1−プロパンスルホン酸)、NP−40(ノニルフェノキシポリエトキシエタノール)などの界面活性剤も使用し得る。Triton−X100、NP−40およびCHAPSの好ましい最終濃度は、それぞれ、0.24〜0.80%、0.04〜0.12%および1.2〜2.0%である。
【0095】
冷BSSを1ml添加し、すぐに15,000rpmで15分遠心した。生じた沈殿にPBSまたは生理食塩水などを300μl加えて、ボルテックス、ピペッティングで懸濁した。懸濁液は直接遺伝子導入に使用することも、−20℃で保存後に遺伝子導入に使用することも可能である。このHVJエンベロープベクターは、少なくとも2ヶ月間の保存後、同程度の遺伝子導入効率を維持した。
【0096】
(実施例9:HVJエンベロープベクターにおけるFlとHNタンパク質の比率)
(1:サンプルの調製)
(i)精製HVJ 10,000HAU相当を15,000rpm,15分間遠心し、沈殿を300μlのPBSに懸濁し−20℃に保存した。
(ii)精製HVJ 10,000HAU相当を紫外線照射(198ミリジュール/cm2)後、15,000rpm,15分間遠心し、沈殿を300μlのPBSに懸濁し−20℃で保存した。
(iii)精製HVJ 10,000HAU相当を紫外線照射(198ミリジュール/cm2)後、15,000rpm,15分間遠心し、沈殿にpcLuciDNA200μg(溶液92μl)を加えて、ピペッテングで懸濁した。氷上に置き、オクチルグルコシド(10%)を8μ1加えて、15秒間、手でチューブを振盪し、45秒間氷上静置し、冷BSSを1ml加えて、すぐに15,000rpm、15分間遠心後、300μlのPBSに懸濁し−20℃で保存した。
【0097】
(2:タンパク質電気泳動)
3種類のサンプルの5、10、20μlに×5のLaemliサンプル緩衝液を加え10% SDS−ポリアクリルアミドゲル電気泳動を行った。泳動終了後、クマシーブルーで染色し、脱染色後、セロファン紙に張り付けて乾燥させた。
【0098】
(3:タンパク質同定)
電気泳動し、染色したサンプルをLAS2000(Fuji Film、Tokyo)に取り込ませ(図7)、F1,HN相当のタンパク質バンドの濃度を測定した。1種類のサンプルにつき、3つの異なる量を泳動し、各々のF1/HN密度を算出し、サンプル毎に平均と標準偏差を求めた。
【0099】
(4:結果)
(i)、(ii)、(iii)のサンプルでF1/HNは、ほぼ1.7で一致した。F1 51kD、HN 68kDaの分子量を考慮すれば、モル比は約2.3となる。F1、HNを用いた再構成リポソームでの融合の最適値が、F1/HNが約2で与えられるという報告(Exp.Cell Res.142、95〜101、1985)とも矛盾しない。他の研究者から報告のある再構成型ではこの比が野生型ウイルスのものと異なる(J.Virol.67、3312〜3318、1993)。その他のタンパク質組成もHVJとHVJエンベロープベクターではほぼ同じであった。
【0100】
(実施例10:HVJエンベロープベクターへのDNAの封入及び封入率)
(1:HVJエンベロープベクター(DNA封入、未封入)の電子顕微鏡像)
前述のようにしてpSFV−LacZ(14.5kb)130μgを10,000HAUのHVJ(紫外線不活性化)に封入しHVJエンベロープベクターを作成した。
【0101】
封入後のHVJエンベロープベクターを300μlのPBSに懸濁し−20℃で保存した。10日後、1μlの懸濁液をグリッド上にのせ、陰性染色法にて電子顕微鏡を用いて観察した。コントロールとしてDNA未封入のHVJエンベロープベクターを用いた。
【0102】
(結果)
結果を、図8に示す。HVJエンベロープベクターは、かつて観察されたHVJウイルスそのものとほぼ外郭は同型のものが多かった。DNA未封入のものに比較し、DNAを用いたものはHVJエンベロープベクター内に電子密度の濃い構造物を認めた。一方、未封入のものは内部の透過性は高く、ウイルスゲノムが破壊されたか、喪失されたと推定された。
【0103】
(2:HVJエンベロープベクターへのDNA封入率)
前述のようにしてpcLuci(7.4kb)157μgを6,700HAUのHVJ(紫外線不活性化)に封入して、HVJエンベロープベクターを作成した。HVJエンベロープベクターを、300μlのBSSに懸濁し、ミクロコッカルヌクレアーゼ15単位、CaCl2 2mM、RNaseA 20μg/ml、20℃、30分間処理し、PBS 1リットルに対して透析した(4℃、オーバーナイト)。1%SDS、37℃で、l分間処理した。500μlのフェノール、500μlクロロホルム−イソアミルアルコールで処理し、その後、エタノール沈殿した。100μlのBSSに懸濁し、分光光度計で260nm,280nmを測定した。
【0104】
(結果)
回収率が85.7%であったので、換算すると、HVJエンベロープベクター中へのDNAの取り込み効率は、3.8%であった。10,000HAUのHVJに、279μgのpcLuciを取り込ませた場合の取り込み効率は、7.2%であった。
【0105】
以上より10,000HAUのHVJへのDNA取り込み効率は、オクチルグルコシドを用いた場合約6〜7%であろうと推定されるが、用いるDNA量によって多少変化する可能性がある。また硫酸プロタミンをDNA、HVJエンベロープベクターと共存させると導入効率が上昇することがわかっているが、これはHVJエンベロープベクターへのDNA封入効率が上昇したためではないかと考えられる。Triton−X100,NP−40ではさらに効率が上がり10〜40%程度と推定される。
【0106】
(実施例11:HVJエンベロープベクターによる細胞内への遺伝子導入)
(1:遺伝子導入方法)
1,000HAU分をエッペンドルフチューブにとり(30μl)、硫酸プロタミン(1mg/ml)5μ1を加えた。BHK−21細胞(前日に、ウェルあたり200,000個で、6つのウェルにまいたもの)の培地を交換し、1ウェルあたり0.5mlの培地(10%FCS−DMEM)を添加した。各ウェルに、上記のベクター(1,000HAU相当)と硫酸プロタミンの混合液を加え、プレートを前後左右にふってベクターと細胞を良く混ぜ合わせ、37℃で、5%CO2インキュベーター中に10分間放置した。
【0107】
培地交換し、37℃で、5%CO2インキュベーター中でオーバーナイト(16hr〜24hr)放置し、遺伝子発現を調べた。ルシフェラーゼ(pcLuci;CMVプロモーターを有するルシフェラーゼ遺伝子)の場合は、Cell Lysis Buffer(Promega)0.5mlで細胞を溶解し、その20μl溶液中の活性をルシフェラーゼアッセイキット(Promega)を用いて測定した。グリーン蛍光タンパク質(pCMV−GFPE;Promega)の場合は、そのまま蛍光顕微鏡で観察し、400倍率で5〜8視野を観察し、蛍光を発する細胞の割合を算出した。
【0108】
(2:培養細胞における導入効率に与える条件の検討)
培養細胞はBHK−21細胞を用いた。
【0109】
(2.1:HVJエンベロープベクター作成におけるオクチルグルコシド(OG)濃度の検討)
(1)の遺伝子導入方法に、以下の変更を加えて、HVJエンベロープベクターによる遺伝子導入に対する、各濃度(HVJエンベロープベクターの作成時に用いたOGの最終濃度)のオクチルグルコシド(OG)の影響を調べた:
(A)オクチルグルコシド濃度:1、2、3%;
HVJエンベロープベクター作成時に、不活性化HVJをOGによって処理した時間:1分間、5分間、10分間;
超音波処理を行ったか(sonic)、または行わなかった。
(B)オクチルグルコシド濃度:0.125〜1.25%;
トランスフェクションに用いたベクターの容量:10μl、100μl。(C)オクチルグルコシド:0.55〜0.8%;
トランスフェクションの時間:30分間、オーバーナイト(O/N)。
結果を図9に示す。
【0110】
(2.2:細胞への遺伝子導入条件、硫酸プロタミン(PS)の濃度・処理時間)
(1)の遺伝子導入方法に、以下の変更を加えて、HVJエンベロープベクターによる遺伝子導入に対する、硫酸プロタミンの影響を調べた:
(A)硫酸プロタミン:0〜100μg/ml培地;
トランスフェクションの時間:20、40、60分間。
(B)硫酸プロタミン:0〜40μg/ml培地;
トランスフェクションの時間:5、10、20分間。
結果を図10に示す。
【0111】
(2.3:HVJエンベロープベクターに封入するDNA濃度の遺伝子発現量に対する効果)
(1)の遺伝子導入方法に、以下の変更を加えて、HVJエンベロープベクターによる遺伝子発現量に対する、実験に使用したDNA量の影響を調べた:
(A)DNA量:20〜200μg;
HVJエンベロープベクターを−20℃または−80℃で5日間保存した。
(B)DNA量:180〜360μg/HVJ 10,000HAU。
結果を図11に示す。
【0112】
(2.4:遺伝子導入に用いるHVJ力価の、遺伝子発現量に対する影響)
(1)の遺伝子導入方法に、以下の変更を加えて、HVJエンベロープベクターによる遺伝子発現量に対する、遺伝子導入に用いるHVJ力価の影響を調べた:
5,000、10,000、20,000HAUの力価のHVJを用いてHVJエンベロープベクターを調製し、その各々の、250、500、1,000、2,000HAUに相当する量を用いて、BHK−21細胞にトランスフェクションした。
結果を図12に示す。
【0113】
(2.5:HVJエンベロープベクター遺伝子導入効率に対する、HVJ不活性化条件の影響)
(1)の遺伝子導入方法に、以下の変更を加えて、BHK−21細胞中でのルシフェラーゼ遺伝子発現に対する、HVJの不活性化方法(UVまたはβ−プロピオラクトン)の効果を調べた。
(A)UV不活性化のための照射量:0〜231ミリジュール/cm2
(B)HVJ処理に用いたβ−プロピオラクトン(BPL)濃度:0〜0.025%。
結果を図13に示す。
【0114】
(実施例12:HVJエンベロープベクターの各種細胞への遺伝子導入)
ヒト舌部の扁平上皮癌(SAS)へ、実施例11に記載の方法により遺伝子導入を行った。結果を図14に示す。遺伝子導入の際の、硫酸プロタミン濃度およびトランスフェクション時のインキュベーション時間を、図14に記載のように変化させ、遺伝子導入の効率を、ルシフェラーゼ遺伝子の発現によって測定した。トランスフェクションを行った条件の範囲内では、200μg/mlの硫酸プロタミンを使用し、60分間のトランスフェクション処理をした場合に遺伝子導入効率が最大であったが、硫酸プロタミン濃度をさらに増加させれば、遺伝子導入効率のさらなる増加が予測される。
【0115】
ヒト大動脈内皮細胞(HAEC)へ、実施例11に記載の方法により遺伝子導入を行った。結果を図15に示す。遺伝子導入の際の、硫酸プロタミン濃度およびトランスフェクション時のインキュベーション時間を、図15に記載のように変化させ、遺伝子導入の効率を、ルシフェラーゼ遺伝子の発現によって測定した。トランスフェクションを行った条件の範囲内では、100μg/mlの硫酸プロタミンを使用し、60分間のトランスフェクション処理をした場合に遺伝子導入効率が最大であったが、硫酸プロタミン濃度をさらに増加させれば、遺伝子導入効率のさらなる増加が予測される。
【0116】
(実施例13:HVJエンベロープベクターの各種生体組織内への遺伝子導入)
本実施例では、実施例11に記載のHVJエンベロープベクターを用いる、種々の生体内組織への遺伝子導入を例示する。
【0117】
(13.1:マウス肝臓)
HVJエンベロープベクターを、0.8%のオクチルグルコシドおよび200μgのpcLuciを氷上に1分間放置し、そして300μlのPBSに懸濁することによって調製した。調製懸濁液の1/10量(1,000HAUに相当)30μlを、70μlのPBSで希釈し(全量100μl)、マウス(C57BL/6)肝臓の葉(lobe)の1つに注入した。
【0118】
HVJ−AVE(Artificial Viral Envelop)リポソームを、200μgのpcLuciを用いて、ボルテックス/排出(vortexing/extrusion)、その後のスクロース勾配遠心分離(62,000g、90分間)によって調製した。次に、この調製物を、遠心分離(27,000g、30分間)によってペッレトとし、そして500μlのPBS中に懸濁した。このサンプルの100μlをマウス(C57BL/6)肝臓の葉(lobe)の1つに注入した。
【0119】
24時間後、注入された肝臓葉を単離して、その葉のルシフェラーゼ活性をPromega社のLuciferase Assay Systemを用いてアッセイした。結果を図16Aに示す。この結果から、明らかなように、本発明のHVJエンベロープベクターは、従来のHVJ−AVEリポソームと比べて約2倍の顕著に高い遺伝子導入効率を示した。
【0120】
(13.2:マウス子宮)
13.1と同様にHVJエンベロープベクターを調製した。50μlと100μlのサンプルを、PBSで希釈して500μlとし、マウスのファローピウス管に注入し、子宮頸を10分間結紮した。24時間後、マウス子宮を単離して、葉および子宮のルシフェラーゼ活性を、Promega社のLuciferase Assay Systemを用いてアッセイした。結果を図16Bに示す。本発明のHVJエンベロープベクターによって、マウス子宮への遺伝子導入が可能であったが、HVJ−AVEリポソームを用いた方法では、検出可能な程度の子宮組織への遺伝子導入が見出されなかった。
【0121】
pcLuciを含有するHVJエンベロープベクターを13.1と同様に調製した。LacZ発現のために、pEB−CMV−LacZ(13kb)を含有するHVJエンベロープベクターを、200μgのプラスミドを使用して調製した。これら各ベクターを含有するHVJエンベロープベクターを上記のように子宮に注入した。結果を、図16Cに示す。LacZ染色によって、主に子宮内膜の腺上皮でのLacZ遺伝子の発現が検出された。
【0122】
(13.3:ラット脳)
上記に記載のpcLuciを含有するHVJエンベロープベクターを調製したのと同様の方法によって、pEGFP−1(クラゲのグリーン蛍光タンパク質遺伝子(約0.7kb)を、サイトメガロウイルスプロモーターを有する発現ベクターに組み込んだベクター;Clontech社、Palo Alto,CAより入手可能)を含有するHVJエンベロープベクターを調製した。30μlのベクター(調製物の1/10であり、1,000HAUに相当)をSDラット(Sprague−Dawleyラット)に、頸動脈注入、または大槽より髄腔内注入した。遺伝子導入の3〜4日後、ラットを屠殺し、脳切片を固定化することなく調製し、そして蛍光顕微鏡下で蛍光を観察した。図16Dに示される結果のように、頚動脈注入及び大槽より髄腔内注入のいずれの場合も、脳内におけるグリーン蛍光タンパク質(GFP)の発現が認められた。これに対して、HVJ−AVEリポソームを用いて、同様の遺伝子導入をラット頚動脈より行った場合、脳内でのGFP発現は、認められなかった。
【0123】
(13.4:ウサギ眼)
pCDNA3(In Vitrogen社、SanDiego,CA)のHindIII/XbaI部位にヒトHGF(肝細胞増殖因子)遺伝子の変異体であるNK4 cDNA(1.4kb)をクローニングして構築されたpCMV−NK4を、大阪大学医学系研究科の中村敏一教授らより分与していただいた。
【0124】
400μgまたは800μgいずれかのpCMV−NK4を用いて、10,000HAUの不活性化HVJを用いた以外は、上記に記載のpcLuciを含有するHVJエンベロープベクターを調製したのと同様の方法によって、HVJエンベロープベクターを調製した。pCMV−NK4は、HGF機能を阻害する変異型HGFを発現するベクターである。50μlのベクター(調製物の1/6)を、新血管形成を誘導するために組換えVEGFのペレットで処理した、ウサギの角膜組織中に注入した。処置の7日後、ウサギを、屠殺し、目の中の新血管形成を観察した。結果を図16Eに示す。pCMV−NK4が容量依存的にVEGFによって誘導された血管新生を抑制した。
【0125】
(13.5:ラット肺動脈)
上記に記載のpcLuciを含有するHVJエンベロープベクターを調製したのと同様の方法によって、SV40プロモーターの制御下のLacZ遺伝子を有するpSV−LacZ(Promega社、Madison、WI)を含有するHVJエンベロープベクターを調製した。50μlのベクター(調製物の1/6)をラットの気管に注入した。遺伝子導入の3日後、ラットを屠殺し、組織を1%のグルタルアルデヒドを用いて固定化し、動脈中のLacZの発現を、X−galを用いて可視化した。結果を図16Fに示す。気管支上皮にLacZ染色を認めた。また、肺動脈からHVJエンベロープベクターを導入したときも気管支上皮に遺伝子発現を認めた(データを示さず)。
【0126】
(実施例14:ウイルスエンベロープベクターのドラッグデリバリーシステム(DDS)としての機能)
本発明の遺伝子導入ベクターは、オリゴヌクレオチドまたはデコイ核酸治療のためのドラッグデリバリーシステムとしても有用である。
【0127】
(14.1:蛍光オリゴヌクレオチドの導入)
本発明のウイルスエンベロープベクターを使用して、細胞への蛍光標識オリゴヌクレオチドの導入を行った。
【0128】
FITCで5’をラベルした20マーのオリゴヌクレオチド(5’−CCTTgAAGGGATTTCCCTCC−3’)194μg/92μ1 BSSを10,000HAUのHVJ(紫外線198ミリジュール/cm2で不活性化)の沈殿と混合し、TritonX−100(0.24%、最終濃度)を添加し、氷上で1分間処理し、1mlのBSSを加えて、遠心(15,000rpm、15分、4℃)した。沈殿に100μlのPBSを加えて、−20℃保存した。1ヶ月後、融解し、10μl分を5μgの硫酸プロタミンと混合し、500万個のBHK−21細胞(0.5ml倍地中)とインキュベート(10分、60分)した。導入翌日に蛍光顕微鏡で細胞の蛍光を観察したところ、図17Bに示すように、10分では10%程度のオリゴヌクレオチド導入効率であったが、図17Aに示すように、60分では80%以上の細胞にオリゴヌクレオチドが導入されていた。
【0129】
(14.2:Stat6デコイ核酸による接触性皮膚炎の治療)
本発明のウイルスエンベロープベクターを使用して、細胞へのデコイ核酸の導入を行った。
【0130】
Stat6のDNA結合配列をもつ二重鎖核酸(5’−GATCAAGACCTTTTCCCAAGAATCTAT−3’および3’−CATGTTCTGGAAAAGGGTTCTTAGATA−5’、(Wang,LHら、:Blood 95、1249〜1257、 2000))250μg/300μl BSSを30,000HAUのHVJ(紫外線99ミリジュール/cm2で不活性化)の沈殿と混合し、TritonX−100(最終濃度 0.24%)を添加し、氷上で1分間処理し、lmlのBSSを加えて、遠心(15,000rpm、15分間、4℃)した。沈殿に300μlのPBSを加えて−20℃保存した。このHVJエンベロープベクターを、マウスの皮下注入に用いたところ、IgE誘発のアレルギーと遅延型皮膚反応を抑制した。
【0131】
(実施例15:浮遊系細胞への遺伝子導入)
ヒト白血病細胞様であるCCRF−CEM、NALM−6、K−562を対象として遺伝子導入実験を行った。
【0132】
pCMV−Luciferase 200μg(92μl)を10,000HAUの不活性化HVJ(紫外線99ミリジュール/cm2)の沈殿と混合し、TritonX−100(0.24%、最終濃度)を加え、氷上で1分間処理し、1mlのBSSを加えて、遠心(15,000rpm、15分、4℃)した。沈殿に300μlのPBSを加えてHVJエンベロープベクターを調製した。ベクター60μl(2,000HAU相当)、硫酸プロタミン、および400万個の浮遊系細胞を、1.5mlのエッペンドルフチューブ中で混合し、10,000〜15,000rpm、10分、20℃の遠心を行った。その後、沈殿に培養液を加え、培養皿に移し、1日後に細胞のルシフェラーゼ活性を測定した。
【0133】
使用した細胞株は、HVJ−リポソームや既存のリポソーム試薬(Gibc BRLのLipofectin、Lipofectamineなど)を用いた場合には導入効率が極めて低い細胞株(特にCCRF−CEM、NALM−6)であるが、図18に示すように、これら細胞株に対する高効率の遺伝子導入が観察された。
【0134】
好ましい遺伝子導入の条件は、硫酸プロタミン600〜1,000μg/mlを添加し、遠心は10,000rpmまたは15,000rpmで、10分間、20℃での遠心をする条件であった。HVJエンベロープベクターによる有意な細胞毒性は認められなかった。また、遠心と硫酸プロタミンの添加の両方が、遺伝子導入に必要であった。
【0135】
(実施例16:癌組織への遺伝子導入)
pCMV−Luciferase354μg(92μl)を34,000HAUの不活性化HVJ(紫外線99ミリジュール/cm2)の沈殿と混合し、TritonX−100(0.24%、最終濃度)を添加して、氷上で1分間処理し、1mlのBSSを加えて、遠心(10,000〜15,000rpm、10分間、20℃)した。沈殿に300μlのPBSを加えて、−20℃で保存した。1日後、硫酸プロタミン500μg/ml、または1000μg/mlと混合し、その100μ1をマウスメラノーマB16−Flの腫瘍塊(径7〜8mm)に注入し、1日後にルシフェラーゼ活性を測定した。図19に示すように、腫瘍塊での遺伝子発現がみられた。好ましい硫酸プロタミン濃度は、500μg/mlであった。しかし、これより低い硫酸プロタミン濃度では、遺伝子発現を検出できなかった。
【0136】
(実施例17:ヘルペスウイルスエンベロープベクターの調製)
(17.1:不活性化ウイルスの調製)
1型単純疱疹ウイルス(HSV−1)(1010プラーク形成単位/m1)を大阪大学医学系研究科細菌学講座の山西教授より供与された。このウイルスの不活性化条件を培養サル細胞(Vero細胞)におけるウイルスのプラーク形成により検討した。β−プロピオラクトン(BPL)0.05%を用いたウイルスの不活性化では、Vero細胞でのプラークの出現頻度が、9.l×l0-4(プラーク/Vero細胞)であった。一方、紫外線200および400ミリジュール/cm2照射でのウイルスの不活性化は、それぞれ4.3×10-4、2.2×10-6(プラーク/Vero細胞)であった。
【0137】
(17.2:不活性化ウイルスを用いる遺伝子導入)
100μ1のHSV−1(109粒子)を620μ1のPBSで希釈後、紫外線400ミリジュール/cm2照射し、その10%量(72μ1)とDNA(pCMV−Luciferase 8.83μg/μl)と混合し、氷上で3% Triton−X100を8μ1加え(最終濃度、0.24%)、その1、2、3、4、5、6分後に1mlのPBSを添加して希釈した。各サンプルの100μ1をそのままBHK−21細胞(6ウェルプレート中)に導入した。細胞は10%のウシ胎児血清(FCS)含有ダルベッコ最少必須培地(DME)0.5m1/ウェルで培養した。また、別の実験において、各サンプルの100μlを硫酸プロタミン5μgと混合後、BHK−21に導入した。37℃、5% CO2のインキュベーター中で60分問放置後、培養液を10%FCS−DMEと交換した。22時間後にルシフェラーゼ活性を測定した。図20に示すように、本発明の方法を用いて調製されたヘルペスウイルスエンベロープベクターによる高効率の遺伝子導入が確認された。各サンプルとも形態学的な観察による細胞毒性は認められなかった。
【0138】
次に、Triton−X100で5分間処理したヘルペスウイルスエンベロープベクターを−80℃で2日間保存後、解凍し、再度BHK−21細胞に添加して導入効率を測定した。今回は導入60分後に10%FCS−DME 2.5ml/ウェルを加えて一晩培養して活性を測定した。血清の影響、ベクター量について検討した。
【0139】
図21に示すように、−80℃で2日間保存後であっても、なお高効率の遺伝子導入が確認された。血清10%を加えた培地を用いたものが、無血清培地よりも導入効率が高く、ベクター溶液200μ1(推定量:2.8×107ウイルス粒子/ウェル)が100μ1溶液(推定量:1.4×107ウイルス粒子/ウェル)より遺伝子導入活性が高かった。
【0140】
(17.3:不活性化ウイルスを用いる遺伝子導入)
上記の開示より、この界面活性剤を用いてエンベロ一プベクターを作成する技術はHVJのみでなく、広く脂質膜を有するエンベロープウイルスに適用可能であることが当業者に明らかである。従って、当業者が本発明の開示に従って、他のエンベロープウイルスを用いて、容易に遺伝子導入のためのエンベロ一プベクターを調製し得ることが明らかである。従って、レトロウイルス科、トガウイルス科、コロナウイルス科、フラビウイルス科、パラミクソウイルス科、オルトミクソウイルス科、ブニヤウイルス科、ラブドウイルス科、ポックスウイルス科、ヘルペスウイルス科、バキュロウイルス科、ヘパドナウイルス科などのウイルスのエンベロープベクターが作成可能である。これによりウイルスの有する組織指向性を利用した特定の臓器への標的導入が実現可能と考えられる。たとえば単純疱疹ウイルスのエンベロープベクターは神経指向性のベクターとして、エプスタイン−バーウイルスのエンベロープベクターはBリンパ球指向性のベクターとして、インフルエンザのエンベロープベクターは呼吸器指向性ベクターとして応用し得る。
【0141】
上記から、本発明の特定の実施態様が例示の目的について本明細書に記載されるが、種々の改変が、本発明の意図および範囲から逸脱せずに行われ得ることは、明らかである。具体的には、本明細書の実施例は、不活性化HVJを用いた遺伝子導入ベクターについて記載されてきたが、同様の調製方法を用いて、HVJ以外のウイルスを不活性化して本発明の遺伝子導入ベクターを調製すること、および不活性化工程を行わずに本発明の遺伝子導入ベクターを調製することは、本明細書の開示から当業者に明らかである。したがって、本発明は、添付の請求の範囲以外によっては限定されない。
【図面の簡単な説明】
【0142】
【図1】図1は、HVJエンベロープベクターを様々な回数で凍結融解し、培養細胞にトランスフェクションして外来遺伝子(ルシフェラーゼ遺伝子)の発現(ルシフェラーゼ活性)の程度を測定した結果である。
【図2】図2は、培養細胞に添加するHVJエンベロープベクターの調製に使用したウイルス数を同一として培養細胞にトランスフェクションした場合のルシフェラーゼ活性を測定した結果である。
【図3】図3は、HVJエンベロープベクターの外来遺伝子(ルシフェラーゼ発現ベクター)の量を様々に変えた場合のルシフェラーゼ活性を測定した結果である。
【図4】図4は、HVJエンベロープベクター調製のための緩衝液の種類を変えた場合のルシフェラーゼ活性を測定した結果である。
【図5】図5は、従来の遺伝子導入ベクター不活性化HVJ−リポソームを用いた遺伝子導入と、この発明の方法とを比較した結果である。
【図6】図6は、界面活性剤を用いる不活性化HVJエンベロープベクターの調製方法の概略を示す図である。
【図7】図7は、界面活性剤を用いて調製したHVJエンベロープベクター中に含まれるタンパク質の、SDS−PAGEパターンを示す図である。
【図8】図8は、HVJエンベロープベクターの陰性染色法を用いた電子顕微鏡写真である。(1)未処理のHVJ;(2)DNAを含まないオクチルグルコシド処理したHVJ;(3)オクチルグルコシド処理した、DNAを含有するHVJ。
【図9A】図9A〜Cは、図面に示した各オクチルグルコシド濃度、オクチルグルコシドによるHVJの各処理時間、超音波処理有り(sonic)または超音波処理なし、および各使用したベクター容量における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図9B】図9A〜Cは、図面に示した各オクチルグルコシド濃度、オクチルグルコシドによるHVJの各処理時間、超音波処理有り(sonic)または超音波処理なし、および各使用したベクター容量における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図9C】図9A〜Cは、図面に示した各オクチルグルコシド濃度、オクチルグルコシドによるHVJの各処理時間、超音波処理有り(sonic)または超音波処理なし、および各使用したベクター容量における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図10A】図10Aおよび10Bは、図面に示した各硫酸プロタミン(PS)の濃度および各トランスフェクト時間における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図10B】図10Aおよび10Bは、図面に示した各硫酸プロタミン(PS)の濃度および各トランスフェクト時間における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図11A】図11Aおよび11Bは、図面に示した各DNA量(実験に使用した量)、および各保存温度における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図11B】図11Aおよび11Bは、図面に示した各DNA量(実験に使用した量)、および各保存温度における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図12】図12は、図面に示した各HAUの力価のHVJを用いてHVJエンベロープベクターを調製し、遺伝子導入を行った場合の遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図13A】図13Aは、図面に示した各UV照射量における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図13B】図13Bは、図面に示した各β−プロピオラクトン(BPL)濃度における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図14】図14は、ヒト舌部の扁平上皮癌(SAS)に対する、図面に示した各硫酸プロタミン濃度および各トランスフェクションのインキュベーション時間における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図15】図15は、ヒト大動脈内皮細胞(HAEC)に対する、図面に示した各硫酸プロタミン濃度および各トランスフェクションのインキュベーション時間における遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図16A】図16Aは、マウス肝臓に対する、本発明のHVJエンベロープベクターおよびHVJ−AVE(Artificial Viral Envelop)リポソームを用いた遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図16B】図16Bは、マウス子宮に対する、本発明のHVJエンベロープベクターおよびHVJ−AVE(Artificial Viral Envelop)リポソームを用いた遺伝子導入効率を、ルシフェラーゼ活性で示したグラフである。
【図16C】図16Cは、マウス子宮に対する、本発明のHVJエンベロープベクターを用いたpEB−CMV−LacZの遺伝子導入後に、子宮組織のLacZ染色を行った結果である。LacZ染色によって、主に子宮内膜の腺上皮でのLacZ遺伝子の発現が検出された。
【図16D】図16Dは、SDラット(雄性、体重300〜400g)に対して、10,000HAUのpEGFP−1を含むHVJエンベロープベクターを、大槽経由、頚動脈経由で投与した結果である。投与後3〜4日目に屠殺し、生切片を作製し、蛍光顕微鏡下で観察した。 (1)大槽経由での投与 脳の表面への、遺伝子導入が確認された。一方、脳深部への遺伝子導入は、確認されなかった。脈絡叢への遺伝子導入も確認されなかった。 (2)、(3)頚動脈経由での投与 投与を行った左側において、有意に高い発現が確認された。脳表面部分のみではなく、基底核部にも、発現が確認された。また、対脳の脳表にも、確認された。対脳の脳表での発現は、側副流(colateral flow)によって、対側に流れたものと考えられた。
【図16E】図16Eは、HGF機能を阻害する変異型HGFを発現するベクターであるpCMV−NK4が、容量依存的にVEGFによって誘導された血管新生を抑制した結果を示す図である。
【図16F】図16Fは、HVJエンベロープベクターを気管に注入して行った遺伝子導入の結果を示す図である。
【図17】図17Aおよび17Bは、細胞へのオリゴヌクレオチド導入の翌日に、蛍光顕微鏡で細胞の蛍光を観察した結果を示す。10分間のインキュベーションでは10%程度のオリゴヌクレオチド導入効率であった(図17B)。一方、60分間のインキュベーションでは80%以上の細胞にオリゴヌクレオチドが導入されていた(図17A)。
【図18A】図18は、ヒト白血病細胞株であるCCRF−CEM、NALM−6、K−562を対象として導入実験を行った結果である。これら細胞株は、HVJ−リポソームや既存のリポソーム試薬(Gibc BRLのLipofectin、Lipofectamineなど)では導入効率が極めて低い細胞株(特にCCRF−CEM、NALM−6)である。 硫酸プロタミン600〜1000μg/mlを添加し、遠心は10000rpmまたは15000rpmで、10分間、20℃での遠心をする条件において、高いルシフェラーゼ活性が得られた。有意な細胞毒性は認められなかった。また、遠心と硫酸プロタミンはどちらも導入に必要であった。
【図18B】図18は、ヒト白血病細胞株であるCCRF−CEM、NALM−6、K−562を対象として導入実験を行った結果である。これら細胞株は、HVJ−リポソームや既存のリポソーム試薬(Gibc BRLのLipofectin、Lipofectamineなど)では導入効率が極めて低い細胞株(特にCCRF−CEM、NALM−6)である。 硫酸プロタミン600〜1000μg/mlを添加し、遠心は10000rpmまたは15000rpmで、10分間、20℃での遠心をする条件において、高いルシフェラーゼ活性が得られた。有意な細胞毒性は認められなかった。また、遠心と硫酸プロタミンはどちらも導入に必要であった。
【図18C】図18は、ヒト白血病細胞株であるCCRF−CEM、NALM−6、K−562を対象として導入実験を行った結果である。これら細胞株は、HVJ−リポソームや既存のリポソーム試薬(Gibc BRLのLipofectin、Lipofectamineなど)では導入効率が極めて低い細胞株(特にCCRF−CEM、NALM−6)である。 硫酸プロタミン600〜1000μg/mlを添加し、遠心は10000rpmまたは15000rpmで、10分間、20℃での遠心をする条件において、高いルシフェラーゼ活性が得られた。有意な細胞毒性は認められなかった。また、遠心と硫酸プロタミンはどちらも導入に必要であった。
【図19】図19は、癌組織への遺伝子導入の結果を示す。癌組織である腫瘍塊における遺伝子発現がみられ、特に、硫酸プロタミン500μg/mlの時に高い遺伝子導入活性が得られた。これより低い濃度の硫酸プロタミンを用いた場合、遺伝子発現を検出できなかった。
【図20】図20は、ヘルペスウイルスエンベロープベクターを用いる細胞への遺伝子導入の結果を示す。総ルシフェラーゼ活性は低いが、Triton−X100での5分間の処理によって、最も導入効率の高いベクターが作製できたと判断された。また硫酸プロタミンを用いない調製方法が、導入効率が高かった。各サンプルとも形態学的な観察によって細胞毒性は認められなかった。
【図21】図21は、−80℃での保存後のヘルペスウイルスエンベロープベクターを用いる細胞への遺伝子導入の結果を示す。血清10%を加えた培地を用いた場合、無血清培地よりも導入効率が高く、ベクター溶液200μ1(推定量:2.8×107ウイルス粒子/ウェル)が100μ1溶液(推定量:1.4×107ウイルス粒子/ウェル)より活性が高かった。

【特許請求の範囲】
【請求項1】
ウイルスエンベロープを含む、遺伝子導入ベクター。
【請求項2】
前記ウイルスが、野生型ウイルスまたは組換え型ウイルス由来である、請求項1に記載の遺伝子導入ベクター。
【請求項3】
前記ウイルスが、レトロウイルス科、トガウイルス科、コロナウイルス科、フラビウイルス科、パラミクソウイルス科、オルトミクソウイルス科、ブニヤウイルス科、ラブドウイルス科、ポックスウイルス科、ヘルペスウイルス科、バキュロウイルス科、およびヘパドナウイルス科からなる群から選択される科に属するウイルス由来である、請求項1または2に記載の遺伝子導入ベクター。
【請求項4】
前記ウイルスがHVJである、請求項3に記載の遺伝子導入ベクター。
【請求項5】
請求項1〜4のいずれか1項に記載のベクターであって、;
該ウイルスを外来遺伝子と混合する工程、および
該混合液を2回以上凍結融解する工程、
を包含する方法によって調製される、遺伝子導入ベクター。
【請求項6】
請求項1〜4のいずれか1項に記載のベクターであって、該ウイルスを界面活性剤の存在下で外来遺伝子と混合する工程を包含する方法によって調製される、遺伝子導入ベクター。
【請求項7】
前記方法が、ウイルスを不活性化する工程をさらに包含する、請求項5または6に記載の遺伝子導入ベクター。
【請求項8】
前記界面活性剤が、オクチルグルコシド、Triton−X100、CHAPSおよびNP−40からなる群から選択される、請求項7に記載の遺伝子導入ベクター。
【請求項9】
前記界面活性剤が、オクチルグルコシドである、請求項8に記載の遺伝子導入ベクター。
【請求項10】
硫酸プロタミンを前記外来遺伝子に添加する工程をさらに包含する、請求項1〜9のいずれか1項に記載の遺伝子導入ベクター。
【請求項11】
動物生体内の組織に遺伝子導入するための、請求項1〜10のいずれか1項に記載の遺伝子導入ベクター。
【請求項12】
前記組織が、肝臓、骨格筋、子宮、脳、眼部、頚動脈、皮膚、血管、肺、心臓、腎臓、脾臓、癌組織、神経、Bリンパ球、および呼吸器官の組織からなる群から選択される、請求項11に記載の遺伝子導入ベクター。
【請求項13】
遺伝子治療のための、請求項1〜12に記載の遺伝子導入ベクターを含有する薬学的組成物。
【請求項14】
請求項1〜12に記載の遺伝子導入ベクターを含有する、遺伝子ライブラリーのスクリーニングのためのキット。
【請求項15】
遺伝子導入のためのウイルスエンベロープを含む遺伝子導入ベクターの調製方法であって、以下;
該ウイルスを外来遺伝子と混合する工程、および
該混合液を2回以上凍結融解する工程、
を包含する、方法。
【請求項16】
遺伝子導入のためのウイルスエンベロープを含む遺伝子導入ベクターの調製方法であって、該ウイルスを界面活性剤の存在下で外来遺伝子と混合する工程、を包含する、方法。
【請求項17】
ウイルスを不活性化する工程をさらに包含する、請求項15または16に記載の方法。
【請求項18】
単離された動物組織に遺伝子を導入する方法であって、以下;
所望の外来遺伝子を含有する請求項1〜12のいずれか1項に記載の遺伝子導入ベクターを調製する工程、
該遺伝子導入ベクターによって、該単離された動物組織に遺伝子を導入する工程、
を包含する、方法。
【請求項19】
浮遊細胞に外来遺伝子を導入する方法であって、以下:
該浮遊細胞と請求項1〜12のいずれか1項に記載の遺伝子導入ベクターとを、硫酸プロタミン存在下で混合する工程、
該混合液を遠心する工程
を包含する、方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図9C】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16A】
image rotate

【図16B】
image rotate

【図16C】
image rotate

【図16D】
image rotate

【図16E】
image rotate

【図16F】
image rotate

【図17】
image rotate

【図18A】
image rotate

【図18B】
image rotate

【図18C】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2007−190022(P2007−190022A)
【公開日】平成19年8月2日(2007.8.2)
【国際特許分類】
【出願番号】特願2007−19966(P2007−19966)
【出願日】平成19年1月30日(2007.1.30)
【分割の表示】特願2001−26185(P2001−26185)の分割
【原出願日】平成13年2月1日(2001.2.1)
【出願人】(500409323)アンジェスMG株式会社 (34)
【Fターム(参考)】