説明

電子内視鏡システム、電子内視鏡システムのプロセッサ装置及び電子内視鏡システムにおける撮像制御方法

【課題】光量が不足する遠景観察状態にある場合であっても、特殊光観察に影響を与えることなく、十分に明るい映像を取得することができる。
【解決手段】近景観察モード時には、第1青色狭帯域光Bn1を体腔内に照射して撮像する。この撮像により得られる撮像信号から露光量が検出される。露光量が一定値未満である場合には、近景観察モードから遠景観察モードに切り替えられる。遠景観察モードでは、第1青色狭帯域光うちその中心波長よりも長波長側の光量は増加させずに短波長側の光量のみを増加させた第2青色狭帯域光Bn2を体腔内に照射して撮像する。第2青色狭帯域光Bn2は、第1青色狭帯域光Bn1に対して上記のように半値幅を拡げているため、特殊光観察に影響を与えることなく、遠景観察時の光量不足が解消される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、狭帯域光を使って表層血管などを強調表示する特殊光観察機能を備えた電子内視鏡システム、電子内視鏡システムのプロセッサ装置及び電子内視鏡システムにおける撮像制御方法に関する。
【背景技術】
【0002】
近年の医療分野では、電子内視鏡を用いた診断や治療が数多く行なわれている。電子内視鏡は、被検者の体腔内に挿入される細長の挿入部を備えており、この挿入部の先端にはCCDなどの撮像装置が内蔵されている。また、電子内視鏡は光源装置に接続されており、光源装置で発せられた光は、電子内視鏡の先端部に設けられた照射窓から体腔内部に対して照射される。体腔内で反射した光は、電子内視鏡の先端部に設けられた観察窓を通して、先端部内の撮像装置によって撮像される。撮像により得られた画像は、電子内視鏡に接続されたプロセッサ装置で各種処理が施された後、モニタに表示される。したがって、電子内視鏡を用いることによって、被検者の体腔内の画像をリアルタイムに確認することができるため、診断などを確実に行うことができる。
【0003】
光源装置には、波長が青色領域から赤色領域にわたる白色の広帯域光を発することができるキセノンランプなどの白色光源が用いられている。体腔内の照射に白色の広帯域光を用いることで、撮像画像から被写体組織全体を把握することができる。しかしながら、広帯域光を照射したときに得られる撮像画像からは、被写体組織全体を大まかに把握することはできるものの、微細血管、ピットパターン(腺口構造)、陥凹や隆起といった凹凸構造などの被写体組織は明瞭に観察することが難しいことがある。
【0004】
このような被写体組織に対しては、波長を特定領域に制限した狭帯域光を照射することで、微細血管などが強調されて明瞭に観察できるようになることが知られている。その一方、被写体組織に照射される光の半値幅が狭くなることで、体腔内を照明する光の光量が低下するため、体腔内は全体的に暗くなる。
【0005】
このような問題に対して、特許文献1では、狭帯域光を照射したときに得られる撮像信号に対して、光量不足を補うような画像処理を施している。これにより、狭帯域光の照射で体腔内が暗くなる場合であっても、モニタに写る映像の画質が低下しないようにしている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許4009626号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、狭帯域光を照射する場合であっても、内視鏡先端部を被写体組織に近づけて近景で観察するときには、狭帯域光の光量は不足せず、表層血管などを十分に強調できることが知られている。これに対して、内視鏡先端部を被写体組織から遠ざけて遠景で観察するときには、狭帯域光の光量が不足するため、表層血管などを十分に強調することができない場合があることが知られている。
【0008】
この知見については、特許文献1には全く記載されておらず、且つ示唆もされていない。したがって、遠景観察のときには、光量不足によって表層血管などを強調表示することができないため、特許文献1のような、撮像信号に対して光量不足を補うような画像処理が必要となる。しかしながら、近景観察の時には、表層血管などを十分に強調表示できるほど十分に明るい。このように十分に明るい状態で特許文献1のような画像処理を施した場合には、明るくなり過ぎるため、かえって映像が見にくくなるおそれがある。
【0009】
本発明は、狭帯域光を使って表層血管などを強調表示して観察する特殊光観察を行なう場合に、光量が不足する遠景観察状態にある場合であっても、特殊光観察に影響を与えることなく、十分に明るい映像を取得することができる電子内視鏡システム、電子内視鏡システムのプロセッサ装置及び電子内視鏡システムにおける撮像制御方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の電子内視鏡システムは、体腔内に特定波長の光を照射する照射手段と、照射手段で照明された体腔内を内視鏡先端部内の撮像素子で撮像することによって、撮像信号を取得する撮像信号取得手段と、前記撮像信号に基づいて、内視鏡先端部と体腔内の被写体組織との距離が近い状態にある近景観察状態で撮像されたか、または内視鏡先端部と体腔内の被写体組織との距離が遠い状態にある遠景観察状態で撮像されたものであるか否かを判定する観察状態判定手段と、近景観察状態にあると判定された場合には、青色波長領域において特定の帯域に制限された第1青色狭帯域光で照明された体腔内を撮像し、遠景観察状態にあると判定された場合には、第1青色狭帯域光うちその中心波長よりも長波長側の光量は増加させずに短波長側の光量のみを増加させた第2青色狭帯域光で照明された体腔内を撮像するように、前記撮像素子を制御する撮像制御手段とを備えることを特徴とする。
【0011】
前記撮像信号取得手段は、近景観察状態にあると判定された場合には、第1青色狭帯域光及び緑色波長領域において特定の帯域に制限された第1緑色狭帯域光で照明された体腔内を撮像し、遠景観察状態にあると判定された場合には、前記第2青色狭帯域光、及び前記第1緑色狭帯域光の半値幅を一定の範囲で拡げた第2緑色狭帯域光で照明された体腔内を撮像するように、前記撮像信号取得手段を制御することが好ましい。前記第2青色狭帯域光は、460nm付近の中心波長よりも長波長側では光量が急激に低下し、短波長側では400nm〜460nmの間では光量が緩やかに低下し、400nmを下回ると光量が急激に低下する光であり、前記第2緑色狭帯域光は、中心波長が550nmであり、半値幅が20nm〜40nmであることが好ましい。
【0012】
前記照射手段は、前記第1青色狭帯域光及び前記第2青色狭帯域光を発する青色光光源と、前記第1緑色狭帯域光及び前記第2緑色狭帯域光を発する緑色光光源とを備えることが好ましい。前記青色光光源または前記緑色光光源は、前記第2青色狭帯域光または前記第2緑色狭帯域光の半値幅を一定範囲で調節可能であることが好ましい。前記青色光光源または前記緑色光光源は、近景観察状態において第1青色狭帯域光を撮像して得られる第1青色撮像信号及び第1緑色狭帯域光を撮像して得られる第1緑色撮像信号間の輝度比Lb/Lgと遠景観察時において第2青色狭帯域光を撮像して得られる第2青色撮像信号及び第2緑色狭帯域光を撮像して得られる第2緑色撮像信号間の輝度比Lb´/Lg´との比が一定になるように、前記第2青色狭帯域光または前記第2緑色狭帯域光の半値幅を調節することが好ましい。前記青色光光源または前記緑色光光源が前記第2青色狭帯域光または前記第2緑色狭帯域光の半値幅を調節する場合には、前記撮像信号取得手段が取得した撮像信号に対してモニタ表示用の画像データを生成するための信号処理を行う際に、近景観察状態と遠景観察状態とで異なる信号処理を行なうことが好ましい。
【0013】
前記照射手段は、波長が青色領域から赤色領域にまで及ぶ広帯域光を発する広帯域光源と、前記広帯域光のうち前記第1青色狭帯域光を透過させる第1青色狭帯域光透過フィルタ、前記広帯域光のうち前記第1青色狭帯域光の半値幅を一定範囲で拡げた第2青色狭帯域光を透過させる第2青色狭帯域光透過フィルタ、前記広帯域光のうち前記第1緑色狭帯域光を透過させる第1緑色狭帯域光透過フィルタ、及び前記広帯域光のうち前記第1緑色狭帯域光の半値幅を一定範囲で拡げた第2緑色狭帯域光を透過させる第2緑色狭帯域光透過フィルタを有する回転フィルタとを備えることが好ましい。
【0014】
前記観察状態判定手段は、前記撮像信号取得手段により取得した撮像信号から露光量を検出し、検出した露光量が一定値以上である場合に近景観察状態にあると判定し、一定値未満である場合に遠景観察状態であると判定することが好ましい。
【0015】
本発明の電子内視鏡システムのプロセッサ装置は、特定波長の光で照明された体腔内を内視鏡先端部内の撮像素子により撮像することで得られる撮像信号を受信する受信手段と、前記撮像信号に基づいて、内視鏡先端部と体腔内の被写体組織との距離が近い状態にある近景観察状態で撮像されたか、または内視鏡先端部と体腔内の被写体組織との距離が遠い状態にある遠景観察状態で撮像されたものであるか否かを判定する観察状態判定手段と、近景観察状態にあると判定された場合には、青色波長領域において特定の帯域に制限された第1青色狭帯域光で照明された体腔内を撮像し、遠景観察状態にあると判定された場合には、第1青色狭帯域光うちその中心波長よりも長波長側の光量は増加させずに短波長側の光量のみを増加させた第2青色狭帯域光で照明された体腔内を撮像するように、前記撮像素子を制御する撮像制御手段とを備えることを特徴とする。
【0016】
本発明の電子内視鏡システムにおける撮像制御方法は、体腔内に特定波長の光を照射し、照射手段で照明された体腔内を内視鏡先端部内の撮像素子で撮像することによって、撮像信号を取得し、前記撮像信号に基づいて、内視鏡先端部と体腔内の被写体組織との距離が近い状態にある近景観察状態で撮像されたか、または内視鏡先端部と体腔内の被写体組織との距離が遠い状態にある遠景観察状態で撮像されたものであるか否かを判定し、近景観察状態にあると判定された場合には、青色波長領域において特定の帯域に制限された第1青色狭帯域光で照明された体腔内を撮像し、遠景観察状態にあると判定された場合には、第1青色狭帯域光うちその中心波長よりも長波長側の光量は増加させずに短波長側の光量のみを増加させた第2青色狭帯域光で照明された体腔内を撮像するように、前記撮像素子を制御することを特徴とする。
【発明の効果】
【0017】
本発明によれば、遠景観察状態にあると判定された場合には、近景観察状態のときに使用した第1青色狭帯域光うちその中心波長よりも長波長側の光量は増加させずに短波長側の光量のみを増加させた第2青色狭帯域光を使用して撮像していることから、特殊光観察に影響を与えることなく、十分に明るい映像を取得することができる。
【図面の簡単な説明】
【0018】
【図1】本発明の第1実施形態の電子内視鏡システムの概略図である。
【図2】電子内視鏡システムのブロック図である。
【図3】回転フィルタの概略図である。
【図4】回転フィルタの青色光透過フィルタ、緑色透過フィルタ、赤色透過フィルタの分光透過率を示すグラフである。
【図5】(A)は回転フィルタの第1青色狭帯域光透過フィルタ及び第1緑色狭帯域光透過フィルタの分光透過率を、(B)は回転フィルタの第2青色狭帯域光透過フィルタ及び第2緑色狭帯域光透過フィルタの分光透過率を示すグラフである。
【図6】(A)は血管における光の吸収係数を、(B)は生体組織における光の散乱係数を示すグラフである。
【図7】第1実施形態におけるCCDの撮像制御を示しており、(A)は通常光観察時の撮像制御を、(B)は特殊光観察時(近景)の撮像制御を、(C)は特殊光観察時(遠景)の撮像制御を示す説明図である。
【図8】近景観察時にモニタに表示される特殊光画像の画像図である。
【図9】遠景観察時にモニタに表示される特殊光画像の画像図である。
【図10】本発明の作用を示すフローチャートである。
【図11】本発明の第2実施形態の電子内視鏡システムのブロック図である。
【図12】通常光用回転フィルタの概略図である。
【図13】特殊光用回転フィルタの概略図である。
【図14】第2実施形態におけるCCDの撮像制御を示しており、(A)は通常光観察時の撮像制御を、(B)は特殊光観察時(近景)の撮像制御を、(C)は特殊光観察時(遠景)の撮像制御を示す説明図である。
【図15】本発明の第3実施形態の電子内視鏡システムのブロック図である。
【図16】第2青色狭帯域光Bn2及び第2緑色狭帯域光Gn2の半値幅が一定の範囲で調節可能であることを説明するための説明図である。
【図17】第3実施形態におけるCCDの撮像制御を示しており、(A)は通常光観察時の撮像制御を、(B)は特殊光観察時(近景)の撮像制御を、(C)は特殊光観察時(遠景)の撮像制御を示す説明図である。
【図18】青色狭帯域光の半値幅を広くせず、緑色狭帯域光の半値幅だけ広くして遠景観察を行なう場合のCCDの撮像制御を示す説明図である。
【発明を実施するための形態】
【0019】
図1に示すように、本発明の第1実施形態の電子内視鏡システム10は、被検者の体腔内を撮像する電子内視鏡11と、撮像により得られた信号に基づいて体腔内の画像を生成するプロセッサ装置12と、体腔内を照射する光を供給する光源装置13と、体腔内の画像を表示するモニタ14とを備えている。
【0020】
この電子内視鏡システム10では、体腔内を白色光などの広帯域光で照明することによって被写体組織を全体的に観察する通常光画像モードと、体腔内を狭帯域光で照明することで表層血管などを強調表示した状態で観察する特殊光画像モードの2つの観察モードを有している。また、特殊光画像モードでは、さらに、電子内視鏡11の先端部16aと被写体組織との距離が近い近景状態で観察するときの近景観察モードと、被写体組織との距離が遠い遠景状態で観察するときの遠景観察モードを備えている。
【0021】
電子内視鏡11は、体腔内に挿入される可撓性の挿入部16と、挿入部16の基端部分に設けられた操作部17と、操作部17とプロセッサ装置12及び光源装置13との間を連結するユニバーサルコード18とを備えている。挿入部16の先端には、複数の湾曲駒を連結した湾曲部19が形成されている。湾曲部19は、操作部のアングルノブ21を操作することにより、上下左右方向に湾曲動作する。湾曲部19の先端には、体腔内撮影用の光学系等を内蔵した先端部16aが設けられており、この先端部16aは、湾曲部19の湾曲動作によって体腔内の所望の方向に向けられる。
【0022】
ユニバーサルコード18には、プロセッサ装置12および光源装置13側にコネクタ24が取り付けられている。コネクタ24は、通信用コネクタと光源用コネクタからなる複合タイプのコネクタであり、電子内視鏡11は、このコネクタ24を介して、プロセッサ装置12および光源装置13に着脱自在に接続される。
【0023】
図2に示すように、光源装置13は、広帯域光源30と、回転フィルタ31と、フィルタ切替部32とを備えている。広帯域光源30はキセノンランプ、白色LED、マイクロホワイト光源などであり、波長が赤色領域から青色領域(約470〜700nm)にわたる広帯域光BBを発生する。広帯域光源30は、電子内視鏡11の使用中、常時点灯している。広帯域光源30から発せられた広帯域光BBは、回転フィルタ31を介して、集光レンズ34に入射する。集光レンズ34で集光された光は、ライトガイド35に入射する。
【0024】
回転フィルタ31は、モータ36によって回転軸31aを中心として一定速度で回転する。回転フィルタ130は、広帯域光源30からの広帯域光BBのうち通常光画像モード時に使用する光を透過させる第1フィルタエリア38と、広帯域光BBのうち特殊光画像モード時に使用する光を透過させる第2フィルタエリア39とを備えており、第1フィルタエリア38は第2フィルタエリア39よりも内側に設けられている。フィルタ切替部32は、回転フィルタ31の回転軸31aに取り付けられており、通常光画像モード時には第1フィルタエリア38が、特殊光画像モード時には第2フィルタエリア39が、広帯域光源30の光路上に位置するように、回転フィルタ31を径方向に移動させる。
【0025】
図3に示すように、第1フィルタエリア38には、広帯域光BBのうち青色帯域の光(B光)を透過させる青色光透過フィルタ40が、広帯域光BBのうち緑色帯域の光(G光)を透過させる緑色光透過フィルタ41が、広帯域光BBのうち赤色帯域の光(R光)を透過させる赤色光透過フィルタ42が、この順序で周方向に沿って設けられている。したがって、回転フィルタ31の回転によって、回転フィルタ31からはB光、G光、R光が順に出射する。このように回転フィルタ31から順に出射するB光、G光、R光については面順次光と呼ばれている。
【0026】
ここで、青色光透過フィルタ40は、図4に示すように、グラフBに示す分光透過率を、緑色光透過フィルタ41はグラフGに示す分光透過率を、赤色光透過フィルタ42はグラフRに示す分光透過率を有している。また、グラフBの長波長側とグラフGの短波長側とが一部重なり合っており、グラフGの長波長側とグラフRの短波長側とが一部重なり合っている。したがって、体腔内に照射される面順次光は、青色帯域、緑色帯域、赤色帯域のそれぞれにおいて光強度がピークに達する波長を1つ有するとともに、それ以外の波長においても、グラフB、G、Rがそれぞれ一部重なり合っていることから、青色帯域から赤色帯域にかけて一定以上の光強度を途切れることなく有している。
【0027】
図3に示すように、第2フィルタエリア39には、広帯域光BBのうち近景観察モード時に使用する第1青色狭帯域光Bn1を透過させる第1青色狭帯域光透過フィルタ65と、広帯域光BBのうち遠景観察モード時に使用する第2青色狭帯域光Bn2を透過させる第2青色狭帯域光透過フィルタ66と、広帯域光BBのうち近景観察モード時に使用する第1緑色狭帯域光Gn1を透過させる第1緑色狭帯域光透過フィルタ67と、広帯域光BBのうち遠景観察モード時に使用する第2緑色狭帯域光Gn2を透過させる第2緑色狭帯域光透過フィルタ68とが、この順序で周方向に沿って設けられている。
【0028】
第1青色狭帯域光透過フィルタ65の分光透過率は、図5(A)のグラフBn1に示すような分布を有していることから、体腔内に照射される第1青色狭帯域光Bn1は、中心波長の略450nm付近で光量がピーク値に達し、450nmよりも長波長側では光量が急激に低下し、450nmと500nmの間で光量はほぼ「0」になる。一方、450nmよりも短波長側では、長波長側での光量の低下ほど急激でないものの、光量は450nmから400nmにかけて低下し、400nmよりも下回ったところで光量は「0」になる。
【0029】
これに対して、第2青色狭帯域光透過フィルタ66の分光透過率は、図5(B)のグラフBn2に示すような分布を有していることから、体腔内に照射される第2青色狭帯域光Bn2は、第1青色狭帯域光Bn1と同様に、光量がピーク値に達する中心波長の略450nmよりも長波長側では光量が急激に低下する。その一方で、略450nmよりも短波長側では、第1青色狭帯域光Bn1とは異なり、450nmから400nmの間では比較的高い光量を保持した状態で、光量は徐々にゆっくりと低下する。そして、400nm付近で光量は急激に低下し始めて、400nmよりも下回ったところで光量は「0」になる。したがって、第2青色狭帯域光Bn2は、第1青色狭帯域光Bn1のうち、中心波長の略450nmの長波長側の光量は全く変化させず、短波長側の光量を増加させた光となっている。
【0030】
第1青色狭帯域光Bn1と第2青色狭帯域光Bn2を上記のような光量分布にしたのは、次の理由による。図6(A)の吸光係数の分布が示すように、照射された光のうち450nm付近を下回る波長の光は生体組織内の表層血管で極めて強い吸収を受ける一方、450nm付近を超える光は表層血管ではほどんど吸収せずにそのまま透過する。また、図6(B)の散乱係数の分布が示すように、照射された光は、波長が短ければ短いほど、生体組織内での散乱が強くなる。これら血管の光吸収特性と生体組織の光散乱特性に関する知見やその他の知見から、照射された光の波長が470nm付近を超えなければ、表層血管では強い光の吸収特性によって照射された光のほとんどが電子内視鏡の先端部16aにまで返らず、その一方、表層血管を囲む生体組織では、比較的強い散乱特性によって照射された光の多くが反射して電子内視鏡の先端部16aにまで返ってくる。これによって、表層血管とその周りの生体組織とのコントラストは極めて高くなるため、表層血管などを十分に強調表示することができる。
【0031】
したがって、表層血管などを十分に強調表示するためには、近景観察時と遠景観察時のいずれの観察時においても、470nm付近を超える波長域において光量を有しない光を照射することが不可欠である。一方、470nm付近を超えなければ、表層血管などを十分に強調表示することができるため、光量が不足する遠景観察時においては、第1青色狭帯域光Bn1に対して、470nm付近より短波長側で光量を増加させた第2青色狭帯域光Bn2を用いている。
【0032】
一方、第1緑色狭帯域光透過フィルタ67の分光透過率は、図5(A)のグラフGn1に示すような分布を有していることから、体腔内に照射される第1緑色狭帯域光Gn1は、中心波長が550nm付近で、半値幅が10nm〜20nmとなっている。これに対して、第2緑色狭帯域光透過フィルタ68の分光透過率は、図5(B)のグラフGn2に示すような分布を有していることから、体腔内に照射される第2緑色狭帯域光Gn2は、第1緑色狭帯域光Gn1と同様に、中心波長は550nmである一方、第1緑色狭帯域光Gn1とは異なり、半値幅については20〜40nmとなっている。即ち、第2緑色狭帯域光Gn2は、第1緑色狭帯域光Gn1よりも半値幅が広くなっている。したがって、第2緑色狭帯域光Gn2は、第1緑色狭帯域光Gn1と比較して、半値幅が広くなった分だけ光量が多い。
【0033】
第1緑色狭帯域光Gn1と第2緑色狭帯域光Gn2を上記のような光量分布にしたのは、次の理由による。図6(A)の吸光係数の分布が示すように、450nm付近を超える光については血管に対する光吸収特性は低くなるが、500nm〜600nmの間、特に530nm〜570nm付近では、中層血管に対する光の吸収特性が高くなる。そして、600nmを超える光については再び吸収特性は低くなる。また、図6(B)の散乱係数の分布が示すように、波長が長くなるほど散乱係数は徐々に低くなるものの、500nm〜600nmの間では、生体組織内での散乱特性にそれほど変化があるわけではない。
【0034】
したがって、これら血管の光吸収特性と生体組織の光散乱特性に関する知見やその他の知見から、照射された光の波長が500nm〜600nmの間、特に530nm〜570nm付近においては、中層血管を含む生体組織の散乱特性の変化は小さいため、生体組織で反射して電子内視鏡の先端部16aにまで返ってくる光の光量はほぼ一定である。これに対して、その生体組織に含まれる中層血管は500nm〜600nmの間、特に530nm〜570nm付近の光に対して比較的高い光吸収特性を示すため、中層血管に照射された光のうち電子内視鏡の先端部16aにまで返ってくる光の割合は低下する。したがって、照射された光が500nm〜600nmの間、特に530nm〜570nm付近の下では、中層血管とその周りの生体組織とのコントラストが高くなるため、中層血管などを十分に強調表示することができる。
【0035】
したがって、中層血管などを十分に強調表示するためには、近景観察時と遠景観察時のいずれの観察時においても、照射する光の波長帯域が500nm〜600nmの間、好ましくは530nm〜570nmであることが不可欠である。500nm〜600nmの間、好ましくは530nm〜570nmの範囲内であれば、中層血管などを十分に強調表示することができるため、光量が不足する遠景観察時においては、中心波長が略550nmである第1緑色狭帯域光Gn1の半値幅を更に広くして光量を増加させた第2緑色狭帯域光Gn2を用いている。
【0036】
図2に示すように、電子内視鏡11は、ライトガイド35、CCD44、アナログ処理回路45(AFE:Analog Front End)、撮像制御部46を備えている。ライトガイド35は大口径光ファイバ、バンドルファイバなどであり、入射端が光源装置13に挿入されており、出射端が先端部16aに設けられた照射レンズ48に向けられている。光源装置13で発せられた光は、ライトガイド43により導光された後、照射レンズ48に向けて出射する。照射レンズ48に入射した光は、先端部16aの端面に取り付けられた照明窓49を通して、体腔内に照射される。体腔内で反射した光は、先端部16aの端面に取り付けられた観察窓50を通して、集光レンズ51に入射する。
【0037】
CCD44は、集光レンズ51からの光を撮像面44aで受光し、受光した光を光電変換して信号電荷を蓄積し、蓄積した信号電荷を撮像信号として読み出す。読み出された撮像信号は、AFE45に送られる。また、CCD44は所定の分光感度を有するモノクロCCDである。AFE45は、相関二重サンプリング回路(CDS)、自動ゲイン制御回路(AGC)、及びアナログ/デジタル変換器(A/D)(いずれも図示省略)から構成されている。CDSは、CCD44からの撮像信号に対して相関二重サンプリング処理を施し、CCD44の駆動により生じたノイズを除去する。AGCは、CDSによりノイズが除去された撮像信号を増幅する。A/Dは、AGCで増幅された撮像信号を、所定のビット数のデジタルな撮像信号に変換してプロセッサ装置12に入力する。
【0038】
撮像制御部46は、プロセッサ装置12内のコントローラー59に接続されており、コントローラー59から指示がなされたときにCCD44に対して駆動信号を送る。CCD44は、撮像制御部46からの駆動信号に基づいて、所定のフレームレートで撮像信号をAFE45に出力する。通常光画像モードに設定されている場合には、回転フィルタ31からB光が照射されている間、即ち、回転フィルタ31が1/3回転する間に、図7(A)に示すように、B光を光電変換して信号電荷を蓄積するステップと蓄積した信号電荷を青色撮像信号として読み出すステップとの合計2つの動作が、所定回数だけ繰り返し行なわれる。
【0039】
次に、回転フィルタ31から照射される光がB光からG光に切り替わった場合には、同様にして、回転フィルタ31が1/3回転する間に、G光を光電変換して信号電荷を蓄積するステップと蓄積した信号電荷を緑色撮像信号として読み出すステップとの合計2つの動作が、所定回数だけ繰り返し行なわれる。次に、回転フィルタ31から照射される光がG光からR光に切り替わった場合には、同様にして、回転フィルタ31が1/3回転する間に、R光を光電変換して信号電荷を蓄積するステップと蓄積した信号電荷を赤色撮像信号として読み出すステップとの合計2つの動作が、所定回数だけ繰り返し行なわれる。
【0040】
これに対して、特殊光画像モード時において、近景観察の状態にある場合には、図7(B)に示すように、回転フィルタ31から第1青色狭帯域光Bn1が照射されている間、即ち回転フィルタ31が1/4回転する間は、第1青色狭帯域光Bn1を光電変換して信号電荷を蓄積するステップと蓄積した信号電荷を第1青色狭帯域撮像信号として読み出すステップとの合計2つの動作が、所定回数だけ繰り返し行なわれる。次に、回転フィルタ31から照射される光が第1青色狭帯域光Bn1から第2青色狭帯域光Bn2に切り替わり、第2青色狭帯域光Bn2が照射されている間、即ち回転フィルタ31が1/4回転する間は、信号電荷の蓄積と撮像信号の読み出しは行なわれない。
【0041】
次に、回転フィルタ31から照射される光が第2青色狭帯域光Bn2から第1緑色狭帯域光Gn1に切り替わり、第1緑色狭帯域光Gn1が照射されている間、即ち回転フィルタ31が1/4回転する間は、第1緑色狭帯域光Gn1を光電変換して信号電荷を蓄積するステップと蓄積した信号電荷を第1緑色狭帯域撮像信号として読み出すステップとの合計2つの動作が、所定の回数だけ繰り返し行なわれる。次に、回転フィルタ31から照射される光が第1緑色狭帯域光Gn1から第2緑色狭帯域光Gn2に切り替わり、第2緑色狭帯域光Gn2が照射されている間、即ち回転フィルタ31が1/4回転する間は、信号電荷の蓄積と撮像信号の読み出しは行なわれない。
【0042】
また、特殊光画像モード時において、遠景観察の状態にある場合には、図7(C)に示すように、回転フィルタ31から第1青色狭帯域光Bn1が照射されている間、即ち回転フィルタ31が1/4回転する間は、信号電荷の蓄積と撮像信号の読み出しは行なわれない。次に、回転フィルタ31から照射される光が第1青色狭帯域光Bn1から第2青色狭帯域光Bn2に切り替わり、第2青色狭帯域光Bn2が照射されている間、即ち回転フィルタ31が1/4回転する間は、第2青色狭帯域光Bn2を光電変換して信号電荷を蓄積するステップと蓄積した信号電荷を第2青色狭帯域撮像信号として読み出すステップとの合計2つの動作が、所定回数だけ繰り返し行なわれる。
【0043】
次に、回転フィルタ31から照射される光が第1青色狭帯域光Bn1から第1緑色狭帯域光Gn1に切り替わり、第1緑色狭帯域光Gn1が照射されている間、即ち回転フィルタ31が1/4回転する間は、信号電荷の蓄積と撮像信号の読み出しは行なわれない。次に、回転フィルタ31から照射される光が第1緑色狭帯域光Gn1から第2緑色狭帯域光Gn2に切り替わり、第2緑色狭帯域光Gn2が照射されている間、即ち回転フィルタ31が1/4回転する間は、第2緑色狭帯域光Gn2を光電変換して信号電荷を蓄積するステップと蓄積した信号電荷を第2緑色狭帯域撮像信号として読み出すステップとの合計2つの動作が、所定の回数だけ繰り返し行なわれる。
【0044】
図2に示すように、プロセッサ装置12は、デジタル信号処理部55(DSP(Digital Signal Processor))と、フレームメモリ56と、観察状態判定部57と、表示制御回路58を備えており、コントローラー59が各部を制御している。DSP55は、電子内視鏡のAFE45から出力された撮像信号に対し、ホワイトバランス調整、色調処理、階調処理、シャープネス処理などの信号処理を行う。DSP55では、通常光画像モードに設定されている際、AFEから出力される青色撮像信号、緑色撮像信号、赤色撮像信号に上記信号処理を施すことによって、通常光画像データを生成する。生成した通常光画像データはフレームメモリ56に記憶される。
【0045】
一方、特殊光画像モードにおいて近景観察モードに設定されている場合には、AFEから出力される第1青色狭帯域撮像信号と第1緑色狭帯域撮像信号のそれぞれに対して上記信号処理を施す。信号処理が施された各撮像信号は、近景用特殊光画像データとてフレームメモリに記憶される。また、特殊光画像モードにおいて遠景観察モードに設定されている場合には、近景観察モードと同様にして、第2青色狭帯域撮像信号と第2緑色狭帯域撮像信号とのそれぞれは、上記信号処理が施された後、遠景用特殊光画像データとしてフレームメモリ56に記憶される。
【0046】
観察状態判定部57は、フレームメモリ56に記憶された近景用特殊光画像データ及び遠景用特殊光画像データのいずれか一方の画像データから、露光量を検出する。検出した露光量が一定値以上である場合には、現時点で近景観察状態にあると判定する。近景観察状態にあると判定された場合には、近景観察モードに自動的に設定する。近景観察モードに設定されたら、撮像制御部46に対して、次に撮像するときに、第1青色狭帯域撮像信号及び第1緑色狭帯域撮像信号を取得するように指示する(図7(B)参照)。一方、検出した露光量が一定値未満である場合には、現時点で遠景観察状態にあると判定する。遠景観察状態にあると判定された場合には、遠景観察モードに自動的に設定する。遠景観察モードに設定されたら、撮像制御部46に対して、次に撮像するときに、第2青色狭帯域撮像信号及び第2緑色狭帯域撮像信号を取得するように指示する(図7(C)参照)。
【0047】
表示制御回路58は、通常光画像モードにある場合には、フレームメモリ56から通常光画像データを読み出し、読み出した通常光画像データに基づいてモニタ14に通常光画像を表示する。一方、特殊光画像モードにおいて近景観察モードにある場合には、フレームメモリ56から近景用特殊光画像データを読み出す。そして、読み出した近景用特殊光画像データに基づいて、図8に示すような近景観察時の特殊光画像をモニタ14に表示する。
【0048】
また、特殊光画像モードにおいて遠景観察モードにある場合には、フレームメモリ56から遠景用特殊光画像データを読み出す。そして、読み出した遠景用特殊光画像データに基づいて、図9に示すような遠景観察時の特殊光画像をモニタ14に表示する。本発明では、遠景観察時における光量不足を、体腔内に照射する光の半値幅を広げることによって補っている。その際、血管の光吸収特性とその血管周りの生体組織の散乱特性を鑑みて半値幅を広げているため、表層血管などの強調表示する特殊光観察に影響を及ぼすことがない。
【0049】
次に、本発明の作用を図10のフローチャートに沿って説明する。まず、画像モード切替SW50を操作することにより、通常光画像モードから特殊光画像モードに切り替える。特殊光画像モードでは、初期設定で近景観察モードに設定されている。フィルタ切替部131は、特殊光画像モードへの切替に従って、回転フィルタ31の第2フィルタエリア39を広帯域光源30の光路上にセットする。この状態で回転フィルタ31を回転させることによって、第1青色狭帯域光Bn1、第2青色狭帯域光Bn2、第1緑色狭帯域光Gn1、及び第2緑色狭帯域光Gn2(これらを特殊光ともいう)が、この順で体腔内に照射される。なお、特殊光画像モードでは、初期設定を近景観察モードではなく遠景観察モードにしてもよい。
【0050】
そして、撮像制御部46は、第1青色狭帯域光Bn1と第1緑色狭帯域光Gn1が照射されたときだけ、CCD44から撮像信号を読み出すように指示する。これにより、第1青色狭帯域撮像信号と第1緑色狭帯域撮像信号が得られる。得られた第1青色狭帯域撮像信号と第1緑色狭帯域撮像信号は、DSP55で、ホワイトバランス調整、色調処理、階調処理、シャープネス処理などの信号処理が施された後、近景用特殊光画像データとしてフレームメモリ56に記憶される。そして、フレームメモリ56から読み出された近景用特殊光画像データに基づいて、図8に示すような近景観察時の特殊光画像が表示される。
【0051】
また、観察状態判定部57は、フレームメモリ56に記憶された近景用特殊光画像データから露光量を検出する。そして、露光量が一定値以上である場合には、現時点の観察状態が近景観察状態と判定され、そのまま近景観察モードが保持される。一方、露光量が一定値未満である場合には、現時点の観察状態は遠景観察状態と判定される。遠景観察状態と判定されたら、近景観察モードから遠景観察モードに切り替えられる。
【0052】
遠景観察モードへの切替に応じて、撮像制御部46は、第2青色狭帯域光Bn2と第2緑色狭帯域光Gn2が照射されたときだけ、CCD44から撮像信号を読み出すように指示する。これにより、第2青色狭帯域撮像信号と第2緑色狭帯域撮像信号が得られる。得られた第2青色狭帯域撮像信号と第2緑色狭帯域撮像信号は、DSP55で、近景観察モード時と同様の信号処理が施された後、遠景用特殊光画像データとしてフレームメモリ56に記憶される。そして、フレームメモリ56から読み出された遠景用特殊光画像データに基づいて、図9に示すような遠景観察時の特殊光画像が表示される。
【0053】
遠景観察モード時においても、遠景観察モード時と同様に、観察状態判定部によって観察状態の判定が行われる。したがって、露光量が一定値以上となったときには、遠景観察モードから近景観察モードに切り替える。一方、露光量が一定値未満のとき(露光量は一定値未満であるが表層血管などは十分に強調表示されているとき)には、特殊光画像モードが設定されている限り、そのまま遠景観察モードを保持する。
【0054】
図11に示すように、本発明の第2実施形態の電子内視鏡システム100は、1枚の回転フィルタだけでRGBの面順次光や特殊光を体腔内に照射した第1実施形態と異なり、2枚の回転フィルタを使ってRGBの面順次光や特殊光を照射する。なお、以下においては、第1実施形態と第2実施形態とで異なる部分についてのみ説明を行い、それ以外については説明を省略する。
【0055】
電子内視鏡システム100の光源装置13内には、通常光用回転フィルタ101と、特殊光用回転フィルタ102とが設けられている。通常光用回転フィルタ101及び特殊光用回転フィルタ102は、モータ103、103によって回転軸101a,102aを中心として一定速度で回転する。
【0056】
通常光用回転フィルタ101には、図12に示すように、広帯域光BBのうち青色帯域の光(B光)を透過させる青色光透過フィルタ110と、広帯域光BBのうち緑色帯域の光(G光)を透過させる緑色光透過フィルタ111と、広帯域光BBのうち赤色帯域の光(R光)を透過させる赤色光透過フィルタ112と、広帯域光BBをそのまま透過させる開口部113とが、この順序で周方向に沿って設けられている。通常光用回転フィルタ101は、青色光透過フィルタ110、緑色光透過フィルタ111、赤色光透過フィルタ112、及び開口部113のうちのいずれか一つが広帯域光源30の光路上に位置するように、設けられている(図11参照)。
【0057】
一方、特殊光用回転フィルタ102には、図13に示すように、広帯域光BBのうち近景観察時に使用する第1青色狭帯域光Bn1を透過させる第1青色狭帯域光透過フィルタ115と、広帯域光BBのうち遠景観察時に使用する第2青色狭帯域光Bn2を透過させる第2青色狭帯域光透過フィルタ116と、広帯域光BBのうち近景観察時に使用する第1緑色狭帯域光Gn1を透過させる第1緑色狭帯域光透過フィルタ117と、広帯域光BBのうち遠景観察時に使用する第2緑色狭帯域光Gn2を透過させる第2緑色狭帯域光透過フィルタ118とが、この順序で周方向に沿って設けられている。特殊光用回転フィルタ102には、広帯域光BBの光路と直交する方向に回転軸102aを移動させるフィルタ切替部120が設けられている(図11参照)。このフィルタ切替部120によって、特殊光用回転フィルタ102は、第1青色狭帯域光透過フィルタ115、第2青色狭帯域光透過フィルタ116、第1緑色狭帯域光透過フィルタ117、及び第2緑色狭帯域光透過フィルタ118のいずれか1つのフィルタを広帯域光源30の光路上に位置させる挿入位置と、回転フィルタ全体を広帯域光BBの光路上から退避させる退避位置との間で移動自在となっている。
【0058】
第2実施形態では、通常光画像モードに設定されている場合には、特殊光用回転フィルタ102は退避位置にセットされる。したがって、広帯域光源30からの広帯域光BBは、そのまま通常光用回転フィルタ101に照射される。この状態で、通常光用回転フィルタ101が回転することで、体腔内には、B光、G光、R光、広帯域光BBがこの順で照射される。第2実施形態では、通常光用回転フィルタ101に特殊光透過用の開口部113を設けたことで、B光、G光、R光に加えて、広帯域光BBが体腔内に照射されることになる。したがって、体腔内での反射光を受光するCCD44を撮像制御部46により制御する際には、図14に示すように、B光、G光、R光を照射したときには第1実施形態と同様に信号の蓄積と読出を行なうものの、広帯域光BBを照射したときには信号の蓄積と読み出しは行なわれない。
【0059】
一方、特殊光画像モードに設定されている場合には、特殊光用回転フィルタ102は挿入位置にセットされる。そして、通常光用回転フィルタ101の開口部113が広帯域光BBの光路上に位置したときに、通常光用回転フィルタ101の回転を停止させる。この状態で、特殊光用回転フィルタ102が回転することによって、体腔内には、第1青色狭帯域光Bn1、第2青色狭帯域光Bn2、第1緑色狭帯域光Gn1、第2緑色狭帯域光Gn2がこの順で照射される。特殊光画像モードでは、体腔内に照射される光の種類と順序は全く同じであるので(図7(B)、(C)参照)、撮像制御部46によるCCD44の制御についての説明は省略する。
【0060】
図15に示すように、本発明の第3実施形態の電子内視鏡システム200は、RGBの面順次光の照射によって青色撮像信号、緑色撮像信号、赤色撮像信号を取得した第1及び第2実施形態とは異なり、体腔内に広帯域光BBをそのまま照射し、その広帯域光BBが照射された体腔内をカラーCCDで撮像することによって、青色撮像信号、緑色撮像信号、赤色撮像信号を取得している。また、この第3実施形態の電子内視鏡システム200は、特定波長を透過させるフィルタを備えた回転フィルタによって第1青色狭帯域光などの特殊光を発生させた第1及び第2実施形態とは異なり、LEDなどの光源によって特殊光を発生させている。なお、以下においては、第3実施形態と第1または第2実施形態とで異なる部分についてのみ説明を行い、それ以外については説明を省略する。
【0061】
電子内視鏡システム200の光源装置13内には、第1及び第2実施形態と同様の広帯域光源30と、シャッター201と、青色光光源202と、緑色光光源203と、カプラー204と、光源制御部205とが設けられている。シャッター201は、広帯域光源30と集光レンズ37との間に設けられており、広帯域光BBの光路に挿入されて広帯域光BBを遮光する挿入位置と、挿入位置から退避して広帯域光BBが集光レンズ37に向かうことを許容する退避位置との間で移動自在となっている。通常光画像モードに設定されているときにはシャッター201は退避位置にセットされる一方、特殊光画像モードに設定されているときにはシャッター201は挿入位置にセットされる。集光レンズ37から出射した広帯域光BBは広帯域光用光ファイバ210に入射する。
【0062】
青色光光源202はLED(Light Emitting Diode)などから構成され、第1及び第2実施形態で使用した第1青色狭帯域光と同様の第1青色狭帯域光Bn1と、第1及び第2実施形態で使用した第2青色狭帯域光と同様の第2青色狭帯域光Bn2の2種類の青色光を発することが可能である。さらには、青色光光源202は、第2青色狭帯域光Bn2の半値幅を図16に示すような範囲Raで拡げたり狭くしたりすることが可能である。この青色光光源202から発せられた光は、青色光用光ファイバ211に入射する。
【0063】
緑色光光源203もLEDなどから構成され、第1及び第2実施形態で使用した第1緑色狭帯域光と同様の第1緑色狭帯域光Gn1と、第1及び第2実施形態で使用した第2緑色狭帯域光と同様の第2緑色狭帯域光Gn2の2種類の緑色光を発することが可能である。この緑色光光源203も、青色光光源202と同様、第2緑色狭帯域光Gn2の半値幅を図16に示すような範囲Rbで拡げたり狭くしたりすることが可能である。緑色光光源203から発せられた光は、緑色光用光ファイバ212に入射する。
【0064】
なお、第3実施形態では、第1及び第2実施形態と異なり、第2青色狭帯域光Bn2及び第2緑色狭帯域光Gn2の半値幅を調節できるようにしたことから、撮像信号を取得した後のDSPでの信号処理(色調処理など)においては、近景観察時と遠景観察時とでは異なる処理を行なう必要がある。しかしながら、近景観察時における青色撮像信号及び緑色撮像信号間の輝度比Lb/Lgと遠景観察時における青色撮像信号及び緑色撮像信号間の輝度比Lb´/Lg´との比が一定になるように、第2青色狭帯域光Bn2及び第2緑色狭帯域光Gn2の半値幅を調節することで、近景観察時と遠景観察時とで同じ信号処理(色調処理など)で済ませることができる。ここで、Lbは第1青色狭帯域撮像信号の輝度値を、Lgは第1緑色狭帯域撮像信号の輝度値を、Lb´は第2青色狭帯域撮像信号の輝度値を、Lg´は第2緑色狭帯域撮像信号の輝度値を示している。輝度比Lb/Lg、Lb´/Lg´については、光源制御部205に接続されたプロセッサ装置12内の輝度比算出部215で算出される。
【0065】
カプラー204は、電子内視鏡内のライトガイド35と、広帯域光用光ファイバ210、青色光用光ファイバ211、及び緑色光用光ファイバ212とを連結する。これにより、広帯域光BBは、広帯域光用光ファイバ210を介して、ライトガイド35に入射することが可能となる。また、第1青色狭帯域光Bn1及び第2青色狭帯域光Bn2は、青色光用光ファイバ211を介して、ライトガイド43に入射することが可能となるとともに、第1緑色狭帯域光Gn1及び第2緑色狭帯域光Gn2は、緑色光用光ファイバ212を介して、ライトガイド35に入射することが可能である。
【0066】
光源制御部205はプロセッサ装置12内のコントローラー59に接続されており、コントローラー59からの指示に基づいて、青色光光源202及び緑色光光源203を制御する。通常光画像モードに設定されている場合には、青色光光源202及び緑色光光源203はOFF(消灯)にされる。これに対して、特殊光画像モードにおいて近景観察モードに設定されている場合には、シャッター201の挿入位置へのセットによって広帯域光BBの体腔内への照射が停止された状態で、撮像信号を1フレーム分取得する期間内で、青色光光源202から第1青色狭帯域光Bn1が発せられる。その後に、同様に、1フレームの取得期間内で、緑色光光源203から第1緑色狭帯域光Gn1が発せられる。また、特殊光画像モードにおいて遠景観察モードに設定されている場合には、近景観察モードと同様に体腔内への広帯域光BBの照射が停止された状態で、1フレームの取得期間内で、青色光光源202から第2青色狭帯域光Bn2が発せられる。その後に、1フレームの取得期間内で、緑色光光源203から第2緑色狭帯域光Gn2が発せられる。
【0067】
カラーCCD220は、集光レンズ51からの光を撮像面220aで受光し、受光した光を光電変換して信号電荷を蓄積し、蓄積した信号電荷を撮像信号として読み出す。この撮像面220aには、R色、G色、B色のいずれかのカラーフィルターが設けられたR画素、G画素、B画素の3色の画素が配列されている。したがって、カラーCCD220で広帯域光BBを受光した場合には、R画素から赤色撮像信号が、G画素から緑色撮像信号が、B画素から青色撮像信号が出力される。また、カラーCCD220で第1青色狭帯域光Bn1または第2青色狭帯域光Bn2を受光した場合には、B画素から第1青色狭帯域撮像信号または第2青色狭帯域撮像信号が出力される。また、カラーCCD220で第1緑色狭帯域光Gn1または第2緑色狭帯域光Gn2を受光した場合には、G画素から第1緑色狭帯域撮像信号または第2緑色狭帯域撮像信号が出力される。
【0068】
撮像制御部46は、カラーCCD220の撮像を制御することによって、所定のフレームレートで撮像信号をAFE45に出力する。通常光画像モードに設定されている場合、図17(A)に示すように、1フレームの取得期間内で、広帯域光BBを光電変換して信号電荷を蓄積するステップと、蓄積した信号電荷を青色撮像信号、緑色撮像信号、赤色撮像信号として読み出すステップとの合計2つの動作が行なわれる。この動作は、通常光画像モードに設定されている間、繰り返し行なわれる。
【0069】
これに対して、特殊光画像モードにおける近景観察モードに設定されている場合には、図17(B)に示すように、まず最初に、1フレームの取得期間内で、第1青色狭帯域光Bn1を光電変換して信号電荷を蓄積するステップと、蓄積した信号電荷を第1青色狭帯域撮像信号として読み出すステップとの合計2つの動作が行なわれる。第1青色狭帯域撮像信号の読み出しが完了すると、1フレームの取得期間内で、第1緑色狭帯域光Gn1を光電変換して信号電荷を蓄積するステップと、蓄積した信号電荷を第1緑色狭帯域撮像信号として読み出すステップとが行なわれる。これら動作は、近景観察モードに設定されている間、繰り返し行なわれる。
【0070】
また、同様にして、特殊光画像モードにおける遠景観察モードに設定されている場合には、図17(C)に示すように、まず最初に、1フレームの取得期間内で、第2青色狭帯域光Bn2を光電変換して信号電荷を蓄積するステップと、蓄積した信号電荷を第2青色狭帯域撮像信号として読み出すステップとの合計2つの動作が行なわれる。第2青色狭帯域撮像信号の読み出しが完了すると、1フレームの取得期間内で、第2緑色狭帯域光Gn2を光電変換して信号電荷を蓄積するステップと、蓄積した信号電荷を第2緑色狭帯域撮像信号として読み出すステップとが行なわれる。これら動作は、遠景観察モードに設定されている間、繰り返し行なわれる。
【0071】
なお、上記第1〜第3実施形態では、遠景観察モードにおいて、第1青色狭帯域光Bn1よりも半値幅を大きくした第2青色狭帯域光Bn2を使用するとともに、第1緑色狭帯域光Gn1よりも半値幅を大きくした第2緑色狭帯域光Gn2を使用することによって、光量不足を解消したが、光量不足がそれほどでもない場合には、第1青色狭帯域光Bn1と第1緑色狭帯域光Gn1のいずれか一方の半値幅のみを大きくしてもよい。例えば、第1実施形態において、遠景観察モード時には、青色光については半値幅を広くせずに、第1青色狭帯域光Bn1をそのまま使用し続け、緑色光については半値幅を広くした第2緑色狭帯域光Gn2を使用してもよい。この場合には、図18に示すように、撮像制御部によるCCDの制御において、第1青色狭帯域光Bn1と第2緑色狭帯域光Gn2を照射したときのみ信号の蓄積と読出を行い、第2青色狭帯域光Bn2と第1緑色狭帯域光Gn1を照射したときには信号の蓄積と読出は行なわない。
【0072】
また、上記第1〜第3実施形態では、青色波長領域の光(第1または第2青色狭帯域光Bn1,Bn2)を照射したときの撮像信号と緑色波長領域の光(第1または第2緑色狭帯域光Gn1,Gn2)を照射したときの撮像信号の両方を使って特殊光画像を生成したが、青色波長領域の光または緑色波長領域の光のいずれか一方のみを使って特殊光画像を生成してもよい。
【0073】
また、上記第3実施形態では、青色光光源に発生する光の半値幅を微調節する機能を設けるとともに、緑色光光源にも発生する光の半値幅を微調節する機能を設けたが、例えば、プロセッサ装置のDSPで、ホワイトバランス調整、色調処理、階調処理、シャープネス処理などの信号処理を撮像信号に施す際に、近景観察時と遠景観察時とで別々の信号処理を施す場合には、青色光光源及び緑色光光源に半値幅を微調節する機能を設けなくともよい。
【0074】
なお、上記実施形態では、青色の狭帯域光または緑色の狭帯域光の半値幅を拡げることによって、遠景観察時の光量不足を補ったが、これに加えて、赤色狭帯域光を用いて遠景観察する場合には、赤色狭帯域光の半値幅も拡げてもよい。
【0075】
なお、上記実施形態では、近景観察時と遠景観察時とで半値幅を変化させたが、これを更に一般化し、内視鏡先端部と被写体組織との距離に応じて狭帯域光の半値幅を変化、即ち、被写体距離との距離が遠くなるほど半値幅を大きくし、その距離が近くなるほど半値幅を小さくすることが好ましい。
【符号の説明】
【0076】
10,100,200 電子内視鏡システム
30 広帯域光源
31 回転フィルタ
44 撮像素子
45,115 第1青色狭帯域光透過フィルタ
46,116 第2青色狭帯域光透過フィルタ
47,117 第1緑色狭帯域光透過フィルタ
48,118 第2緑色狭帯域光透過フィルタ
46 撮像制御部
55 DSP
57 観察状態判定部
59 コントローラー
102 特殊光用回転フィルタ
202 青色光光源
203 緑色光光源
220 カラーCCD

【特許請求の範囲】
【請求項1】
体腔内に特定波長の光を照射する照射手段と、
照射手段で照明された体腔内を内視鏡先端部内の撮像素子で撮像することによって、撮像信号を取得する撮像信号取得手段と、
前記撮像信号に基づいて、内視鏡先端部と体腔内の被写体組織との距離が近い状態にある近景観察状態で撮像されたか、または内視鏡先端部と体腔内の被写体組織との距離が遠い状態にある遠景観察状態で撮像されたものであるか否かを判定する観察状態判定手段と、
近景観察状態にあると判定された場合には、青色波長領域において特定の帯域に制限された第1青色狭帯域光で照明された体腔内を撮像し、遠景観察状態にあると判定された場合には、第1青色狭帯域光うちその中心波長よりも長波長側の光量は増加させずに短波長側の光量のみを増加させた第2青色狭帯域光で照明された体腔内を撮像するように、前記撮像素子を制御する撮像制御手段とを備えることを特徴とする電子内視鏡システム。
【請求項2】
前記撮像信号取得手段は、
近景観察状態にあると判定された場合には、第1青色狭帯域光及び緑色波長領域において特定の帯域に制限された第1緑色狭帯域光で照明された体腔内を撮像し、遠景観察状態にあると判定された場合には、前記第2青色狭帯域光、及び前記第1緑色狭帯域光の半値幅を一定の範囲で拡げた第2緑色狭帯域光で照明された体腔内を撮像するように、前記撮像信号取得手段を制御することを特徴とする請求項1記載の電子内視鏡システム。
【請求項3】
前記第2青色狭帯域光は、460nm付近の中心波長よりも長波長側では光量が急激に低下し、短波長側では400nm〜460nmの間では光量が緩やかに低下し、400nmを下回ると光量が急激に低下する光であり、
前記第2緑色狭帯域光は、中心波長が550nmであり、半値幅が20nm〜40nmであることを特徴とする請求項2記載の電子内視鏡システム。
【請求項4】
前記照射手段は、
前記第1青色狭帯域光及び前記第2青色狭帯域光を発する青色光光源と、
前記第1緑色狭帯域光及び前記第2緑色狭帯域光を発する緑色光光源とを備えることを特徴とする請求項2または3記載の電子内視鏡システム。
【請求項5】
前記青色光光源または前記緑色光光源は、前記第2青色狭帯域光または前記第2緑色狭帯域光の半値幅を一定範囲で調節可能であることを特徴とする請求項4記載の電子内視鏡システム。
【請求項6】
前記青色光光源または前記緑色光光源は、近景観察状態において第1青色狭帯域光を撮像して得られる第1青色撮像信号及び第1緑色狭帯域光を撮像して得られる第1緑色撮像信号間の輝度比Lb/Lgと遠景観察時において第2青色狭帯域光を撮像して得られる第2青色撮像信号及び第2緑色狭帯域光を撮像して得られる第2緑色撮像信号間の輝度比Lb´/Lg´との比が一定になるように、前記第2青色狭帯域光または前記第2緑色狭帯域光の半値幅を調節することを特徴とする請求項5記載の電子内視鏡システム。
【請求項7】
前記青色光光源または前記緑色光光源が前記第2青色狭帯域光または前記第2緑色狭帯域光の半値幅を調節する場合には、前記撮像信号取得手段が取得した撮像信号に対してモニタ表示用の画像データを生成するための信号処理を行う際に、近景観察状態と遠景観察状態とで異なる信号処理を行なうことを特徴とする請求項5記載の電子内視鏡システム。
【請求項8】
前記照射手段は、
波長が青色領域から赤色領域にまで及ぶ広帯域光を発する広帯域光源と、
前記広帯域光のうち前記第1青色狭帯域光を透過させる第1青色狭帯域光透過フィルタ、前記広帯域光のうち前記第1青色狭帯域光の半値幅を一定範囲で拡げた第2青色狭帯域光を透過させる第2青色狭帯域光透過フィルタ、前記広帯域光のうち前記第1緑色狭帯域光を透過させる第1緑色狭帯域光透過フィルタ、及び前記広帯域光のうち前記第1緑色狭帯域光の半値幅を一定範囲で拡げた第2緑色狭帯域光を透過させる第2緑色狭帯域光透過フィルタを有する回転フィルタとを備えることを特徴とする請求項2または3記載の電子内視鏡システム。
【請求項9】
前記観察状態判定手段は、前記撮像信号取得手段により取得した撮像信号から露光量を検出し、検出した露光量が一定値以上である場合に近景観察状態にあると判定し、一定値未満である場合に遠景観察状態であると判定することを特徴とする請求項1ないし8いずれか1項記載の電子内視鏡システム。
【請求項10】
特定波長の光で照明された体腔内を内視鏡先端部内の撮像素子により撮像することで得られる撮像信号を受信する受信手段と、
前記撮像信号に基づいて、内視鏡先端部と体腔内の被写体組織との距離が近い状態にある近景観察状態で撮像されたか、または内視鏡先端部と体腔内の被写体組織との距離が遠い状態にある遠景観察状態で撮像されたものであるか否かを判定する観察状態判定手段と、
近景観察状態にあると判定された場合には、青色波長領域において特定の帯域に制限された第1青色狭帯域光で照明された体腔内を撮像し、遠景観察状態にあると判定された場合には、第1青色狭帯域光うちその中心波長よりも長波長側の光量は増加させずに短波長側の光量のみを増加させた第2青色狭帯域光で照明された体腔内を撮像するように、前記撮像素子を制御する撮像制御手段とを備えることを特徴とする電子内視鏡システムのプロセッサ装置。
【請求項11】
体腔内に特定波長の光を照射し、
照射手段で照明された体腔内を内視鏡先端部内の撮像素子で撮像することによって、撮像信号を取得し、
前記撮像信号に基づいて、内視鏡先端部と体腔内の被写体組織との距離が近い状態にある近景観察状態で撮像されたか、または内視鏡先端部と体腔内の被写体組織との距離が遠い状態にある遠景観察状態で撮像されたものであるか否かを判定し、
近景観察状態にあると判定された場合には、青色波長領域において特定の帯域に制限された第1青色狭帯域光で照明された体腔内を撮像し、遠景観察状態にあると判定された場合には、第1青色狭帯域光うちその中心波長よりも長波長側の光量は増加させずに短波長側の光量のみを増加させた第2青色狭帯域光で照明された体腔内を撮像するように、前記撮像素子を制御することを特徴とする電子内視鏡システムにおける撮像制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2012−45265(P2012−45265A)
【公開日】平成24年3月8日(2012.3.8)
【国際特許分類】
【出願番号】特願2010−191927(P2010−191927)
【出願日】平成22年8月30日(2010.8.30)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】