説明

重力により引き起こされる意識喪失に逆らう方法及びデバイス並びに新規なパルスオキシメータ・プローブ

【課題】 パイロットがGLOCをいつ体感しようとしているかを識別するために、プレチスモグラフ読取りを取得し、プレチスモグラフィを利用する方法及びデバイスの提供等。
【解決手段】 GLOCの予防支援システムであって、パイロットの中央源部位へ固定されるように構成され、中央源部位での血流を示す信号を生成すべく構成された少なくとも1つのパルスオキシメータ・プローブ10と、前記少なくとも1つのパルスオキシメータ・プローブと通信するように接続され、血流が所定レベルに接近しているかどうかを判断すべく構成された少なくとも1つの処理モジュール56を備えるアナライザ・ユニット58と、前記アナライザ・ユニットと通信するように繋がれ、所定レベル未満の血流に応答して所定の反応を有効化すべく構成された少なくとも1つの処理モジュール59を備える航空機コンピュータ51と、を備えたシステム。

【発明の詳細な説明】
【技術分野】
【0001】
本願は、米国仮特許出願第60/600,548号の出願日である2004年8月11日の利益を主張するものである。
また、本願は、重力により引き起こされる意識喪失に逆らう方法及びデバイス並びに新規なパルスオキシメータ・プローブに関する。
【背景技術】
【0002】
重力により引き起こされる意識喪失(GLOC:gravity−induced loss of consciousness)は、人が一定時間著しく増加した重力負荷(+Gz)にさらされる場合に生じる現象である。戦闘機のような高性能航空機は、人体の限度を越える+Gzを生成する操作を可能にする。これは、GLOC並びに生理機能及び認知機能の重大な低下を起こしやすい。GLOCは、高性能航空機のパイロット及びクルーに対する主要な生理的脅威の内の1つである。1980年代半ば以来、米軍の一部門である米空軍は、GLOCにより29機の航空機と22人のパイロットを失った。(ブロートン(Broughton)「The Effect of Negative Gz Recovery from GLOC on Cerebral Oximetry」2003年テキサス州ブルックスAFB(エアフォースベース)にある米国空軍航空宇宙医学校での発表)似たような喪失割合は、高性能航空機を操縦するその他の役務従事者についても生じる場合がある。生命の損失に加えて、訓練及び失われた航空機のコストは驚異的である。
【0003】
意識耗弱(ALOC:almost loss of consciousness)は、GLOCに比してもっと一般的である。症状には、上機嫌、無感覚、置換え、離人症、聴覚刺激に対する乏しい応答、直接記憶障害、感覚異常、運動異常、混乱及び意識喪失のない夢状状態が含まれる。これらの症状はGLOCの前兆と考えられ、このGLOCは「増加したG(重力)によってもたらされる重要な血液循環の突然で危機的な低減の結果、人の現実に対する意識が失われた、変化した知覚に係る状態」として定義される。(モリセット・ケイ・エル(Morrissette KL)=マックガウアン・ディー・ジー(McGowan DG)a survey of military high−performance aviators. Aviat Space Environ Med. 2000年第71号第496頁乃至第500頁; バートン・アール・アール(Burton RR)G−Induced Loss of Consciousness: Definition, History, Current Status. Aviat Space Environ Med. 1988年第59号第2頁乃至第5頁)
【0004】
遠心機トレーニング、ウェイトトレーニング、耐Gスーツ、陽圧呼吸法、耐G緊張訓練及びコックピット内姿勢変形法を含め、いくつかの方法がG−レベル許容範囲を増すために開発されてきた。+9Gzの維持露出の際に明確なビジョンを維持するように訓練された人間の現在の能力は、すなわち第2次世界大戦の戦闘機パイロットに対する約+4Gzという防御+Gz許容範囲における増加は、その大部分は、GスーツとM−I、L−I及び加圧呼吸法(これらは、1940年代に開発されたバルサルバ法の変種である。)のような自己防衛緊張訓練とを一体的に使用することによるものである。(アール・ウッド(Earl Wood)G−induced Loss of Consciousness and its Prevention(1988)ミネソタ州ロチェスターメイヨークリニック。)しかしながら、そのような訓練にもかかわらず、GLOCに起因する10件の致命的な衝突の調査は、そのような手段がその問題を扱うことに至らないことを示す。Id。ウッドの調査は、そのような失敗の原因として考えうるものは、次のようなものであったと述べる。すなわち、(1)最小のパイロット努力によって、症状のない3−8秒というGLOCに先行する大脳の虚血無酸素症時間より長い時間に及んで7−10+Gz範囲での加速を維持するジェット動源戦闘機の増強能力、(2)不適切に行なわれたバルサルバのような緊張訓練、及び(3)低血圧血管迷走神経性型反応の進展であったと述べる。
【0005】
発明者らは、現在使用されている技術は、いつGLOCを被ろうとしているのかを認識する負担を最終的にはパイロットに課したので、GLOC(これは、この文献では、ALOCとGLOCの両方に属する。)の問題を十分に扱わないと考える。
【0006】
【非特許文献1】モリセット・ケイ・エル(Morrissette KL)=マックガウアン・ディー・ジー(McGowan DG)a survey of military high−performance aviators. Aviat Space Environ Med. 2000年第71号第496頁乃至第500頁
【非特許文献2】バートン・アール・アール(Burton RR)G−Induced Loss of Consciousness: Definition, History, Current Status. Aviat Space Environ Med. 1988年第59号第2頁乃至第5頁
【非特許文献3】アール・ウッド(Earl Wood)G−induced Loss of Consciousness and its Prevention(1988)ミネソタ州ロチェスターメイヨークリニック
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は、上記のような背景に鑑みてなされたものであり、従来技術の欠点ないし問題点を克服することを課題とする。
【課題を解決するための手段】
【0008】
本願主題発明は、プレチスモグラフの読取りを得て、パイロットがGLOCを体感しようとしているのはいつなのかを識別するためにプレチスモグラフィを利用し、また、差し迫ったGLOCの徴候及び症状を認識するようにパイロットを訓練する方法、デバイス及びシステムに属する。さらに、他の実施形態において、本願発明は、パイロットに対しGLOCを被ろうとしている瞬間だと警告し、且つ/又は所定の訂正動作を採るように航空機に指図することにより破滅的な損害又は損傷を自動的に防ぐように設計された方法及びデバイスに属する。最後に、主題発明は、遠心機及び航空機における訓練の際になされた測定が、GLOC予防操作を最適化するようにパイロットに教示すべく、リアルタイムフィードバックのために表示されることを可能にし、また、先に収集されたデータに基づいて各々のパイロットがGLOCの初期段階にいつ入るのかを判定するようにフライト・システムへプログラムすることが可能なGLOC「プロファイル」を創るために、各々のパイロットのプレチスモグラフィ・データを提供すべく保存及び使用されることを可能にする。
【0009】
他の側面によれば、主題発明は、新規なパルスオキシメータ・プローブに属する。ここで用いられる「パルスオキシメータ・プローブ」という用語は、動脈血酸素飽和のパルスオキシメトリ測定に用いることができ、且つ/又はプレチスモグラフィに用いることができるプローブを意味する。
【発明を実施するための最良の形態】
【0010】
図1において、人又は非人の鼻孔へ快適に配置することが可能となるように設計された鼻用パルスオキシメータ・プローブ10が示されている。鼻用プローブ10は、シリコン、ゴム、プラスチック若しくは他の高分子基材、又は他の適当な材料を含め(これらに限定されない。)、広範囲の材料から作製することができる。好ましくは、該鼻用プローブは、ユーザによる適切な快適性を可能にすべくソフトでフレキシブルな(補聴器イアモールドに類似した)材料を、少なくとも部分的に、備えているが、鼻の内部壁に適切に一致して、ユーザの鼻の中にプローブを固定すべく摩擦抵抗を提供するために、十分な剛性を有している。鼻用プローブ10は、チャネル15が描かれている第1インサート16と、チャネル17が描かれている第2インサート18とを備える。チャンネル15、17は、ユーザがユーザの鼻の内外に吸入及び呼出するときに、空気の滑らかな流過を可能にするような寸法となっている。インサート16の内壁において又はその内壁上に配置されているのは、発光ダイオード(LED:light emitting diode)のような光生成源である。光検出器14が、インサート18の内側領域上に又はその領域内に配置されている。ワイヤ20、22が、光生成源12と光検出器14にそれぞれ接続されている。ワイヤ20、22の取扱いを支援するために、ワイヤ20、22は、スリーブのようなファスナ24によって一緒に固定されていてもよい。当業者は、ワイヤを束ねるために、クリップ、タイ、リング、バンドなど(これらに限定されない。)を含むあらゆる手段が、この目的のために用いられてもよいことを理解するであろう。
【0011】
加えて、発明者らは、用いられてもよいプローブの形を制限するつもりでない。米国出願第10/176,310号、第10/751,308号、及び第10/749,471号は、ここでの教示と一致して使用するために実施可能な種々のプローブ実施形態を開示する。これらの出願も、LEDと光検出器の機能的及び技術的側面を教示する。
【0012】
ここで用いられているように、「中央源部位(central source site)」という用語はユーザの首より上の部位を意味し、そのような部位での血流に関する情報はユーザの脳に対する血流と相関する。中央源部位の例には、舌、唇、頬、鼻腔、鼻中隔、鼻翼、耳介前方領域、耳介後方領域及び耳が含まれるが、これらに限定するものでない。
【0013】
図2は、図1に示される鼻用プローブ実施形態10の断面側面図を示す。1つ又は複数のLED12と光検出器14とが、相互に対向して配置されている。酸素飽和度をモニタするためには、2つ以上のLEDが典型的には必要である。プレチスモグラフィについては、1つのIR LEDのみが必要である。さらに、具体的な機序又は理論は措くとして、酸素飽和度における変化より遥か前にプレチスモグラムがGLOCの兆しを示すであろうということが発明者らの確信である。しかしながら、主題発明のプローブ及び方法は、ユーザのプレチスモグラフィ及び酸素飽和度の両方をモニタリングするために設計して使用してもよいと思料する。
【0014】
インサート16は、内側領域21と側腹領域25を備える。インサート18もまた、内側領域23と側腹領域27を備える。ユーザの鼻中隔は、インサート16、18のそれぞれの内側領域21、23によって定義されたスペースにあるであろう。したがって、該内側領域は、ユーザの鼻中隔と接触する該インサートの部分を表わす。該側腹領域は、ユーザの鼻腔に隣接した該インサートの部分を表わす。開示された実施形態はこれらインサートが、各インサートが内側領域と側腹領域がある状態で、完全に内側チャネルを定義することを示すものの、インサートは内側チャネルの周りの全周囲未満を定義するように作られていてもよい。ワイヤ20、22は、LED12と光検出器14にそれぞれ接続される。
【0015】
図3は、鼻孔に鼻用プローブ実施形態10を配置された者の側面図を示す。ワイヤ20、22は、スリーブによってともに覆われ且つ固定され、一体となってワイヤ32を形成する。
【0016】
図4は、マスク40に取り付けられたヘルメット46を着用しているパイロット44を示す。マスク40は、マスク隔室43へ取り付けられたエアホース48を備える。パイロットは、彼の鼻45に、図1に示された鼻用プローブ10を配置している。ワイヤ20、22を含んでいるワイヤ32が、マスク隔室43において定義された穴42を通り抜けている。該ワイヤはマスク及び/又はエアホース48に種々の方法で固定されてもよいことが当業者によって理解されるであろう。たとえば、ホース48は、そこに定義され、ワイヤ32が通ることが可能なチャネルを有していてもよい。図4に示される実施形態は、最も恐らくは、ワイヤ32をホース48の外部に固定することを備え、それがパイロット44の行動を妨害しないようにするであろう。ワイヤ32は、光検出器から、ここで更に詳細に議論される信号プロセッサとアナライザのユニットまで、信号を伝播する。マスク、鼻、頬等に関連して用いられるプローブは、具体的に示された実施形態に制限されるものでないことを再言することが重要である。
【0017】
図5に移り、そこでは、パイロットによって装着されているパルスオキシメータ・プローブから得られた信号を処理し、前記パルスオキシメータ・プローブから受信された一定の情報に応じて応答するシステム50が示されている。当該システムは、ライン52、54から信号を受け取って処理するように構成されたアナライザ・ユニット58を備える。当業者は、その信号が別の信号プロセッサによってある程度前処理され、その後前記アナライザ・ユニット58に1つの信号ストリームとして送られてもよいことを認識するであろう。このように、アナライザ・ユニット58は、ライン52、54の何れか一方又はそれらの両方から信号を受け取るように構成されている。アナライザ・ユニット58は、該パルスオキシメータ・プローブから受け取った信号がGLOCの誘発を示す血液量の減少に関係するかを判断するソフトウェア及び/又は電気的/回路構成部品を備えた処理モジュール56を備える。アナライザ・ユニット58は、また、警告信号を生成するように構成された別の処理モジュールを備えていてもよい。
【0018】
典型的な高+Gz訓練の際には、パイロットは、最大限の深い息をできるだけ速くして、吸下しつつ短時間の間それを維持し、そして次に、瞬間的に力強く呼息を行なうか、あるいはまた、深い息を吸い込んで、すぼめられた唇に抗ってそのエアを連続的に吐き出すように訓練される。これらの訓練による目的は、酸素化された血液を一時的に(3−5秒)頭の中に「捕捉」し、急速に、血液が肺に戻ることを可能にすることである。これらの訓練は、高+Gz時間の始めから終わりまでの間、5−10秒のインターバルで繰り返される。最大吸息を取り入れて、次にまた、吸下して抵抗に抗って吸息を解放することの何れもが重要である。深く息を中へ吸って吸下することは血液が頭へ行くのを強要するが、訓練があまりに長い間維持される場合、心臓に対する静脈還流は妨げられ、脳に対するフローは減少し、そしてGLOCが続いて起こる。このように、GLOCを予防する訓練は「両刃の剣」であり、正しく行なわれなければならず、さもなくば、それらはGLOCを事実悪化させてしまう。
【0019】
開示されたシステムは、パイロットがこれらの訓練を能率的に行うのを助けるべく可視の且つ/又は可聴のキューを介して実時間フィードバックを行なうために、遠心機及び航空機訓練の際に用いることができる。加えて、最善の訓練が得られる場合、当該システムは、GLOCの発現を示すプレチスモグラムを保存することができる。これは、プレ+Gzプレチスモグラムの振幅を評価し、その後、プレチスモグラフィ信号が、いつ各パイロットのために個別化されたプレ予+Gz値の所定割合分減少したのかを認識し、そしてGLOCがいつ差し迫るか(ここに定義されたプレGLOC条件として)を判定するシステムとして構成することができる。パイロットの物理的特性を含む多数の要因は、被る+Gz負荷に耐える彼らの能力に影響を及ぼす。個別化された情報は、水平飛行及び+Gz演習の両方の間にプレチスモグラム(したがって頭に対する血流)を絶えず評価する計算機システムにロードすることができ、所定のデータに基づいて、パイロットが力及び頭に対する血流の減少を経験するところであり、高+Gzロードが維持されればGLOCに帰着する、と判定することができる。従来の研究は、脳血流量(CBF:cerebral blood flow)がベースライン・フローから72−80%減少した後およそ5−8秒後に、無意識が続いて起こることを示す。(フローレンス・ジー(Florence G)、ボニエ・アール(Bonnier R)、リオンデ・エル(Riondet L)、プラグネ・ディー(Plagnes D)、ラガルド・ディー(Lagarde D)、ヴァン・ビール・ピー(Van Beers P)、セラ・エイ(Serra A)、エティエンヌ・エックス(Etienne X)、トゥラン・ディー(Tran D):Cerebral cortical blood flow during loss of consciousness induced by gravitational stress in rhesus monkeys. Neurosci Lett. 2001;305:99−102.)
GLOC警報システムは、+Gz加速がちょうど始まる時のプレチスモグラフの振幅を評価し、+Gz演習の間のプレチスモグラフの振幅をモニタリングするように設計することができる。該プレ+Gz振幅のプリセットされた割合で、警報を作動させることができる。パイロットが警報に応答せず、且つ振幅がCBFに危険的な減少の方(例えば、ベースライン・フローより下へ65−85%)へ低下し続ければ、自動操縦装置が制御を採り、プレチスモグラフ振幅が危険水準より上に増加するまで+Gz負荷を減少させることができる。
【0020】
このように、別の実施形態によれば、図16に示されるように、主題発明は、個人の頭への血流を低下させてGLOCをもたらすであろうGzロードと持続時間の量に関する個別化されたプロファイルを得る方法に属し、該方法は、該個人をGz負荷増加勾配にさらすことと900、中央ロケーションでパルスオキシメータの使用を通じて頭に対する血流をモニタリングすることと910;血流の減少と該個人に対してGLOCをもたらす減少血流持続時間とを判定することと920;該個人のためのデータ・プロファイルを取得することと930;航空機コンピュータに該データ・プロファイルをロードすることと940、を備える。個別化されたデータ・プロファイルを実現することは、個人がいつGLOCを体感するかを予測する精度を増加し、したがって、該個人のためにGLOCをより好ましく防ぐために用いることができる。特に、データ・プロファイルを含んでいる処理モジュールは、該個人のための、トリガされた時に警報を始動させ且つ/又は訂正操作を採用するように航空機コンピュータに指図するという、プレGLOC条件を確立することができる。「プレGLOC条件」ないし(1つ又は複数の)「条件」という用語は、ある個人にとってのGLOCに先行し、GLOCへと繋がりそうな、経験的に決定された血流条件及び持続時間条件を表わすが、しかしそれらは、パイロットがGLOCを回避するために反応することを可能にするようにGLOCより十分前に所定時間において確立される。かかる個別化されたプロファイルの使用は、また、該個人のための不必要な誤報を回避するであろう。それは、GLOCを引き起こすのに十分な生理的条件が各パイロットによって変化するので、パイロットに対し航空機への多くの制御を与えるであろう。パイロットは、遠心機演習、空でのフライト演習、又は他のGz負荷を生成する手段の使用を通じて、Gz負荷を受けることができる。遠心機は、近くでそれを制御してモニタリングすることができるので、最も好適な手段である。
【0021】
他の実施形態において、GLOC回避訓練は、主題発明の方法を用いて実行することができる。各パイロットのためのGLOCに繋がる生理的条件を近接してモニタリングすることによって、各パイロットは、彼らがいつGLOCに突入しようとしているのか感知することができ、また、バルサルバ演習又は他の訂正動作に対して適切に対応するように訓練することができる。好適な実施形態において、トレーニング過程の一部として、パイロットは、彼がプレGLOC条件に突入しようとする時に、当該パイロットに通知するためにフィードバック信号が与えられる。これは、より迅速に該条件を認識するために、プレGLOC条件に関連する体内の感情及び感覚を、パイロットが関連付けることを支援するであろう。さらに、以下で議論するように、バルサルバ演習を抑えすぎることは非生産的な効果があるかもしれない。主題訓練方法の利用は、パイロットが最適なバルサルバ演習技術を実施して精緻にすることを可能にするであろう。フィードバック信号が実現されてもよい。これは、パイロットがバルサルバ演習技術について適切にタイミングをとるのを支援するであろう。
【0022】
図5に戻り、システム実施形態50において、アナライザ・ユニット58は航空機コンピュータ51へ統合されたものとして示されている。航空機コンピュータ51は、パイロットからの入力により、又は入力なくして、自動的に訂正フライト操作を行なうように構成された処理モジュール59を備える。航空機コンピュータ51も、所定の低レベルの血流を示す前記航空機コンピュータ51に対して信号を送るアナライザ・ユニット58に基づいて起動される、アラーム55に接続されている。具体的な実施形態において、血流における変化の検出とモニタリングは、通常のGz条件の下のプレチスモグラフィ信号のベースライン値を設定し、次に、後に得られたプレチスモグラフィ信号を前記ベースライン値と比較することを備える。典型的な実施形態において、当該アナライザ・ユニットは、ベースライン値を設定し、連続的に信号をモニタリングし、そしてベースライン値と比較するように構成された処理モジュールを備える。
【0023】
図6は、パイロットによって装着されているパルスオキシメータ・プローブから取得された信号を処理し、前記パルスオキシメータ・プローブから受信された一定の情報に応じて応答する他の実施形態システム60を示す。システム60は、ワイヤ52、54に接続された独立型ユニットであるアナライザ・ユニット68を備える。アナライザ・ユニット68は、航空機コンピュータ61にライン63を通じて、また、直接にアラーム65にライン67を通じて接続されている。アナライザ・ユニット68の低血流判定に基づいて、アナライザ・ユニット68は、航空機コンピュータ61に対して低血液量信号を送るのと同時にアラーム65を始動させることができる。念のために再述するが、航空機コンピュータ61はまた、ワイヤ69を介してアラーム65に接続されてもよい。システム実施形態50のように、航空機コンピュータ61は、訂正フライト操作を行なうように構成された少なくとも1つの処理モジュール(不図示)を備える。
【0024】
アラーム55、65は、フライト・パネル上で起動された光や、ブザーのようなアラームを鳴らすスピーカのように、自然に見ることができ且つ/又は聴くことができるものである。該航空機コンピュータは、また、航空機の翼をアンロードしてパイロットのGz負荷を減少させるように設計された訂正フライト操作を採用するように航空機に指図する少なくとも1つの処理モジュールを備えていてもよい。そのような操作の一例には、航空機を安定姿勢にして、飛行高度を水平にするために機首を下げることが含まれるが、これに限られるものでない。別の例には、急勾配(60−90度のバンク角度)の高速ターンの間に、直ちに翼を水平にすることが含まれる。翼のレベル姿勢は、脳に対する血流を引き起こすように設計されている。
【0025】
ここで用いられる「航空機」という用語は、地上より上を移動するために設計された任意の型のクラフトを意味する。航空機という語はまた、地面で動作するように設計されたビークルを含め、速さ、加速度及びマニューバリングの性質によって、かかる航空機のオペレータにGLOCを引き起こすことが可能な力を生成する任意の走行車両に言及するようにより広く且つ非一般的な意味においても用いられる。
【0026】
ここに用いられる1つ又は複数の「ワイヤ」という語は、電気信号を伝播する伝導特性を有する任意の構造を意味する。ワイヤという語はまた、2つの構造を接続するために用いられているワイヤとの語が、2つの構造間で電気信号を送信する無線手段によって代用されてもよいということを示すために、非一般的な方法において用いられている。また、ワイヤがプローブから別の部品まで信号を伝播するために用いられている場合、かかるワイヤは、信号を転送する無線手段と置き換えられてもよい。たとえば、従来の送信機/受信機をプローブに実装してもよく、プローブがそれを送り込む部品は信号を送る。
【0027】
ここで用いられる「通信するように接続されている」という用語は、ワイヤ又はワイヤレス接続のいずれかを介して、通信するように接続されている少なくとも2つの部品に対し及び/又は当該部品から電気信号を伝えるのに十分な任意の接続を指す。
【0028】
ここで用いられているように、「血流を示す信号」という用語は、血液の流れによって生じる組織内の血液量変化に対応する信号、すなわち、灌流又は血流を示す信号を意味する。マーレー=フォスター、The Peripheral Pulse Wave: Information Overlooked, Journal of Clinical Monitoring, 12:365−377 (1996)を参照。典型的には、これらの信号は、赤血球内のヘモグロビンによって(例えば光源を介して)伝えられたエネルギーの吸収の結果生成された波形を生成するパルスオキシメータ・プローブから導出される。そのような信号は、ここでは、プレチスモグラフィ信号と呼ぶ。
【0029】
「処理モジュール」という用語は、単一の処理装置又は複数の処理装置を含んでもよい。そのような処理装置は、マイクロプロセッサ、マイクロ・コントローラ・信号処理プロセッサ、マイクロコンピュータ、中央処理装置、フィールドプログラム可能ゲートアレイ、プログラム可能論理回路、状態機械、論理回路、アナログ回路、デジタル回路、及び/又は操作指令に基づいて信号(アナログ及び/又はデジタル)を扱うあらゆるデバイスであってもよい。処理モジュールは、メモリ装置に対し、操作可能に連結され、又は一体的に統合されてもよい。メモリ装置は、単一のメモリ装置又は複数のメモリ装置であってもよい。そのようなメモリ装置は、読み取り専用メモリ、ランダムアクセス記憶装置、揮発性メモリ、不揮発性メモリ、スタティックメモリ、ダイナミックメモリ、フラッシュメモリ、及び/又はデジタル情報を保管するあらゆるデバイスであってもよい。
【0030】
図7に移り、耳介前方反射型プローブ500が示されている。この耳介前方領域とは、耳の前の領域である。このプローブ500は、その遠位端511でプローブベース構造510を、その近位端512でコネクタ520を有するワイヤリングハーネス515を備える。耳介前方反射型プローブ実施形態500は、プローブベース構造510と耳のまわりで固定されるように、典型的にはユーザの耳の耳珠のちょうど前で固定されるように設計されている。プローブベース構造510はフレキシブルであってもよいが、プローブ500を使用している間に曲がりも変形もしないように、固いか又は実質的に固いのが好適である。好適な実施形態において、該ワイヤリングハーネスは、米国55432−3177ミミネソタ州ネアポリスコマースレーン(Commerce Lane)7300Minco Products, Inc.又は60060イリノイ州マンデライン(Mundelein)パークアベニュー207東NorthPoint Technologiesによって提供されているもののような(これらに限定されない)、フレックス回路で作られている。コネクタ520は、ワイヤリングハーネス515のワイヤに対し、アナライザ・ユニットに接続された別のワイヤを備えた対応するレセプタクルと、又はアナライザ・ユニット上のレセプタクルと直接に、電気通信させる任意の適当なコネクタであってもよい。
【0031】
図8に示されるように、ワイヤリングハーネス515は、十分に絶縁された導電性物質で作られたワイヤ516を備える。ワイヤリングハーネス515内の該ワイヤは、プローブベース構造510のLED 514及び光検出器512(例えばフォトダイオード)と接続されている。ワイヤリングハーネス515は、プローブ実施形態の固定を耳の周りに及び耳珠の前に適所に支援する接着剤524が提供されていてもよい。適当な場所にプローブ500を固定する前に、皮捲り層525が除去され、接着剤524が該プローブをユーザの皮膚に付着させる。
【0032】
耳介前方反射型プローブ500は、側頭動脈のプレチスモグラフィ読取り及び/又は酸素飽和測定を取得するように設計されている。側頭動脈は、(脳の一半球に対する主要動脈である)頚動脈から直接に分岐するので、理想的なターゲットである。LED 514は光を側頭動脈へ送り、血流の量、すなわち酸素飽和度に拠って、側頭動脈の血液は出射光の量子を吸収するであろう。その光のいくらかは、側頭動脈から反射されて光検出機構512により感知される。反射された光の量は、血液の量及び/又は動脈の中の血液の酸素飽和度と直接に関連している。LED 514と光検出器512の間に間隔をとることは、正確な測定を取得するために重要である。LED 514と光検出機構512の間の間隔は、典型的には約5mmから約35mmの範囲にある。好ましくは、当該間隔は、約10mmから約20mmの範囲にある。最も好適な範囲は、約12mmから約16mmの間隔である。
【0033】
他の実施形態において、主題発明は耳介前方の反射型プローブに類似するプローブ実施形態、すなわち少なくとも1つのLEDと光検出器を備えた単なるプローブベース構造に関し、それは、ヘルメットのパッド内のようなパイロットのヘルメットに埋め込まれる。プローブは、ユーザの頭にヘルメットを配置したときに、プローブが耳介前方領域に配置されて安定するような位置において、パイロットのヘルメットに埋め込まれる。したがって、典型的な実施形態において、プローブは、ユーザの耳をカバーし又は隣接するヘルメットのパッドに埋め込まれる。
【0034】
図9−12は、ユーザの鼻の翼状領域からプレチスモグラフィ読取り及び/又は酸素飽和度読取りを得るために構成された鼻用プローブ実施形態800を示す。鼻用プローブ実施形態800は、鼻の縦方向の隆起部に沿って走るベース部813を備える。ベース部813の遠位端833はブリッジ部819である。ブリッジ部819は、鼻を横に走り、一方のエンドに右フラップ部812を、そしてその左エンドに左フラップ817を備える。右・左のフラップ部812、817は、それぞれ、ユーザの右・左の鼻腔より上に配置される。左フラップ817は、それに取り付けられたか又は一体化された、少なくとも1つのLED 810ないし他の光源を有する。右・左フラップ812、817から下降して伸びると、右延長部823と左延長部824がある。左延長部824に取り付けられ又は一体化されているのは、ユーザの左の鼻孔に挿入されるように構成された羽根襞820である。羽根襞820は、その遠位端において、それに取り付けられ又は一体化されたフォトダイオード825を有する。羽根襞820は、フォトダイオード825が ユーザの鼻の外部に配置されたLED 810から真直ぐ横切って配置されるように、ユーザの鼻孔を覆うように曲げて挿入されるように設計されている。延長部823は、ユーザの右の鼻孔に挿入されるように設計されている羽根襞814を備える。ユーザの右の鼻孔における羽根襞814の位置は、羽根襞820に対してプローブ800を左へ引こうとする対抗力を提供する。したがって、右フラップ812、右延長部823、及び右羽根襞814は、鼻用プローブ800を適当な場所に固定するように共働する。図11に示されるように、鼻用プローブ800は、接着剤835と皮捲り層830が提供されている。使用前に、皮捲り層830は除去され、接着剤835はユーザの鼻の皮膚に鼻用プローブ800を固定するのを助ける。ベース813の近位端834では、コネクタ840が提供されている。ワイヤ836が当該鼻用プローブ実施形態において提供されており、LED 810及びフォトダイオード825からコネクタ840まで走り上がる。さらに、上で記載したようなフレックス回路が、LED 810とフォトダイオード825に必要な配線を提供するようにプローブ実施形態800に取り付けられ又は一体化されていてもよい。
【0035】
上に記載した新規な翼状プローブ設計の使用を通じて、発明者らは、突起した部分のちょうど後ろの鼻孔の外側に意外と優れたプローブ位置を発見した。これは、線維疎性結合組織と呼ばれる。発明者は、鼻孔外のこの部分は顔面動脈の鼻外側枝によって供給されるものだと推測するが、(鼻中隔上で見つかったキーゼルバッハ叢に似た)いくつかの枝が存在する。この位置はまた、前篩骨動脈吻合枝(鼻外枝)を含み、それは内頚動脈の外の枝である。したがって、線維疎性結合組織部位は、GLOCを予防するために、使用すべく配置されたプローブにとって意外に最適な部位である。したがって、好適な実施形態において、その線維疎性結合領域上への配置がユーザのために最適化されるように、翼状プローブ800は寸法どりされる。
【0036】
さらに別の実施形態によれば、主題発明は、耳介後部からの読取りを得するために設計されたプローブに属する。図17に示されるように、耳介後部1711は耳の後ろの部位である。後耳介動脈は、外頚動脈から真直ぐ行った小さな枝である。それは、耳介の後部を側頭骨の乳様突起に対して皮相的に分布する。外頚動脈へ近接しているということは、耳介後部からの読取りが、前部のプローブよりも頚動脈の血流に対して改善された洞察を提供できることを意味する。加えて、側副血流はこの位置には存在しないようであるので、それは、頚動脈を通る一方性のフローに係る良い表示を与える。別の直接的利点は、動脈の皮相的な性質であり、それを覆う皮膚の相対的に薄い層と結合されている。前述の特徴に加え、堅い側頭骨がすぐ下にあるという事実は、耳介後部を反射モニタリングにとっての理想的な部位にさせる。
【0037】
耳介後部での反射モニタリングの別の区別可能な利点は、前部モデルにより時おり経験される、飽和度読取りに干渉する静脈血が存在しないということである。皮膚の薄い層及び動脈からの強い脈動は、正しい動脈飽和度が計算されることを可能にする。他の利益は、読取りに干渉する髪の毛の不存在並びに皮脂及び汗腺が少ないことが含まれる。最後に、耳の後ろの領域はプローブを固定するのが簡単であり、それは通常他のデバイスではやり難い。したがって、別の実施形態によれば、主題発明は、細長本体部1710を備えた耳介後部反射プローブ1700に属する。細長本体部1710は、ユーザの耳の少なくとも一部の周りを包むように曲げられている。細長本体部1710は、遠位端1713と近位端1714を備える。近位端1714では、該細長本体は、それに取り付けられ又は一体化されたプローブベース構造1715を有する。プローブベース構造1715は、少なくとも1つのLED 1716と少なくとも1つの光検出器1717を備える。少なくとも1つのLED1716と少なくとも1つの光検出器1717は、ワイヤ1718と接続されて電気的に通信可能となっている。ワイヤ1718は、プローブベース構造1715から延びて、コネクタ1719で切れていてもよい。ワイヤは、適用に応じて様々な長さとなろう。たとえば、ワイヤは、プローブベース構造1715の近位端1721で切れていてもよいし、あるいはプローブベース構造1715の外に一定距離延び、航空機コンピュータ若しくはその構成部品(例えば信号処理ユニット、アナライザ・ユニットなど)に接続していてもよい。
【0038】
他の実施形態において、主題発明は、耳介後部反射プローブ1700に類似するプローブ実施形態、すなわち単に少なくとも1つのLEDと光検出器を備えたプローブベース構造1715に関し、これは、ヘルメットのパッド内などのように、パイロットのヘルメットへ埋め込まれる。プローブは、ユーザの頭にヘルメットを配置したときに、プローブが耳介後部に配置され安定する位置でパイロットのヘルメットへ埋め込まれる。
【0039】
追加的な実施形態によれば、図18に示されるように、主題発明は、外耳道から、より詳細には鼓膜の動脈からプレチスモグラフィ読取りを取得する外耳道プローブ実施形態1800に属する。プローブ1800は、耳の中の配置を支援するために先細となっているが、先細となっていなくてもよい。プローブは、外耳道に最初に挿入される内側端部1810、及び外側端部1820を備える。LEDは1812でプローブ1800の一面上に提供され、そしてその反対側に光検出器1814が提供されている。当業者は、LED 1812及び光検出器1814の空間的構成及び配置が慣例の実験によって最適化されてもよいことを認識するであろう。LED 1812と光検出器1814に接続されているのは、それぞれ、ワイヤ1822と1824であり、それらはワイヤ1816を形成するように途中から一体となっている。ワイヤ1816は、出口1818から外側端部1820に出る。プローブ1800は、米国特許第5,213,099号に記載されているものと類似しているが、外耳道からプレチスモグラフィ読取りを取得するために特別にアレンジされて用いられている。’099号特許は、酸素飽和度とパルス読取りを取得するために外耳道プローブを使用することを教示するものの、モニタ血流をモニタするための及びGLOCのリスクを減少する方法としてのプレチスモグラフィの使用を思料することも、教示することもない。発明者らは、血流(又は灌流)を正確にモニタリングし、迅速にプレ予GLOC条件を判定するのに、プレチスモグラフィ読取りが特に有利であることに気付いた。
例1
【0040】
パルスオキシメータ・プローブをある人の右の頬と左の頬に配置した。図13aは、その人の右・左のプレチスモグラフ読取値を示す。ある時点で、その人の右の頚動脈を押圧し、これによって血流を止めた。図13bは、両方の頬からモニタしながら、一方の頚動脈を押圧する効果を示す。右の頬プローブからの信号の振幅は劇的に減少する(矢印を参照)。図13cは、頚動脈が解放されたとき、右の頬からのプレチスモグラフィ信号がスパイクし(充血反応、矢印を参照)、そして次に通常の振幅に戻ることを示す。GLOCに、プレチスモグラフの振幅における同様又はより大きな減少が、頭からのプローブ・モニタリングの全てからみられるであろう。脳への血流を減少し、且つ/又はGLOCを引き起こすのに十分なGz負荷の量は変化すると考えられる。各パイロットにおいてプレ+Gz血流の何パーセントでGLOCに至るかを知ることによって、その人のためのアラームを最適化する、各パイロットのためのパーソナル・プロフィールが生成されうる。
例2
【0041】
発明者らは、重要な情報が信号から推定されうる、プレチスモグラフィ信号の新規処理法を開発した。この新規な処理法は、プレチスモグラフィ信号ストリームから取得可能であると判断されるより前でない時点において、情報を明らかにする。前もって、プレチスモグラフィ信号ストリームを、指又は他の四肢のような末梢部位から典型的に取得した。中央部位からプレチスモグラフを取得することは、末梢部位からのプレチスモグラフにおいて見られるバックグラウンドノイズの多くを欠くというのが発明者の確信であり、また、呼吸数及び静脈のキャパシタンスのような情報が推定可能であるという認識に結局導くのは、その「あまり乱れていない」信号の獲得である。
【0042】
パルスオキシメータ・プローブから取得されたローの信号ストリームは、パルスオキシメータ・プローブの光検出器に当るLEDからの光量と関連する。光検出器からの信号の振幅は、LEDと光検出器の間の光の吸収量に反比例する(より大きな吸収によって光検出器を励起する光はより少なくなる)。吸収光は、組織による吸収、静脈血による吸収、動脈血による吸収、及び各心拍での動脈血の脈動による吸収を含め、複数の要因による。典型的には、光検出器からのロー信号は処理されて(例えばアーティファクトの除去や信号の自動ゲイン)、2つの成分へ分離される。2つの成分は、動脈における血液の脈動及びフローによってもたらされる各心拍変化と関連した経時変化する信号(典型的にはAC成分と呼ばれる)、並びに、その信号の他の生理的及び物理的特性と関連した、典型的にはDC成分と呼ばれる低周波成分(非拍動性動脈血、拍動性及び非拍動性の静脈血、組織及び骨を含む)であることが意図されている。AC信号は、見落とされたプレチスモグラフィ及びDC成分と典型的には称される。
【0043】
AC成分の振幅は、検出器を流れ過ぎる動脈血の量に関する情報を含む。正しくこの情報を解釈するために、AC成分及びDC成分を、標準モニタにおけるよりも厳格に分離しなければならない。特に、拍動性の動脈成分は、心臓の各心拍変化に関連する情報のみを含むべきである。DC成分は他方、呼吸器系の効果、血液湛水、静脈インピーダンスなど)の生理からの低周波効果及び物理センサ変化(例えばプローブの方向変化など)を含むべきである。
【0044】
主題発明の一信号処理方法実施形態によれば、プレチスモグラフにおける個人の心拍動の効果は別の情報から分離される。これは、基本的に十分なAC成分を取得することを目的としてDC成分を切り捨てる従来の処理とは基本的に幾分異なる到達点である。標準的手法は、ローパスフィルタによってDC成分を除去することを含むDC除去技術を実装することである。しかしながら、この技術は、2つの情報源からデータのすべてを十分に分離するとは限らない。主題加工方法はより高いフィディリティ信号を取得するが、これはプレGLOC条件を判定するための変数の的確な測定を取り扱う場合に重要である。具体的な実施形態において、プレチスモグラフィ信号のハイファイAC成分とDC成分(当該技術において従前無視されたもの)は、以下のものによって達成される:
1)信号の山と谷を離散的に選択すること(改善されたノイズ/アーティファクト排除は、フーリエ解析又は自己相関解析によって、すなわち過去の適切なデータから見積もって、予測される心拍数で存在する山と谷を探すことにより達成することができる。)
2)山と谷の間の中間点(又は最小値)を見つけること
3)これらの中間点(又は最小値)を繋ぐ補間された(恐らくは滑らかであるか又はスプライン状となっている)線としてDC成分を抽出すること
4)ロー信号からDC成分を引いたものとしてAC成分を抽出すること。
【0045】
図14は、頬に配置されたパルスオキシメータ・プローブからのプレチスモグラフを表わす。AC成分は上に提供され、DC成分は下に提供されている。AC成分において見られるように、頚動脈を押圧することは血流を減少させる(矢印を参照)。反対に、頚動脈を押圧した場合には、DC成分は上昇する(矢印を参照)。このことは、DC成分において表わされる生理現象についての発明者の確信を強固にする。すなわち、この例に関し、DC成分の増加は頬に流れるより少ない血液と、動脈のみが塞がれ静脈還流はそうでないので低い静脈インピーダンスと、の両方が存在することを示す。その効果は、より少ない血液が頬に流れ、その血液が頬を去ることができるということである。LEDと光検出器の間の血液は少ないので、信号の吸収は少なく、DCコンポーネント信号はより高くなる。AC成分とDC成分を分離することによって、動脈血フローおよび静脈還流に対する両方の効果を評価することができる(GLOCのための変数をモニタリングする場合の望ましい特徴である)。
例3
【0046】
図15において、DC成分は上に、AC成分は下にプロットされている。指プローブが心臓の高さに当初配置され、「ベースライン」AC成分の振幅が得られた。対象は、パイロットがGLOCを防ぐための保持+Gzの間に行うように教えられるものに類似するバルサルバ試験を行なった。しかしながら、バルサルバは10秒以上の間維持され、これは、GLOCを生じさせる共通問題である(あまりに長い間正圧をかけること)、血流減少(AC成分の振幅の低減)に帰着した。[062] 次に、対象は、(立ちながら)彼の頭の高さの上に彼の指を持ってきた。これは、AC成分の振幅の増加に帰着する。これはAC成分に関する従来の教示と矛盾し、これは、正確な反対結果を予測し、心臓に関する位置変化に対する局所的血管反応の効果を実証する。AC成分は、恐らくLEDと検出器の間の指にある細動脈の局所的血管拡張によるより低い血管インピーダンスとより多くの血流とが存在し、DC成分の増加によって実証されたように指により少ない静脈血が存在するので、増加する。対象は再びバルサルバ試験を行ない、血流(AC成分)は減少し、減少した静脈還流によりDC成分もまた減少した。
【0047】
最後に、対象は、彼の心臓の高さより下に彼の手を維持した。プレチスモグラフ信号の異なる成分についての本発明の新規な理解が予測するようにAC成分は、増加した静脈のインピーダンス及び細動脈と小静脈の間の圧力低下のために減少し、LEDと光検出器の間の静脈側により多くの血液が蓄積されたのでDC成分は減少した。上記と同様の結果がバルサルバ試験の間に生じた。各バルサルバには、小さいけれども検知可能なDC成分の減少があることに留意が必要である。上記は、DC成分が高度に正確なAC成分信号を得て、かつ静脈側の効果(すなわち静脈還流)を実証するためには、十分に分離なければならないということを更に実証する。
【0048】
本発明の種々の実施形態をここに示し記載したが、それらの実施形態は例を提示するためにのみ提示したものであることが自明であろう。多くの変形、変更及び置換を、当該発明から乖離することなくここに行なうことが可能であろう。したがって、本発明は、添付されたクレームの精神及び範囲によってのみ限定されることが意図されている。ここに参照したすべての特許と他の引用文献の教示は、それらがここでの教示と一致しないようにならない程度において、参照したことによってここに盛り込まれるものである。
【図面の簡単な説明】
【0049】
【図1】図1は、ユーザの鼻の中で固定するように設計されたパルスオキシメータ/プレチスモグラフィ・プローブの斜視図を示す。
【図2】図2は、図1に示された実施形態の側面断面図を示す。
【図3】図3は、図1に示されたパルスオキシメータ・プローブを鼻に挿入して固定したユーザの側面図を示す。
【図4】図4は、マスクを着用し、これと相互に作用するパルスオキシメータ・プローブを有しているパイロットの側面図を示す。
【図5】図5は、航空機コンピュータと統合されたアナライザ・ユニットを備える主題発明の実施形態の概略図である。
【図6】図6は、航空機コンピュータに操作可能に結合されたアナライザ・ユニットを備える主題発明の実施形態の概略図を示すダイヤグラムである。
【図7】図7は、主題発明に係る耳介前方反射プローブ実施形態の斜視図を示す。
【図8】図8は、主題発明に係る耳介前方反射プローブ実施形態の側面図を示す。
【図9】図9は、翼状パルスオキシメータ・プローブ実施形態の斜視図を示す。
【図10】図10は、図9に示される翼状パルスオキシメータ・プローブ実施形態の正面斜視図を示す。
【図11】図11は、FIG 9に示される翼状パルスオキシメータ・プローブ実施形態の後方斜視図を示す。
【図12】図12は、図9に示される翼状パルスオキシメータ・プローブ実施形態の下面図を示す。
【図13】図13は、ある人の右頬と左頬から得られたプレチスモグラフを示す。図13aは、頚動脈の押圧無しの、左右プレチスモグラフを示す。図13bは、右頚動脈の押圧ありの、左右プレチスモグラフを示す。図13cは、右頚動脈を解き放った後の、左右プレチスモグラフを示す。
【図14】図14は、頬に配置されたパルスオキシメータ・プローブからのプレチスモグラフを表わす。AC成分(又はこの例のために心性成分)は、上側で提供されており、DCオフセット(又はこの例のに非心性成分)は下側で提供されている。このAC成分において見られるように、頚動脈を押圧することにより血流が減少する(矢印を参照)。反対に、頚動脈が押圧された時に、DCオフセットは上昇する(矢印を参照)。
【図15】図15は、指から得られたプレチスモグラフを表わす。DCオフセットは下側にプロットされ、AC成分が上側である。
【図16】図16は、各人がGLOCに入るところかどうか判断するための情報を備えた、各人のために個別化されたデータ・プロファイルを得るための、主題発明の方法実施形態を図示するダイヤグラムを表わす。
【図17】図17は、耳介後方プローブ実施形態の斜視図を表わす。
【図18】FIG 18は、ユーザの外耳道からプレチスモグラフィ読取りを得るための、外耳道プローブ実施形態の斜視図を表わす。
【符号の説明】
【0050】
10 鼻用プローブ実施形態(パルスオキシメータ・プローブ)
500 耳介前方反射型プローブ(パルスオキシメータ・プローブ)
800 鼻用プローブ実施形態(パルスオキシメータ・プローブ)
1700 耳介後部反射プローブ(パルスオキシメータ・プローブ)
1800 外耳道プローブ実施形態(パルスオキシメータ・プローブ)

【特許請求の範囲】
【請求項1】
パイロットの頭に対する血流状態を航空機の操作中にモニタリングする方法であって、
前記パイロットの中央源部位にパルスオキシメータ・プローブを固定して、前記中央源部位での血流を示す信号を生成するように前記プローブを配置することと、
前記中央源部位での血流をモニタリングすることと、
前記血流が予め定められた値より下に落ちることに応じて所定の反応を有効化することと、
を備えることを特徴とする方法。
【請求項2】
前記反応は、アラームを生成することを備えることを特徴とする請求項1記載の方法。
【請求項3】
前記アラームは、可視、可触又は可聴の警告であることを特徴とする請求項2記載の方法。
【請求項4】
前記反応は、訂正フライト操作を試みるように前記航空機の航行制御システムに指示することを備えることを特徴とする請求項1記載の方法。
【請求項5】
前記プローブは、プレチスモグラフィ信号を生成することを特徴とする請求項1記載の方法。
【請求項6】
前記血流のモニタリングは、プレチスモグラフィ信号のベースライン値を設定し、続いて取得されたプレチスモグラフィ信号を前記ベースライン値と比較することを備えることを特徴とする請求項5記載の方法。
【請求項7】
前記プレチスモグラフィ信号はAC成分及びDC成分を備え、前記AC成分は前記プレチスモグラフィ信号の山と谷を同定することにより前記プレチスモグラフィ信号から分離され、前記山と谷の間の中間点又は最小値を同定し、前記中間点又は最小値を繋ぐ補間線によって前記DC成分を表わし、前記プレチスモグラフィ信号から前記DC成分を抽出し、前記AC成分を取得すること、を備えることを特徴とする請求項6記載の方法。
【請求項8】
航空機のフライト中にパイロットにガスを伝えるマスクであって、
前記パイロットの鼻と口を覆うように構成された隔室及び前記隔室へ取り付けられたエアホースと、
前記パイロットの中央源部位へ固定するように構成されたパルスオキシメータ・プローブと、
を備え、
前記パルスオキシメータ・プローブは、前記パルスオキシメータ・プローブによって生成された信号を伝播するためのワイヤに繋がれ、
前記ワイヤは、前記マスクに固定されていることを特徴とするマスク。
【請求項9】
重力により引き起こされる意識喪失の予防を支援するシステムであって、
パイロットの中央源部位へ固定されるように構成され、前記中央源部位での血流を示す信号を生成するように構成された少なくとも1つのパルスオキシメータ・プローブと、
前記少なくとも1つのパルスオキシメータ・プローブと通信するように接続され、前記血流が予め定められたレベルに接近しているかどうかを判断するように構成された少なくとも1つの処理モジュールを備えるアナライザ・ユニットと、
前記アナライザ・ユニットと通信するように繋がれ、所定レベルより下に落ちる前記血流に応答して所定の反応を有効化するように構成された少なくとも1つの処理モジュールを備える航空機コンピュータと、
を備えたことを特徴とするシステム。
【請求項10】
前記アナライザ・ユニットは、前記航空機コンピュータと一体化され、又は別ユニットを備えることを特徴とする請求項9記載のシステム。
【請求項11】
前記反応は、前記パイロットのための、可視アラーム、可触アラーム、可聴アラーム又はこれらの任意の組合せの生成を備えることを特徴とする請求項9記載のシステム。
【請求項12】
前記反応は、前記パイロットに加えられた重力を減少し又は反転すべく設計された訂正フライト操作を試みるように、前記航空機航行制御システムに指示することを備えることを特徴とする請求項9記載のシステム。
【請求項13】
パルスオキシメータ・プローブであって、
ユーザの第1の鼻孔への挿入のために構成され、側腹領域及び内側領域を備えて空気通過用のチャネルを定義する第1鼻挿入部と、
前記第1鼻挿入部の前記内側領域上に又はその領域内に配置されたLEDと、
前記ユーザの第2の鼻孔への挿入のために構成され、側腹領域及び内側領域を備えて空気通過用のチャネルを定義する第2鼻挿入部と、
前記第2鼻挿入部の前記内側領域上に又はその領域内に配置された光検出器と、
前記第1鼻挿入部及び前記第2鼻挿入部に接続されたブリッジ部と、
を備えることを特徴とするパルスオキシメータ・プローブ。
【請求項14】
航空機のコンピュータとともに使用するためのコンピュータ・プログラム製品であって、
パイロットがGLOCに突入しようとしていることの表示に応答するように前記コンピュータに指示する複数のコンピュータ可読プログラム・コード・モジュールが具現されたコンピュータ使用可能なメディアと、
前記コンピュータに前記パイロットの中央源部位での血流を示す信号をモニタリングさせるコンピュータ可読第1プログラム・コード・モジュールと、
前記コンピュータに血流が第1の予め定められた値に達したことを前記パイロットに警告するアラームを始動させるコンピュータ可読第2プログラム・コード・モジュールと、
前記中央源部位での血流が、前記第1の予め定められた値より低い血流を表わす第2の予め定められた値に達した場合に、前記コンピュータに訂正操作を試みさせるコンピュータ可読第3プログラム・コード・モジュールと、
を備えることを特徴とするコンピュータ・プログラム製品。
【請求項15】
前記コンピュータ可読第1プログラム・コード・モジュールは、前記コンピュータにパルスオキシメータ・プローブからのAC成分プレチスモグラフィ信号をモニタリングさせることを特徴とする請求項14記載のコンピュータ・プログラム製品。
【請求項16】
ユーザの鼻翼に使用するために設計されたパルスオキシメータ・プローブであって、
前記ユーザの鼻堤に沿って配置するために構成され、近位端と遠位端を備える細長いベースと、
前記細長いベースの前記近位端に取り付けられ又は前記近位端と一体化され、右端部と左端部を有するブリッジと、
前記ブリッジの前記右端部から延びる右フラップと、
前記ブリッジの前記左端部から延びる左フラップと、
前記右フラップ又は前記左フラップの何れか又は両方に配置された少なくとも1つのLEDと、
前記右フラップ又は前記左フラップの何れか又は両方から下に延び、少なくとも1つの光検出器が配置された少なくとも1つの羽根襞と、
を備え、
前記少なくとも1つの羽根襞は、前記少なくとも1つの光検出器が前記少なくとも1つのLEDから横切って整列されるように前記ユーザの右又は左の鼻孔に挿入可能に設計されていることを特徴とするパルスオキシメータ・プローブ。
【請求項17】
前記右フラップ又は前記左フラップの何れかから下に延び、少なくとも1つの光検出器が配置され、前記ユーザの右又は左の鼻孔に挿入可能に設計された第1の羽根襞と、
前記右フラップ又は前記左フラップの内、前記第1のフラップが延び下がっていない側から下に延び、前記ユーザの右又は左の鼻孔に挿入可能に設計された第2の羽根襞と、
を備え、
前記第1の羽根襞及び前記第2の羽根襞は、前記ユーザの鼻孔へ挿入した際にそれらの形状を維持するように十分に固いことを特徴とする請求項16記載のパルスオキシメータ・プローブ。
【請求項18】
該細長いベースの近位端で取り付けられ又は一体化され、対応するレセプタクルと取付け及び電気通信可能に構成されたコネクタを備えることを特徴とする請求項16記載のパルスオキシメータ・プローブ。
【請求項19】
ユーザの耳のまわりにマウント可能に設計され、該ユーザの耳介前方領域からの読取りを取得可能に設計された反射型プローブであって、
遠位端と近位端を備え、前記ユーザの耳の後ろの周囲に曲がるように形成されたワイヤリングハーネスと、
前記ワイヤリングハーネスにその遠位端で取り付けられ又は一体化されたプローブベース構造と、
前記プローブベース構造に配置された少なくとも1つのLEDと、
前記プローブベース構造に配置され、前記プローブベース構造に配置された前記少なくとも1つのLEDから近位へ上昇して間隔が置かれた少なくとも1つの光検出器と、を備えることを特徴とする反射型プローブ。
【請求項20】
前記ワイヤリングハーネスの近位端に取り付けられ又は一体化されたコネクタをさらに備えることを特徴とする請求項19記載の反射型プローブ。
【請求項21】
前記少なくとも1つのLEDは、前記少なくとも1つの光検出器から約5mmから約30mmの範囲内の間隔で遠位に配置されていることを特徴とする請求項19記載の反射型プローブ。
【請求項22】
前記少なくとも1つのLEDは、前記少なくとも1つの光検出器から約8mmから約20mmの範囲内の間隔で遠位に配置されていることを特徴とする請求項19記載の反射型プローブ。
【請求項23】
前記少なくとも1つのLEDは、前記少なくとも1つの光検出器から約10mmから約20mmの範囲内の間隔で遠位に配置されていることを特徴とする請求項19記載の反射型プローブ。
【請求項24】
ユーザの耳のまわりにマウント可能に設計され、該ユーザの耳介後部からの読取りを取得可能に設計された反射型プローブであって、
遠位端と近位端を備え、前記ユーザの耳の少なくとも一部の周囲で曲がるように形成された細長い本体部と、
前記ワイヤリングハーネスにその近位端で取り付けられ又は一体化されたプローブベース構造と、
前記プローブベース構造に配置された少なくとも1つのLEDと、
前記プローブベース構造に配置され、前記プローブベース構造に配置された少なくとも1つのLEDから遠位方向へ間隔が置かれた少なくとも1つの光検出器と、
を備えることを特徴とする反射型プローブ。
【請求項25】
前記プローブベース構造の近位端に取り付けられ又は一体化されたコネクタをさらに備えることを特徴とする請求項24記載の反射型プローブ。
【請求項26】
前記少なくとも1つの光検出器は、前記少なくとも1つのLEDから約5mmから約30mmの範囲内の間隔で遠位に配置されていることを特徴とする請求項24記載の反射型プローブ。
【請求項27】
前記少なくとも1つの光検出器は、前記少なくとも1つのLEDから約8mmから約20mmの範囲内の間隔で遠位に配置されていることを特徴とする請求項24記載の反射型プローブ。
【請求項28】
前記少なくとも1つの光検出器は、前記少なくとも1つのLEDから約10mmから約12mmの範囲内の間隔で遠位に配置されていることを特徴とする請求項24記載の反射型プローブ。
【請求項29】
GLOCを引き起こす人の頭の血流の低下をもたらすであろうGz負荷と持続時間の量に関する個別化されたプロファイルを取得する方法であって、
前記人をGz負荷増加勾配に晒すことと、
中央部位に配置したパルスオキシメータ・プローブの使用により前記人の頭に対する血流をモニタリングすることと、
該人にGLOCを引き起こす、血流減少、減少した血流の持続時間、又はこれらの両方を判定することと、
該人のためにデータ・プロファイルを取得することと、
を備えることを特徴とする方法。
【請求項30】
航空機コンピュータ上へ前記データ・プロファイルをロードすることをさらに備えることを特徴とする請求項29記載の方法。
【請求項31】
人から、プレチスモグラフィ読取り、酸素飽和度読取り、又はこれらの両方を取得する方法であって、
前記人の右又は左の鼻腔の外部に少なくとも1つのLEDを配置することと、
前記少なくとも1つのLEDからちょうど横切って該人の右又は左の鼻孔に少なくとも1つの光検出器を配置することと、
を備えることを特徴とする方法。
【請求項32】
前記人の鼻の前記人の線維疎性結合領域上に少なくとも1つのLEDが配置されていることを特徴とする請求項31記載の方法。
【請求項33】
人から、プレチスモグラフィ読取り、酸素飽和度読取り、又はこれらの両方を取得する方法であって、
前記人の耳介前方領域で前記人の側頭動脈上に少なくとも1つのLEDを配置することと、
前記人の耳介前方の領域で前記人の側頭動脈上であって前記少なくとも1つのLEDより上に少なくとも1つの光検出器を配置することと、
を備えることを特徴とする方法。
【請求項34】
人から、プレチスモグラフィ読取り、酸素飽和度読取り、又はこれらの両方を取得する方法であって、
前記人の耳介後部で前記人の後耳介動脈上に少なくとも1つのLEDを配置することと、
前記人の耳介後部で前記人の後耳介動脈上であって前記少なくとも1つのLEDより上に少なくとも1つの光検出器を配置することと、
を備えることを特徴とする方法。
【請求項35】
人がGLOCを回避するのを訓練する方法であって、
GLOCを引き起こす、血流減少、減少した血流の持続時間、又はこれらの両方を判定することと、
前記人のためのプレGLOC条件を設定することと、
前記人をGz負荷増加勾配に晒すことと、
中央部位に配置したパルスオキシメータ・プローブの使用により前記人の頭に対する血流をモニタリングすることと、
該人がプレGLOC条件を経験している場合に前記人に対し、前記人がプレGLOC条件に関連した内因感覚を認識可能となる警報を発することと、
を備えることを特徴とする方法。
【請求項36】
航空機の操作中にパイロットの頭に対する血流をモニタリングする方法であって、
前記パイロットの鼻中隔、鼻翼、耳介前方領域、耳介後部、若しくは頬、又はそれらの組合せを備える前記パイロットの中央源部位に、前記中央源部位での血流を示す信号を生成するように形成されたパルスオキシメータ・プローブを固定することと、
前記中央源部位で血流をモニタリングすることと、
予め定められた値より下に落ちる前記血流に応答して所定の反応を有効化することと、
を備えることを特徴とする方法。
【請求項37】
航空機の操作中にパイロットの頭に対する血流をモニタリングする方法であって、
前記パイロットの中央源部位に、プレチスモグラフィ信号を生成するように形成されたパルスオキシメータ・プローブを固定することと、
前記プレチスモグラフィ信号からAC成分を分離することと、
予め定められた値より下に落ちる前記AC成分に応答して所定の反応を有効化することと、
を備えることを特徴とする方法。
【請求項38】
前記プレチスモグラフィ信号の山と谷を同定することを備える、プレチスモグラフィ信号のストリームからAC成分を分離する方法であって、
補間線によってDC成分が表わされる前記山と谷の間の中間点又は最小値を同定することと、
前記プレチスモグラフィ信号から前記DC成分を抽出することと、
前記AC成分を取得することと、
を備えることを特徴とする方法。
【請求項39】
人から、プレチスモグラフィ読取り、酸素飽和度読取り、又はこれらの両方を取得する方法であって、
前記人の右又は左の鼻腔の外部に少なくとも1つの光検出器を配置することと、
前記少なくとも1つの光検出器からちょうど横切って該人の右又は左の鼻孔に少なくとも1つのLEDを配置することと、
を備えることを特徴とする方法。
【請求項40】
前記人の鼻の前記人の線維疎性結合領域上に少なくとも1つの光検出器が配置されていることを特徴とする請求項31記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公表番号】特表2008−515465(P2008−515465A)
【公表日】平成20年5月15日(2008.5.15)
【国際特許分類】
【出願番号】特願2007−525748(P2007−525748)
【出願日】平成17年8月10日(2005.8.10)
【国際出願番号】PCT/US2005/028355
【国際公開番号】WO2006/086010
【国際公開日】平成18年8月17日(2006.8.17)
【出願人】(506224470)ユニバーシティ オブ フロリダ リサーチファウンデーション インコーポレイティッド (11)
【出願人】(507025054)ベータ バイオメド サービシズ インコーポレイティッド (1)
【Fターム(参考)】