説明

電子写真装置

【課題】高精細で、長期にわたり高品位な画像を出力することができる電子写真装置を提供する。
【解決手段】感光体と、感光体の表面を一様に帯電する帯電装置と、一様帯電後に像露光を行ない静電潜像を形成する像露光手段と、静電潜像を現像する現像手段と、現像像を転写する転写手段とを有する電子写真装置において、電子写真装置が、感光体上に現像されたトナー画像を中間転写体上に一次転写したのち、中間転写体上のトナー画像を記録材上に二次転写する中間転写手段を有する電子写真装置であって、感光体が導電性支持体上に感光層を有し、感光層中に少なくとも電荷発生材料と下記一般式(1)で表わされる電子輸送材料を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、中間転写方式の電子写真装置において、特定の電荷輸送材料を含む感光体を用いた電子写真装置に関する。
【背景技術】
【0002】
近年、電子写真方式を用いた情報処理システム機の発展は目覚ましいものがある。特に情報をデジタル信号に変換して、光によって情報記録を行なう光プリンタは、そのプリント品質、信頼性において向上が著しい。このデジタル記録技術は、プリンタのみならず通常の複写機にも応用され、いわゆるデジタル複写機が開発されている。また、従来からあるアナログ複写にこのデジタル記録技術を搭載した複写機は、種々様々な情報処理機能が付加されるため、今後その需要性が益々高まっていくと予想される。さらに、パーソナルコンピュータの普及、及び性能の向上にともない、画像及びドキュメントのカラー出力を行なうためのデジタルカラープリンタの進歩も急激に進んでいる。
【0003】
近年カラー用プリンタ、複写機に中間転写体を用いたシステムが多く上市されている。中間転写体、例えば中間転写ベルト上に各色のトナー像を順次重ね合わせて1次転写し、この中間転写体上の1次転写画像を転写材に一括して2次転写する中間転写方式の電子写真装置が知られている。とりわけ、中間転写方式は、色分解された原稿画像をブラック、シアン、マゼンタ、イエローなどのトナーによる減色混合を用いて再現する、いわゆるフルカラー電子写真装置において各色トナー像の重ね転写方式として採用されている(特許文献1参照)。このようなフルカラー電子写真装置において、中間転写体を用いることにより各色トナー像の重ね合わせを良好にすることができ、色ズレのない画像を得ることができる。
【0004】
また、中間転写体を用いた電子写真装置は、転写ドラムや転写ベルトに転写材を貼り付け又は吸着させ、その転写材に感光体上のトナー像を直接転写する方式の電子写真装置に比べ、各色のトナー像を重ね合わせる際に色ズレが生じにくい、転写材に何ら加工・制御(例えばクリッパーに把持する、吸着する、曲率を持たせる等)を必要とせず、中間転写体から画像を転写することができるため転写材を多種多様に選択することができる等の点で優れている。
【0005】
一方、中間転写方式では、第1次の転写工程での画像品質の劣化を、第2次の転写工程で助長してしまう傾向がある。また、転写の際には100%同じトナー像を転写することはできず、ドットの輪郭がわずかながら不鮮明になる。従って解像度の高い高精細な画像を出力するためには、感光体上のトナー像が高精細であり、また画像品質の良いものである必要がある。
【0006】
また、近年ではフルカラー電子写真装置として、感光体を含む画像形成要素を複数具備したタンデム方式が高速化に対応できることから主に用いられている。このようなタンデム方式では出力する色の割合により特定の色(例えば黒色のみ)が多くなる場合が一般に多く、各感光体の負荷が一様にならないという問題が生じる。このような場合、一部の感光体のみの特性が劣化して繰返し使用時において色を重ねたフルカラー画像を出力した場合の色調に変化が生じてしまう。従って感光体としては繰り返し使用によっても特性が変化せず安定していることが必要となる。
【0007】
【特許文献1】特開2002−169344号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、高精細で、長期にわたり高品位な画像を出力することができる電子写真装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、上記課題を解決するために鋭意検討した結果、中間転写方式の電子写真装置において、感光層に特定の電荷輸送材料を含む感光体を用いることにより、高精細で長期にわたり高品位な画像を出力できる電子写真装置を提供できることを見いだした。
【0010】
すなわち、上記課題は、以下に示す本発明の(1)〜(9)によって解決される。
(1)「少なくとも感光体と、該感光体の表面を一様に帯電する帯電装置と、一様帯電後に像露光を行ない静電潜像を形成する像露光手段と、前記静電潜像を現像する現像手段と、現像像を転写する転写手段とを有する電子写真装置において、前記電子写真装置が、感光体上に現像されたトナー画像を中間転写体上に一次転写したのち、該中間転写体上のトナー画像を記録材上に二次転写する中間転写手段を有する電子写真装置であって、前記感光体が、少なくとも導電性支持体上に感光層を有し、該感光層中に少なくとも電荷発生材料と下記一般式(1)で表わされる電子輸送材料を含むことを特徴とする電子写真装置。
【0011】
【化1】


式中、R1、R2は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わし、R3、R4、R5、R6、R7、R8、R9、R10はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わす。」
(2)少なくとも感光体と、該感光体の表面を一様に帯電する帯電装置と、一様帯電後に像露光を行ない静電潜像を形成する像露光手段と、前記静電潜像を現像する現像手段と、現像像を転写する転写手段とを有する電子写真装置において、前記電子写真装置が、感光体上に現像されたトナー画像を中間転写体上に一次転写したのち、該中間転写体上のトナー画像を記録材上に二次転写する中間転写手段を有する電子写真装置であって、前記感光体が、少なくとも導電性支持体上に感光層を有し、該感光層中に少なくとも電荷発生材料と下記一般式(A)で表わされる電子輸送材料を含むことを特徴とする電子写真装置。
【0012】
【化2】

式中、R1、R2は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表し、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表し、nは繰り返し単位であり、1から100までの整数を表す。

(3)「前記電荷発生材料がフタロシアニンであることを特徴とする前記第(1)項又は第(2)項に記載の電子写真装置」
(4)「前記フタロシアニンがチタニルフタロシアニンであることを特徴とする前記第(3)項に記載の電子写真装置」
(5)「前記チタニルフタロシアニンがCu−Kα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2°に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さないことを特徴とする前記第(4)項に記載の電子写真装置」
(6)前記感光層中に更に下記一般式Bで表される電子輸送材料を含有することを特徴とする前記第(1)項乃至第(5)項のいずれかに記載の電子写真装置。
【0013】
【化3】

式中、R15、R16は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表し、R17、R18、R19、R20はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表す。
(7)「正帯電で帯電プロセスを行なうことを特徴とする前記第(1)項乃至第(6)項のいずれかに記載の電子写真装置」
(8)「前記電子写真装置が複数の感光体を具備してなり、それぞれの感光体上に現像された単色のトナー画像を順次重ね合わせてカラー画像を形成することを特徴とする前記第(1)項乃至第(7)項のいずれかに記載の電子写真装置」
(9)「少なくとも感光体を具備してなる電子写真装置用プロセスカートリッジであって、該感光体が前記第(1)項乃至第(8)項のいずれかに記載の電子写真装置に用いられることを特徴とする電子写真装置用プロセスカートリッジ」
【発明の効果】
【0014】
本発明によれば、高精細で長期にわたり高品位な画像を出力することができる電子写真装置を提供することができる。
【発明を実施するための最良の形態】
【0015】
具体的には、少なくとも感光体と、該感光体の表面を一様に帯電する帯電装置と、一様帯電後に像露光を行ない静電潜像を形成する像露光手段と、前記静電潜像を現像する現像手段と、現像像を転写する転写手段とを有する電子写真装置において、前記電子写真装置が、感光体上に現像されたトナー画像を中間転写体上に一次転写したのち、該中間転写体上のトナー画像を記録材上に二次転写する中間転写手段を有する電子写真装置において、前記感光体が少なくとも導電性支持体上に感光層を有し、該感光層中に少なくとも電荷発生材料と前記一般式(1)又は一般式(A)で表わされる電子輸送材料を含むことを特徴とする電子写真装置を用いることで、高精細で長期にわたり高品位な画像を出力することができる。
【0016】
本発明においては中間転写方式を用いる。中間転写方式は前述のように、カラー画像を出力するために各色のトナー像を重ね合わせる際に色ズレを生じにくいためフルカラー電子写真装置に主に用いられている。
また、転写材の自由度が増すこと、転写材と感光体が直接接触しないため、紙粉付着が抑制されることなどから、トナーを重ね合わせる必要のないモノクロ機においても良好に使用できる。
【0017】
また、本発明に用いられる一般式(1)又は一般式(A)で表わされる電子輸送材料は非常に優れた電子輸送性を示すものであるため、感光層に電荷輸送材料として含有させることで、高感度な感光体となる。
また、電荷輸送材料として一般式(1)又は一般式(A)の電子輸送材料を用いた感光体は、感度のみならず、帯電性も良好であり、また残留電位の蓄積も小さい。さらに繰り返し使用によっても特性の変化が小さいため、長期にわたり異常画像のない高品位な画像を出力することができ、またタンデム方式のフルカラー電子写真装置に用いることで繰り返し使用によっても色調の変化のない電子写真装置とすることができる。
さらに電荷発生材料においても特定の材料を用いることにより特性が向上する。本発明においては電荷発生材料として公知の材料を用いることが可能であるが、中でもフタロシアン構造のものが本発明で用いられる電荷輸送材料との組合せ上好ましい。
【0018】
その中でも特に中心金属としてチタンを有する下記構造式(1)に示すようなチタニルフタロシアニンとすることによって、特に感度が高い感光層とすることができ、また、高精細な画像を出力することができる。
【0019】
【化4】

【0020】
チタニルフタロシアニンの合成法や電子写真特性に関する文献としては、例えば特開昭57−148745号公報、特開昭59−36254号公報、特開昭59−44054号公報、特開昭59−31965号公報、特開昭61−239248号公報、特開昭62−67094号公報などが挙げられる。また、チタニルフタロシアニンには種々の結晶系が知られており、特開昭59−49544号公報、特開昭59−416169、特開昭59−166959号公報、特開昭61−239248号公報、特開昭62−67094号公報、特開昭63−366号公報、特開昭63−116158号公報、特開昭64−17066号公報、特開2001−19871号公報等に各々結晶形の異なるチタニルフタロシアニンが記載されている。
【0021】
これらの結晶形のうち、ブラッグ角2θの27.2°に最大回折ピークを有するチタニルフタロシアニンが特に優れた感度特性を示し、良好に使用される。特に、特開2001−19871号公報に記載されている27.2°に最大回析ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回析ピークとして7.3°にピークを有し、該7.3゜のピークと9.4゜のピークの間にピークを有さないチタニルフタロシアニンを用いることで、高感度を失うことなく、繰り返し使用しても帯電性の低下を生じない安定した電子写真感光体を得ることができる。
【0022】
一般式(1)又は一般式(A)で表わされる電子輸送材料は電子輸送性を示すものであるため、感光層が支持体側から電荷発生層、電荷輸送層の順で設けられる場合の積層構成においては正帯電感光体となる。また感光層が単層構成で用いられる場合には、正孔輸送材料を併用することで正負両帯電において用いることが可能であるが、正帯電の方が帯電性が安定しており、また発生する酸化性ガスが少ない(負帯電の1/10程度)ため好ましい。
【0023】
以下、図面に沿って本発明の電子写真装置を詳しく説明する。
図1は、本発明の電子写真装置を説明するための概略図であり、後述するような変形例も本発明の範疇に属するものである。
図1において感光体(11)は少なくとも導電性支持体上に感光層を有し、該感光層中に少なくとも電荷発生材料と前記一般式(1)又は一般式(A)で表わされる電子輸送材料を含む。感光体(11)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
【0024】
帯電手段(帯電装置)(12)は、コロトロン、スコロトロン固体帯電器(ソリッド・ステート・チャージャー)、帯電ローラを始めとする公知の手段が用いられる。
第1の転写手段(1D)、第2の転写手段(1E)には、コロトロン、スコロトロン、固体帯電器(ソリッド・ステート・チャージャー)、帯電ローラを始めとする公知の帯電器を使用できる。
露光手段(13)、除電手段(1A)等に用いられる光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を挙げることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
現像手段(14)により感光体(11)上に現像されたトナー(15)は、受像媒体(18)に転写されるが、全部が転写されるわけではなく、感光体(11)上に残存するトナーも生ずる。このようなトナーは、クリーニング手段(17)により、感光体(11)より除去される。クリーニング手段は、ゴム製のクリーニングブレードやファーブラシ、マグファーブラシ等のブラシ等を用いることができる。
【0025】
感光体(11)上に形成されたトナー像は中間転写ベルト(1F)の内側に配置された第1の転写手段(1D)により、中間転写ベルト(1F)上に転写される。第1の転写手段(1D)は感光体(11)に対して接離可能に配置されており、転写動作時のみ中間転写ベルト(1F)を感光体(11)に当接させる。画像形成を行ない、中間転写ベルト(1F)上に転写されたトナー像は第2の転写手段(1E)により、受像媒体(18)に一括転写された後、定着手段(19)により定着されて定着画像が形成される。第2の転写手段(1E)も中間転写ベルト(1F)に対して接離可能に配置され、転写動作時のみ中間転写ベルト(1F)に当接する。
【0026】
また、以上に示すような画像形成手段は、複写機、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段のうちのいずれか1つ又は2つ以上を含んだ1つの装置(部品)である。プロセスカートリッジの形状等は多く挙げられるが、一般的な例として、図2に示すものが挙げられる。この図の例のプロセスカートリッジは感光体(11)を内蔵し、他に帯電手段(12)、現像手段(14)、クリーニング手段(17)を有するものである。また感光体への露光は、装置内の露光手段から像露光部(16)を通して行われる。
これらのプロセスカートリッジは着脱自在でありメンテナンスが容易となる特徴がある。
【0027】
図3には本発明による電子写真装置の別の例を示す。この電子写真装置では、感光体(11)の周囲に帯電手段(帯電装置)(12)、露光手段(13)、ブラック(Bk)、シアン(C)、マゼンタ(M)、およびイエロー(Y)の各色トナー毎の現像手段(14Bk,14C,14M,14Y)、中間転写体である中間転写ベルト(1F)、クリーニング手段(17)が順に配置されている。ここで、図中に示すBk、C、M、Yの添字は上記のトナーの色に対応し、必要に応じて添字を付けたり適宜省略する。
【0028】
感光体(11)は、本発明の要件を満たす電子写真感光体である。各色の現像手段(14Bk,14C,14M,14Y)は各々独立に制御可能となっており、画像形成を行なう色の現像手段のみが駆動される。感光体(11)上に形成されたトナー像は中間転写ベルト(1F)の内側に配置された第1の転写手段(1D)により、中間転写ベルト(1F)上に転写される。第1の転写手段(1D)は感光体(11)に対して接離可能に配置されており、転写動作時のみ中間転写ベルト(1F)を感光体(11)に当接させる。各色の画像形成を順次行ない、中間転写ベルト(1F)上で重ね合わされたトナー像は第2の転写手段(1E)により、受像媒体(18)に一括転写された後、定着手段(19)により定着されて画像が形成される。第2の転写手段(1E)も中間転写ベルト(1F)に対して接離可能に配置され、転写動作時のみ中間転写ベルト(1F)に当接する。
【0029】
図4には本発明による電子写真装置の別の例を示す。この電子写真装置は、トナーとしてイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)の4色を用いるタイプとされ、各色毎に画像形成部が配設されている。また、各色毎の感光体(11Y,11M,11C,11Bk)が設けられている。この電子写真装置に用いられる感光体は、本発明の要件を満たす感光体である。各感光体(11Y,11M,11C,11Bk)の周りには、帯電手段(12Y,12M,12C,12Bk)、露光手段(13Y,13M,13C,13Bk)、現像手段(14Y,14M,14C,14Bk)、クリーニング手段(17Y,17M,17C,17Bk)等が配設されている。
【0030】
各色の画像形成部は各々独立に制御可能となっており、画像形成を行なう色の画像形成部のみが駆動される。各色毎の感光体(11Y,11M,11C,11Bk)上に形成されたトナー像は中間転写ベルト(1F)の内側に配置された第1の転写手段(1D)により、中間転写ベルト(1F)上に転写される。第1の転写手段(1D)は感光体(11)に対して接離可能に配置されており、転写動作時のみ中間転写ベルト(1F)を感光体(11)に当接させる。各色の画像形成を順次行ない、中間転写ベルト(1F)上で重ね合わされたトナー像は第2の転写手段(1E)により、受像媒体(18)に一括転写された後、定着手段(19)により定着されて画像が形成される。第2の転写手段(1E)も中間転写ベルト(1F)に対して接離可能に配置され、転写動作時のみ中間転写ベルト(1F)に当接する。
【0031】
次に、本発明に用いられる電子写真感光体について詳細に説明する。
本発明における電子写真感光体の感光層は、電荷発生材料を含有する電荷発生層と電荷輸送材料を含有する電荷輸送層とをこの順に積層させた積層型感光層と、単一の層中に電荷発生材料と電荷輸送材料を含有する単層型感光層がある。
【0032】
図5、図6は本発明の電子写真装置で用いられる電子写真感光体の一例を模式的に示す断面図であり、図5は積層型感光層の感光体の例、図6は単層型感光層の感光体の例である。
まずこの積層型感光層の各層構成の例について説明する。
この例では導電性支持体(21)と電荷発生層(22)との間に下引き層(24)が設けられ、電荷発生層(22)の上に電荷輸送層(23)が設けられている感光層の構成である。
導電性支持体(21)としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えばアルミニウム、ニッケル、クロム、ニクロム、銅、銀、金、白金、鉄などの金属、酸化スズ、酸化インジウムなどの酸化物を、蒸着又はスパッタリングによりフィルム状又は円筒状のプラスチック、紙などに被覆したもの、或いはアルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板、及びそれらをDrawing Ironing法、Impact Ironing法、Extruded Ironing法、Extruded Drawing法、切削法等の工法により素管化後、切削、超仕上げ、研磨などにより表面処理した管などを使用することができる。
【0033】
(電荷発生層)
積層型感光体における各層のうち、まず電荷発生層(22)について説明すると、電荷発生層は電荷発生材料を主成分とする層で、必要に応じてバインダー樹脂を用いることもある。本発明に用いられる電荷発生材料としては、公知の材料を用いることができる。例えば、金属フタロシアニン、無金属フタロシアニンなどのフタロシアニン系顔料、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾ−ル骨格を有するアゾ顔料、トリフェニルアミン骨格を有するアゾ顔料、ジフェニルアミン骨格を有するアゾ顔料、ジベンゾチオフェン骨格を有するアゾ顔料、フルオレノン骨格を有するアゾ顔料、オキサジアゾール骨格を有するアゾ顔料、ビススチルベン骨格を有するアゾ顔料、ジスチリルオキサジアゾール骨格を有するアゾ顔料、ジスチリルカルバゾール骨格を有するアゾ顔料、ペリレン系顔料、アントラキノン系または多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾ−ル系顔料などが挙げられる。これらの電荷発生材料は、単独または2種以上の混合物として用いることができる。
【0034】
本発明においてはフタロシアニン系の顔料が本件発明に必要な諸特性の面から特に好ましい。
その中でも特に中心金属としてチタンを有するチタニルフタロシアニンであることによって、特に感度が高い感光層とすることができ、電子写真装置として高速化をよりいっそうはかることが可能となる。さらに各種の結晶形のうち、ブラッグ角2θの27.2°に最大回折ピークを有するチタニルフタロシアニンが特に優れた感度特性を示し、良好に使用される。特に、特開2001−19871号公報に記載されている27.2°に最大回析ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回析ピークとして7.3°にピークを有し、該7.3゜のピークと9.4゜のピークの間にピークを有さないチタニルフタロシアニンを用いることで、高感度を失うことなく、繰り返し使用しても帯電性の低下を生じない安定した電子写真感光体を得ることができる。
【0035】
このようなチタニルフタロシアニンは、次のように合成(後述の顔料合成例2参照)することができる。即ち、
<合成例>
1,3−ジイミノイソインドリン29.2gとスルホラン200mlを混合し、窒素気流下でチタニウムテトラブトキシド20.4gを滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行なった。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶を濾過、ついで洗浄液が中性になるまで水洗を繰り返し、チタニルフタロシアニン顔料のウェットケーキを得た。
得られたウェットケーキ2gを表7に示す有機溶媒20gに投入し、4時間撹拌を行なった。これにメタノール100gを追加して、1時間撹拌を行なった後、濾過を行ない、乾燥して、本発明で用いるチタニルフタロシアニン結晶粉末を得た。
得られたチタニルフタロシアニン結晶粉末を、下記の条件によりX線回折スペクトル測定した。
X線管球:Cu、電圧:50kV、
電流:30mA、
走査速度:2°/分、
走査範囲:3°〜40°、
時定数:2秒
合成例で作製された顔料のX線回折スペクトルを図7に示す。
【0036】
電荷発生層に必要に応じて用いられるバインダー樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、ポリアリレート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリ−N−ビニルカルバゾール、ポリアクリルアミドなどが挙げられる。
これらのバインダー樹脂は、単独でも2種以上の混合物として用いてもよい。
バインダー樹脂は電荷発生材料100重量部に対し0〜500重量部、好ましくは10〜300重量部が適当である。
また、電荷発生層のバインダー樹脂として、高分子電荷輸送物質を用いることができる。更に、必要に応じて電荷輸送材料を添加してもよい。
【0037】
電荷発生層を形成する方法としては、溶液分散系からのキャスティング法が好ましい。キャスティング法によって電荷発生層を設けるには、上述した電荷発生材料を、必要ならばバインダー樹脂と共にテトラヒドロフラン、シクロヘキサノン、ジオキサン、ジクロロエタン、ブタノンなどの溶媒を用いてボールミル、アトライター、サンドミルなどにより分散し、分散液を適度に希釈して塗布すればよい。塗布は、浸漬塗工法、スプレーコート法、ビードコート法などにより行なうことができる。
以上のようにして設けられる電荷発生層の膜厚は、通常は0.01μm〜5μm、好ましくは0.1μm〜2μmである。
【0038】
(電荷輸送層)
次に、電荷輸送層(23)について説明する。
電荷輸送層は、電荷輸送成分とバインダー成分を主成分とする混合物又は共重合体を適当な溶剤に溶解又は分散し、これを塗布、乾燥することにより形成する。
電荷輸送層のバインダー成分として用いることのできる高分子化合物としては、例えば、ポリスチレン、スチレン/アクリロニトリル共重合体、スチレン/ブタジエン共重合体、スチレン/無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル/酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、アクリル樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキド樹脂などの熱可塑性又は熱硬化性樹脂が挙げられるが、これらに限定されるものではない。
これらの高分子化合物は、単独又は2種以上の混合物として、或いはそれらの原料モノマー2種以上からなる共重合体として、更には、電荷輸送材料と共重合化して用いることができる。
【0039】
電荷輸送層の環境変動に対する安定性を確保させる目的として、電気的に不活性な高分子化合物を用いる場合には、例えばポリエステル、ポリカーボネート、アクリル樹脂、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、フッ素樹脂、ポリアクリロニトリル、アクリロニトリル/スチレン/ブタジエン共重合体、スチレン/アクリロニトリル共重合体、エチレン/酢酸ビニル共重合体等が有効である。
ここで、電気的に不活性な高分子化合物とは、トリアリールアミン構造のような光導電性を示す化学構造を含まない高分子化合物を指す。
これらの樹脂を添加剤としてバインダー樹脂と併用する場合、光減衰感度の制約から、その添加量は50wt%以下とすることが好ましい。
【0040】
本発明において、電荷輸送材料に用いることのできる材料としては、前述の一般式(1)又は一般式(A)で表わされる電子輸送材料を用いることが必須であるが、これに加えて公知の電荷輸送材料、即ち電子輸送材料(アクセプター)、正孔輸送材料(ドナー)を併用することもできる。
電子輸送材料としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイドなどの電子受容性物質が挙げられる。
これらの電子輸送材料は、単独でも2種以上の混合物として用いてもよい。
【0041】
正孔輸送材料としては、電子供与性物質が好ましく用いられる。
その例としては、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、トリフェニルアミン誘導体、9−(p−ジエチルアミノスチリルアントラセン)、1,1−ビス−(4−ジベンジルアミノフェニル)プロパン、スチリルアントラセン、スチリルピラゾリン、フェニルヒドラゾン類、α−フェニルスチルベン誘導体、チアゾール誘導体、トリアゾール誘導体、フェナジン誘導体、アクリジン誘導体、ベンゾフラン誘導体、ベンズイミダゾール誘導体、チオフェン誘導体などが挙げられる。
これらの正孔輸送材料は、単独でも2種以上の混合物として用いてもよい。
電荷輸送材料の添加量は樹脂成分100重量部に対して40〜200重量部、好ましくは70〜150重量部程度が適当であり、電荷輸送材料全体に対し、一般式(1)又は一般式(A)で表わされる電子輸送材料が50〜100重量%であることが好ましい。
【0042】
電荷輸送層塗工液を調製する際に使用できる分散溶媒としては、例えば、メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ジオキサン、テトラヒドロフラン、エチルセロソルブなどのエーテル類、トルエン、キシレンなどの芳香族類、クロロベンゼン、ジクロロメタンなどのハロゲン化炭化水素類、酢酸エチル、酢酸ブチルなどのエステル類等を挙げることができる。これらの溶媒は単独としてまたは混合して用いることができる。
【0043】
また、必要により、電荷輸送層中に後述する酸化防止剤、可塑剤、滑剤、紫外線吸収剤などの低分子化合物およびレベリング剤を添加することもできる。これらの化合物は単独または2種以上の混合物として用いることができる。低分子化合物の使用量は、高分子化合物100重量部に対して0.1〜50重量部、好ましくは、0.1〜20重量部、レベリング剤の使用量は、高分子化合物100重量部に対して0.001〜5重量部程度が適当である。
【0044】
塗工方法としては浸漬法、スプレー塗工法、リングコート法、ロールコータ法、グラビア塗工法、ノズルコート法、スクリーン印刷法等が採用される。
電荷輸送層の膜厚は、15〜40μm程度が適当であり、好ましくは15〜30μm程度、解像力が要求される場合、25μm以下が適当である。
【0045】
(下引き層)
本発明に用いられる電子写真感光体には、導電性支持体(21)と混合型感光層(25)又は電荷発生層(22)との間に下引き層(24)を設けることもできる。下引き層は、接着性の向上、モワレの防止、上層の塗工性の改良、残留電位の低減、導電性支持体からの電荷注入の防止などの目的で設けられる。下引き層は一般に樹脂を主成分とするが、これらの樹脂はその上に溶剤を用いて感光層を塗布することを考慮すると、一般の有機溶剤に対して耐溶解性の高い樹脂であることが望ましく、このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウムなどの水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロンなどのアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、アルキッド−メラミン樹脂、エポキシ樹脂など三次元網目構造を形成する硬化型樹脂などが挙げられる。
また、下引き層には、酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウムなどの金属酸化物、或いは金属硫化物、金属窒化物などの微粉末を加えてもよい。これらの下引き層は、前述の感光層と同様、適当な溶媒及び塗工法を用いて形成することができる。
【0046】
更に下引き層としては、シランカップリング剤、チタンカップリング剤、クロムカップリング剤などを使用して、例えばゾル−ゲル法などにより形成した金属酸化物層も有用である。この他に、アルミナを陽極酸化により設けたもの、ポリパラキシリレン(パリレン)などの有機物、酸化ケイ素、酸化スズ、酸化チタン、ITO、セリアなどの無機物を真空薄膜作製法にて設けたものも下引き層として良好に使用できる。
下引き層の膜厚は0.1〜10μmが適当であり、さらに好ましくは1〜5μmである。
また、本発明においては、感光体表面層のガスバリアー性向上、及び耐環境性改善のため、各層に公知の酸化防止剤、可塑剤、紫外線吸収剤、低分子電荷輸送物質及びレベリング剤を添加することができる。
【0047】
また本発明において、感光層中に一般式(B)で表される電子輸送材料を加えることにより、感光層を緻密にすることができるため、ガスバリアー性が向上し、帯電器などで発生する酸化性ガスによる感光体劣化を防ぐことができる。また成膜時における収縮が緩和されるため、アルミ蒸着したPETシートやニッケルベルトなどのフレキシブルなシートを支持体とした場合、一般にカールと称される反りを減少させることが可能となり、クラックなどの感光体欠陥の発生を防ぐことができる。
これは、一般式(B)で表される電子輸送材料が低分子であるため、感光層中で可塑剤のような働きをするためであるが、一般式Bで表される電子輸送材料は電子輸送能を持ち、また一般式(1)及び一般式(A)で表される電子輸送材料のモノマーであるため、残留電位などの副作用もほとんど生じずにガスバリアー性の向上及びカールを減少させることができる。
一般式(B)で表される電子輸送材料は、一般式(1)又は一般式(A)で表される電子輸送材料に対して1〜50重量%が適当である。少なすぎると所望の効果が得られず、また、一般式(B)で表される電子輸送材料は一般式(1)及び一般式(A)で表される電子輸送材料に比べ電子輸送能が劣るため、多すぎる場合には感度が低下してしまう。
【0048】
次に、単一の層中に電荷発生材料と電荷輸送材料を含有する単層型感光層の例について述べる。
図6は本発明の電子写真装置で用いられる電子写真感光体の一例を模式的に示す断面図であり、導電性支持体(21)の上に少なくとも電荷発生材料と、前記一般式(1)又は一般式(A)で表わされる電荷輸送材料を含む感光層(25)が設けられている。
また、図示していないが、導電性支持体(21)と感光層(25)の間に下引き層を設けることも可能である。
【0049】
単層構成の感光層に用いることができる電荷発生材料は積層構成時と同様に公知の材料を使用することができるが、前述のようにフタロシアニン系の顔料が本件発明に必要な諸特性の面から特に好ましい。
その中でも前述のように、特に中心金属としてチタンを有するチタニルフタロシアニンであることによって、特に感度が高い感光層とすることができ、電子写真装置として高速化をよりいっそう図ることが可能となる。さらに積層同様に各種の結晶形のうち、ブラッグ角2θの27.2°に最大回折ピークを有するチタニルフタロシアニンが特に優れた感度特性を示し、良好に使用される。特に、特開2001−19871号公報に記載されている27.2°に最大回析ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回析ピークとして7.3°にピークを有し、該7.3゜のピークと9.4゜のピークの間にピークを有さないチタニルフタロシアニンを用いることで、高感度を失うことなく、繰り返し使用しても帯電性の低下を生じない安定した電子写真感光体を得ることができる。
これらの顔料は、予めテトラヒドロフラン、シクロヘキサノン、ジオキサン、ジクロロエタン、ブタノンなどの溶媒を用いてボールミル、アトライター、サンドミルなどにより分散しておくことが好ましい。また分散時には必要に応じてバインダー樹脂と共に分散しても良い。
【0050】
単層構成時においても電荷輸送材料に用いることのできる材料としては、前述の一般式(1)又は一般式(A)で表わされる電子輸送材料を用いることが必須であるが、これに加えて前述のような公知の電荷輸送材料、即ち電子輸送材料(アクセプター)、正孔輸送材料(ドナー)を併用することも積層同様にできる。
上記単層構成の感光層において、電荷発生材料は感光層全体に対して0.1〜30重量%、好ましくは0.5〜10重量%が適当である。電子輸送材料はバインダー樹脂成分100重量部に対して5〜300重量部、好ましくは10〜150重量部が適当である。ただし電子輸送材料全体に対し、一般式(1)又は一般式(A)で表わされる電子輸送材料が50〜100重量%であることが好ましい。また正孔輸送材料は、バインダー樹脂成分100重量部に対して5〜300重量部、好ましくは20〜150重量部が適当である。電子輸送材料と正孔輸送材料を併用する場合は、電子輸送材料と正孔輸送材料の総量が、バインダー樹脂成分100重量部に対して20〜300重量部、好ましくは30〜200重量部が適当である。
【0051】
感光層塗工液を調製する際に使用できる溶媒としては、例えば、メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ジオキサン、テトラヒドロフラン、エチルセロソルブなどのエーテル類、トルエン、キシレンなどの芳香族類、クロロベンゼン、ジクロロメタンなどのハロゲン類、酢酸エチル、酢酸ブチルなどのエステル類等を挙げることができる。これらの溶媒は単独としてまたは混合して用いることができる。
【0052】
また、必要により、感光層中に酸化防止剤、可塑剤、滑剤、紫外線吸収剤などの低分子化合物およびレベリング剤を添加することもできる。これらの化合物は単独または2種以上の混合物として用いることができる。低分子化合物の使用量は、バインダー樹脂などの高分子化合物100重量部に対して0.1〜50重量部、好ましくは、0.1〜20重量部、レベリング剤の使用量は、高分子化合物100重量部に対して0.001〜5重量部程度が適当である。
【0053】
単層構成時においても、感光層中に一般式(B)で表される電子輸送材料を加えることにより、感光層を緻密にすることができるため、ガスバリアー性が向上し、帯電器などで発生する酸化性ガスによる感光体劣化を防ぐことができる。また成膜時における収縮が緩和されるため、アルミ蒸着したPETシートやニッケルベルトなどのフレキシブルなシートを支持体とした場合、一般にカールと称される反りを減少させることが可能となり、クラックなどの感光体欠陥の発生を防ぐことができる。
単層構成の感光層において、一般式(B)で表される電子輸送材料は、一般式(1)又は一般式(A)で表される電子輸送材料に対して1〜50重量%が適当である。少なすぎると所望の効果が得られず、また、一般式(B)で表される電子輸送材料は一般式(1)及び一般式(A)で表される電子輸送材料に比べ電子輸送能が劣るため、多すぎる場合には感度が低下してしまう。
【0054】
塗工方法としては浸漬法、スプレー塗工法、リングコート法、ロールコータ法、グラビア塗工法、ノズルコート法、スクリーン印刷法等が採用される。
感光層の膜厚は、10〜45μm程度が適当であり、好ましくは15〜32μm程度、解像力が要求される場合、25μm以下が適当である。
【0055】
本発明に用いられる一般式(1)及び一般式(A)、一般式(B)で表わされる電子輸送材料は、下記に示す構造骨格を有する。
【0056】
【化5】


式中、R1、R2は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わし、R3、R4、R5、R6、R7、R8、R9、R10はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わす。
【0057】
【化6】

式中、R1、R2は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表し、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表し、nは繰り返し単位であり、1から100までの整数を表す。
【0058】
【化7】

式中、R15、R16は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表し、R17、R18、R19、R20はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表す。
【0059】
該置換又は無置換のアルキル基としては、炭素数1〜25、好ましくは炭素数1〜10の炭素原子を有するアルキル基、具体的には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ペプチル基、n−オクチル基、n−ノニル基、n−デシル基といった直鎖状のもの、i―プロピル基、s−ブチル基、t−ブチル基、メチルプロピル基、ジメチルプロピル基、エチルプロピル基、ジエチルプロピル基、メチルブチル基、ジメチルブチル基、メチルペンチル基、ジメチルペンチル基、メチルヘキシル基、ジメチルヘキシル基等の分岐状のもの、アルコキシアルキル基、モノアルキルアミノアルキル基、ジアルキルアミノアルキル基、ハロゲン置換アルキル基、アルキルカルボニルアルキル基、カルボキシアルキル基、アルカノイルオキシアルキル基、アミノアルキル基、エステル化されていてもよいカルボキシル基で置換されたアルキル基、シアノ基で置換されたアルキル基等が例示できる。なお、これらの置換基の置換位置については特に限定されず、上記置換又は無置換のアルキル基の炭素原子の一部がヘテロ原子(N、O、S等)に置換された基も置換されたアルキル基に含まれる。
【0060】
該置換又は無置換のシクロアルキル基としては、炭素数3〜25、好ましくは炭素数3〜10の炭素原子を有するシクロアルキル環、具体的には、シクロプロパンからシクロデカンまでの同属環、メチルシクロペンタン、ジメチルシクロペンタン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、テトラメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、t−ブチルシクロヘキサン等のアルキル置換基を有するもの、アルコキシアルキル基、モノアルキルアミノアルキル基、ジアルキルアミノアルキル基、ハロゲン置換アルキル基、アルコキシカルボニルアルキル基、カルボキシアルキル基、アルカノイルオキシアルキル基、アミノアルキル基、ハロゲン原子、アミノ基、エステル化されていてもよいカルボキシル基、シアノ基等で置換されたシクロアルキル基等が例示できる。なお、これらの置換基の置換位置については特に限定されず、上記置換又は無置換のシクロアルキル基の炭素原子の一部がヘテロ原子(N、O、S等)に置換された基も置換されたシクロアルキル基に含まれる。
【0061】
置換または無置換のアラルキル基としては、上述の置換または無置換のアルキル基に芳香族環が置換した基が挙げられ、炭素数6〜14のアラルキル基が好ましい。より具体的には、ベンジル基、ペルフルオロフェニルエチル基、1−フェニルエチル基、2−フェニルエチル基、ターフェニルエチル基、ジメチルフェニルエチル基、ジエチルフェニルエチル基、t−ブチルフェニルエチル基、3−フェニルプロピル基、4−フェニルブチル基、5−フェニルペンチル基、6−フェニルヘキシル基、ベンズヒドリル基、トリチル基などが例示できる。
該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0062】
一般式(1)で表される電子輸送材料としては具体的に、下記構造式(2)〜(8)で表わされる電子輸送材料が、得られる画像が高品質である点で好ましい。なお、式中Meはメチル基を示す。
【0063】
【化8】

【0064】
【化9】

【0065】
【化10】

【0066】
【化11】

【0067】
【化12】

【0068】
【化13】

【0069】
【化14】

【0070】
前記一般式(1)で表わされる電子輸送材料の製造方法としては、下記の方法が例示できる。
すなわち、ナフタレンカルボン酸は公知の合成方法(例えば、米国特許6794102号明細書、Industrial Organic Pigments 2nd edition, VCH, 485 (1997)など)に従い、下記反応式より合成される。
【0071】
【化15】


式中、RnはR3、R4、R7、R8を表わし、RmはR5、R6、R9、R10を表わす。
【0072】
本発明に用いられる一般式(1)で表わされる電子輸送材料は、上記のナフタレンカルボン酸若しくはその無水物をアミン類と反応させ、モノイミド化する方法、ナフタレンカルボン酸若しくはその無水物を緩衝液によりpH調整してジアミン類と反応させる方法等により得られる。モノイミド化は無溶媒、若しくは溶媒存在下で行なう。溶媒としては特に制限はないが、ベンゼン、トルエン、キシレン、クロロナフタレン、酢酸、ピリジン、メチルピリジン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルエチレンウレア、ジメチルスルホキサイド等原料や生成物と反応せず50℃〜250℃の温度で反応させられるものを用いるとよい。pH調整には水酸化リチウム、水酸化カリウム等の塩基性水溶液をリン酸等の酸との混合により作製した緩衝液を用いる。カルボン酸とアミン類やジアミン類とを反応させて得られたカルボン酸誘導体脱水反応は無溶媒、若しくは溶媒存在下で行なう。溶媒としては特に制限は無いが、ベンゼン、トルエン、クロロナフタレン、ブロモナフタレン、無水酢酸等原料や生成物と反応せず50℃〜250℃の温度で反応させられるものを用いるとよい。いずれの反応も、無触媒若しくは触媒存在下で行なってよく、特に限定されないが、例えばモレキュラーシーブスやベンゼンスルホン酸やp−トルエンスルホン酸等を脱水剤として用いることが例示できる。
【0073】
なお、上述の構造式(2)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、1,4,5,8―ナフタレンテトラカルボン酸二無水物5.0g(18.6mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノヘプタン2.14g(18.6mmol)とDMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、モノイミド体A 2.14g(収率31.5%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体A 2.0g(5.47mmol)と、ヒドラジン一水和物0.137g(2.73mmol)、p−トルエンスルホン酸10mg、トルエン50mlを入れ、5時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/酢酸エチルにより再結晶し、構造式(2)で表わされる化合物 0.668g(収率33.7%)を得た。質量分析(FD−MS)において、M/z=726のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素69.41%、水素5.27%、窒素7.71%に対し、実測値で炭素69.52%、水素5.09%、窒素7.93%あった。
【0074】
なお、上述の構造式(3)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、1,4,5,8―ナフタレンテトラカルボン酸二無水物10g(37.3mmol)とヒドラジン一水和物0.931g(18.6mmol)、p−トルエンスルホン酸20mg、トルエン100mlを入れ、5時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/酢酸エチルにより再結晶し、二量体C 2.84g(収率28.7%)を得た。
<第二工程>
100ml4つ口フラスコに、二量体C 2.5g(4.67mmol)、DMF30mlを入れ、加熱還流させた。これに、2−アミノプロパン0.278g(4.67mmol)とDMF10mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製し、モノイミド体C 0.556g(収率38.5%)を得た。
<第三工程>
50ml4つ口フラスコに、モノイミド体C 0.50g(1.62mmol)、DMF10mlを入れ、加熱還流させた。これに、2−アミノヘプタン0.186g(1.62mmol)とDMF5mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、上記構造式(3)で表わされる化合物0.243g(収率22.4%)を得た。質量分析(FD−MS)において、M/z=670のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素68.05%、水素4.51%、窒素8.35%に対し、実測値で炭素68.29%、水素4.72%、窒素8.33%あった。
【0075】
なお、上述の構造式(4)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、1,4,5,8−ナフタレンテトラカルボン酸二無水物5.0g(18.6mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノプロパン1.10g(18.6mmol)とDMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、モノイミド体B 2.08g(収率36.1%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体B 2.0g(6.47mmol)と、ヒドラジン一水和物0.162g(3.23mmol)、p−トルエンスルホン酸10mg、トルエン50mlを入れ、5時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/酢酸エチルにより再結晶し、上記構造式(4)で表わされる化合物0.810g(収率37.4%)を得た。質量分析(FD−MS)において、M/z=614のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素66.45%、水素3.61%、窒素9.12%に対し、実測値で炭素66.28%、水素3.45%、窒素9.33%あった。
【0076】
なお、上述の構造式(5)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、上述した二量体C 5.0g(9.39mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノヘプタン1.08g(9.39mmol)DMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製し、モノイミド体D 1.66g(収率28.1%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体D 1.5g(2.38mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノオクタン0.308g(2.38mmol)とDMF10mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、構造式(5)で表わされる電子輸送材料0.328g(収率18.6%)を得た。質量分析(FD−MS)において、M/z=740のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素69.72%、水素5.44%、窒素7.56%に対し、実測値で炭素69.55%、水素5.26%、窒素7.33%あった。
【0077】
なお、上述の構造式(6)で表わされる電子輸送材料は、下記の方法により製造した。
<第一工程>
200ml4つ口フラスコに、上述した二量体C 5.0g(9.39mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノヘプタン1.08g(9.39mmol)DMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製し、モノイミド体D 1.66g(収率28.1%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体D 1.5g(2.38mmol)、DMF50mlを入れ、加熱還流させた。これに、6−アミノウンデカン0.408g(2.38mmol)とDMF10mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、上述した構造式(6)で表わされる電子輸送材料0.276g(収率14.8%)を得た。質量分析(FD−MS)において、M/z=782のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素70.57%、水素5.92%、窒素7.16%に対し、実測値で炭素70.77%、水素6.11%、窒素7.02%あった。
【0078】
一般式(A)で表される電子輸送材料は主に以下の2とおりの合成方法によって合成される。
【0079】
【化16】

【0080】
これら合成法には、これらの変形(応用合成法)として、以下に示されるように段階的に合成することで、単分散の化合物を得るのに適したものが含まれる。
【0081】
【化17】

【0082】
一般式(A)で表される電子輸送材料の繰り返し単位nは1から100の整数である。
繰り返し単位nは、重量平均分子量(Mw)から求められる。すなわち化合物は分子量に分布をもった状態で存在する。nが100をこえると化合物の分子量が大きくなり、各種溶媒に対する溶解性が落ちるため、100以下が好ましい。
一方例えばnが1の場合はナフタレンカルボン酸の三量体であるが、R1、R2の置換基を適切に選択することにより、オリゴマーでも優れた電子移動特性が得られる。このように繰り返し単位nの数により、オリゴマーからポリマーまで幅広い範囲のナフタレンカルボン酸誘導体が合成される。
オリゴマー領域の分子量が小さい範囲では、段階的に合成することで、単分散の化合物を得ることができる。分子量が大きい化合物の場合は、分子量に分布をもった化合物が得られる。
一般式(A)で表される電子輸送材料としては具体的に以下のものが例示できる。
【0083】
【化18】

【0084】
【化19】

【0085】
【化20】

【実施例】
【0086】
以下、本発明を実施例によって説明する。なお、これによって本発明の範囲は限定されるわけではない。部は全て重量部である。
【0087】
電子輸送材料合成例1
<第一工程>
200ml4つ口フラスコに、1,4,5,8−ナフタレンテトラカルボン酸二無水物5.0g(18.6mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノヘプタン2.14g(18.6mmol)とDMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、モノイミド体A 2.14g(収率31.5%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体A 2.0g(5.47mmol)と、ヒドラジン一水和物0.137g(2.73mmol)、p−トルエンスルホン酸10mg、トルエン50mlを入れ、5時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/酢酸エチルにより再結晶し、構造式(2)で表わされる電子輸送材料0.668g(収率33.7%)を得た(電子輸送材料1とする)。
質量分析(FD−MS)において、M/z=726のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素69.41%、水素5.27%、窒素7.71%に対し、実測値で炭素69.52%、水素5.09%、窒素7.93%あった。
【0088】
【化21】

【0089】
電子輸送材料合成例2
<第一工程>
200ml4つ口フラスコに、1,4,5,8―ナフタレンテトラカルボン酸二無水物10g(37.3mmol)とヒドラジン一水和物0.931g(18.6mmol)、p−トルエンスルホン酸20mg、トルエン100mlを入れ、5時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/酢酸エチルにより再結晶し、二量体C 2.84g(収率28.7%)を得た。
<第二工程>
100ml4つ口フラスコに、二量体C 2.5g(4.67mmol)、DMF30mlを入れ、加熱還流させた。これに、2−アミノプロパン0.278g(4.67mmol)とDMF10mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製し、モノイミド体C 0.556g(収率38.5%)を得た。
<第三工程>
50ml4つ口フラスコに、モノイミド体C 0.50g(1.62mmol)、DMF10mlを入れ、加熱還流させた。これに、2−アミノヘプタン0.186g(1.62mmol)とDMF5mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、構造式(3)で表わされる電子輸送材料0.243g(収率22.4%)を得た(電子輸送材料2とする)。
質量分析(FD−MS)において、M/z=670のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素68.05%、水素4.51%、窒素8.35%に対し、実測値で炭素68.29%、水素4.72%、窒素8.33%あった。
【0090】
【化22】

【0091】
電子輸送材料合成例3
<第一工程>
200ml4つ口フラスコに、上述した二量体C 5.0g(9.39mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノヘプタン1.08g(9.39mmol)DMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製し、モノイミド体D 1.66g(収率28.1%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体D 1.5g(2.38mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノオクタン0.308g(2.38mmol)とDMF10mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、反応容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、構造式(5)で表わされる電子輸送材料0.328g(収率18.6%)を得た(電子輸送材料3とする)。
質量分析(FD−MS)において、M/z=740のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素69.72%、水素5.44%、窒素7.56%に対し、実測値で炭素69.55%、水素5.26%、窒素7.33%あった。
【0092】
【化23】

【0093】
電子輸送材料合成例4
<第一工程>
200ml4つ口フラスコに、1,4,5,8―ナフタレンテトラカルボン酸二無水物5.0g(18.6mmol)、DMF50mlを入れ、加熱還流させた。これに、2−アミノペンタン1.62g(18.6mmol)とDMF25mlの混合物を攪拌しながら滴下した。滴下終了後、6時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣にトルエンを加え、シリカゲルカラムクロマトグラフィーにて精製した。更に回収品をトルエン/ヘキサンにより再結晶し、モノイミド体E 3.49g(収率45.8%)を得た。
<第二工程>
100ml4つ口フラスコに、モノイミド体E 3.0g(7.33mmol)と、1,4,5,8−ナフタレンテトラカルボン酸二無水物0.983g(3.66mmol)、ヒドラジン一水和物0.368g(7.33mmol)、p−トルエンスルホン酸10mg、トルエン50mlを入れ、5時間加熱還流させた。反応終了後、容器を冷却し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて2回精製した。更に回収品をトルエン/酢酸エチルにより再結晶し、構造式(A−1)で表される電子輸送材料0.939g(収率13.7%)を得た(電子輸送材料4とする)。
質量分析(FD−MS)において、M/z=934のピークが観測されたことにより目的物であると同定した。元素分析は計算値、炭素66.81%、水素3.67%、窒素8.99%に対し、実測値で炭素66.92%、水素3.74%、窒素9.05%であった。
【0094】
【化24】

【0095】
(顔料合成例1)
特開平2−8256号公報(特公平7−91486号公報)の製造例に記載の方法に準じて、顔料を作製した。すなわち、フタロジニトリル9.8gと1−クロロナフタレン75mlを撹拌混合し、窒素気流下で四塩化チタン2.2mlを滴下する。滴下終了後、徐々に200℃まで昇温し、反応温度を200℃〜220℃の間に保ちながら3時間撹拌して反応を行なった。反応終了後、放冷し130℃になったところ熱時ろ過し、次いで1−クロロナフタレンで粉体が青色になるまで洗浄、次にメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後、乾燥し顔料を得た(顔料1とする)。
得られたチタニルフタロシアニン粉末を、下記の条件によりX線回折スペクトル測定し、公報に記載のスペクトルと同様であることを確認した。
(X線回折スペクトル測定条件)
X線管球:Cu
電圧:50kV
電流:30mA
走査速度:2°/分
走査範囲:3°〜40°
時定数:2秒
【0096】
(顔料合成例2)
特開2001−19871号公報に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン29.2gとスルホラン200mlを混合し、窒素気流下でチタニウムテトラブトキシド20.4gを滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行なった。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶をろ過、ついで洗浄液が中性になるまで水洗いを繰り返し、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。得られたこのウェットケーキ(水ペースト)2gをテトラヒドロフラン20gに投入し、4時間攪拌を行なった後、濾過を行ない、乾燥して、チタニルフタロシアニン粉末を得た(顔料2とする)。
【0097】
得られたチタニルフタロシアニン粉末を、顔料合成例1の条件によりX線回折スペクトル測定し、公報に記載の、Cu−Kα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2°に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さないチタニルフタロシアニンであることを確認した。
【0098】
感光体作製例1
下記組成の下引き層用塗工液、電荷発生層用塗工液及び電荷輸送層用塗工液をそれぞれ作製した。
(下引き層用塗工液)
アルキッド樹脂 60部
(大日本インキ製:ベッコゾール M−6401−50)
メラミン樹脂 40部
(大日本インキ製:スーパーベッカミン L−121−60)
酸化チタン(石原産業社製:CR−EL) 400部
メチルエチルケトン 500部
これらをボールミル装置(メディアとしてφ10mmのアルミナボールを使用)にて5日間ボールミルを行ない下引き層用塗工液とした。
【0099】
(電荷発生層用塗工液)
無金属フタロシアニン顔料 12部
(大日本インキ工業株式会社:Fastogen Blue8120B)
ポリビニルブチラール樹脂 5部
(積水化学工業株式会社:エスレックBX−1)
2−ブタノン 200部
シクロヘキサノン 400部
これらをφ9cmのガラスポットにφ0.5mmのPSZボールを用い、回転数100rpmで5時間分散を行ない電荷発生層用塗工液とした。
【0100】
(電荷輸送層用塗工液)
電子輸送材料1 10部
Z型ポリカーボネート樹脂(帝人化成製:パンライトTS−2050) 10部
シリコーンオイル(信越化学工業社製:KF50) 0.01部
テトラヒドロフラン 80部
【0101】
これらを撹拌、溶解し電荷輸送層用塗工液とした。
次いで、φ30mm、長さ256mmのアルミニウムドラム上に、前記組成の下引き層用塗工液、電荷発生層用塗工液及び電荷輸送層用塗工液の各塗工液を順次、浸漬塗工法にて塗布、乾燥し、4.5μmの下引き層、0.15μmの電荷発生層、25μmの電荷輸送層を形成し感光体を作成した(感光体1とする)。なおそれぞれの層の乾燥温度は135℃で20分、80℃で15分、120℃で20分とした。
【0102】
感光体作製例2
無金属フタロシアニンを下記組成の処方、条件にて分散を行ない顔料分散液を作製した。
無金属フタロシアニン顔料 3部
(大日本インキ工業株式会社:Fastogen Blue8120B)
シクロヘキサノン 97部
φ9cmのガラスポットにφ0.5mmのPSZボールを用い、回転数100rpmで5時間分散を行なった。
【0103】
上記分散液を用いて下記組成の感光体用塗工液を作成した。
上記分散液 60部
下記構造式(9)の正孔輸送材料 25部
電子輸送材料1 25部
Z型ポリカーボネート樹脂 50部
(帝人化成製:パンライトTS−2050)
シリコーンオイル 0.01部
(信越化学工業社製:KF50)
テトラヒドロフラン 350部
【0104】
【化25】


こうして得られた感光層用塗工液をφ30mm、長さ256mmアルミニウムドラム上に、浸漬塗工法にて塗布、120℃で20分間乾燥し、25μmの感光層を形成し、感光体を作製した(感光体2とする)。
【0105】
感光体作製例3
感光体作製例1において電荷発生材料をX型無金属フタロシアニン(Fastogen Blue8120B)に代えて顔料1のチタニルフタロシアニンを用いた以外は感光体作製例1と全く同様にして感光体を作製した(感光体3とする)。
【0106】
感光体作製例4
感光体作製例2において電荷発生材料をX型無金属フタロシアニン(Fastogen Blue8120B)に代えて顔料1のチタニルフタロシアニンを用いた以外は感光体作製例2と全く同様にして感光体を作製した(感光体4とする)。
【0107】
感光体作製例5
感光体作製例1において電荷発生材料をX型無金属フタロシアニン(Fastogen Blue8120B)に代えて顔料2のチタニルフタロシアニンを用いた以外は感光体作製例1と全く同様にして感光体を作製した(感光体5とする)。
【0108】
感光体作製例6
感光体作製例2において電荷発生材料をX型無金属フタロシアニン(Fastogen Blue8120B)に代えて顔料2のチタニルフタロシアニンを用いた以外は感光体作製例2と全く同様にして感光体を作製した(感光体6とする)。
【0109】
感光体作製例7
感光体作製例5において電子輸送材料1に代えて電子輸送材料2を用いた以外は感光体作製例5と全く同様にして感光体を作製した(感光体7とする)。
【0110】
感光体作製例8
感光体作製例6において電子輸送材料1に代えて電子輸送材料2を用いた以外は感光体作製例6と全く同様にして感光体を作製した(感光体8とする)。
【0111】
感光体作製例9
感光体作製例5において電子輸送材料1に代えて電子輸送材料3を用いた以外は感光体作製例5と全く同様にして感光体を作製した(感光体9とする)。
【0112】
感光体作製例10
感光体作製例6において電子輸送材料1に代えて電子輸送材料3を用いた以外は感光体作製例6と全く同様にして感光体を作製した(感光体10とする)。
【0113】
感光体作製例11
感光体作製例5において電子輸送材料1に代えて下記構造式(10)の化合物を用いた以外は感光体作製例5と全く同様にして感光体を作製した(感光体11とする)。
【0114】
【化26】

【0115】
感光体作製例12
感光体作製例6において電子輸送材料1に代えて上記構造式(10)の化合物を用いた以外は感光体作製例6と全く同様にして感光体を作製した(感光体12とする)。
【0116】
感光体作製例13
感光体作製例5において電子輸送材料1に代えて下記構造式(11)の化合物を用いた以外は感光体作製例5と全く同様にして感光体を作製した(感光体13とする)。
【0117】
【化27】

【0118】
感光体作製例14
感光体作製例6において電子輸送材料1に代えて上記構造式(11)の化合物を用いた以外は感光体作製例6と全く同様にして感光体を作製した(感光体14とする)。
【0119】
感光体作製例15
電子輸送材料1の代わりに、電子輸送材料4を用いた以外は、感光体作製例5と同様にして感光体を作製した(感光体15とする)。
【0120】
感光体作製例16
電子輸送材料1の代わりに、電子輸送材料4を用いた以外は、感光体作製例6と同様にして感光体を作製した(感光体16とする)。
【0121】
感光体作製例17
電子輸送材料1:10部を電子輸送材料1:8部及び下記構造式(B−1)の電子輸送材料:2部に変更した以外は感光体作製例5と同様にして感光体を作製した(感光体17とする)。
【0122】
【化28】

【0123】
感光体作製例18
電子輸送材料1:10部を電子輸送材料1:8部及び上記構造式(B−1)の電子輸送材料:2部に変更した以外は感光体作製例6と同様にして感光体を作製した(感光体18とする)。
【0124】
実施例1〜14及び比較例1〜4
以上のように作成した感光体1〜14を実装用にした後、タンデム方式、中間転写方式のフルカラー電子写真装置(リコー製IPSiO CX400改造機、パワーパックを交換し正帯電となるよう改造し、さらに書き込みに用いるLDの波長を780nmのものに換装した装置)に搭載し、書き込み率5%チャートを用い通算1万枚印刷する耐刷試験を行なった。
トナーと現像剤はIPSiO CX400専用のものから極性が逆となるトナーと現像剤に交換し使用した。
試験環境は23℃、55%RHである。
耐刷試験前(初期)と耐刷試験後に画像評価、解像度の評価を行なった。
・画像評価:評価用画像を出力し、目視にて地汚れ、かぶり、画像濃度などを総合的にランク評価した。
・解像度:ハーフトーン画像を出力し、ドット形成状態(ドットの散り具合やドット再現性)を観察した。
いずれの場合も評価ランクは以下のとおりである。
◎:非常に良好
○:良好
△:やや劣る
×:非常に悪い
以上、実施例1〜14及び比較例1〜4の結果を表1に示す。
【0125】
【表1】

【0126】
実施例15〜21
感光体2,4,6,8,10,16,18を実装用にした後、タンデム方式、中間転写方式のフルカラー電子写真装置(リコー製IPSiO CX400改造機、書き込みに用いるLDの波長を780nmのものに換装した装置)に搭載し、書き込み率5%チャートを用い通算1万枚印刷する耐刷試験を行なった。
試験環境は23℃、55%RHである。
耐刷試験前(初期)と耐刷試験後に画像評価、解像度の評価を行なった。
・画像評価:評価用画像を出力し、目視にて地汚れ、かぶり、画像濃度などを総合的にランク評価した。
・解像度:ハーフトーン画像を出力し、ドット形成状態(ドットの散り具合やドット再現性)を観察した。
いずれの場合も評価ランクは以下のとおりである。
◎:非常に良好
○:良好
△:やや劣る
×:非常に悪い
以上、実施例15〜21の結果を表2に示す。
【0127】
【表2】

表1、2の結果から、本発明の要件を満たす実施例では、繰り返し使用によっても異常画像がなく、また、高精細な画像が出力できることがわかる。
【0128】
(実施例22〜25)
感光体5,6,17,18について、オゾン濃度10ppmの環境に5日間放置するオゾン暴露試験を行なった。オゾン暴露試験後に画像評価及び解像度の評価を行った。
評価は(実施例1〜14及び比較例1〜4)で用いた電子写真装置を用いて行った。
【0129】
(画像評価)
評価用画像を出力し、目視で地汚れ、かぶり、画像濃度等を総合的にランク評価した。
(解像度)
ハーフトーン画像を出力し、ドット形成状態(ドットの散り具合やドット再現性)を観察した。
いずれの場合も評価ランクは、以下の通りである。
【0130】
◎:非常に良好
○:良好
△:やや劣る
×:非常に悪い
以上、実施例22〜25の評価結果を表3に示す。
【0131】
【表3】

【図面の簡単な説明】
【0132】
【図1】本発明に係る電子写真装置の例を示す模式断面図である。
【図2】本発明に係るプロセスカートリッジの例を示す模式断面図である。
【図3】本発明に係る電子写真装置の別の例を示す模式断面図である。
【図4】本発明に係る電子写真装置の更に別の例を示す模式断面図である。
【図5】本発明に係る電子写真感光体の層構成の例を示す断面図である。
【図6】本発明に係る電子写真感光体の別の層構成の例を示す断面図である。
【図7】合成例で合成したチタニルフタロシアニンのX線回析スペクトル図である。
【符号の説明】
【0133】
11・・・電子写真感光体
12・・・帯電手段
13・・・露光手段
14・・・現像手段
15・・・トナー
16・・・像露光部
17・・・クリーニング手段
18・・・受像媒体
19・・・定着手段
1A・・・除電手段
1C・・・駆動手段
1D・・・第1の転写手段
1E・・・第2の転写手段
1F・・・中間転写体
21・・・導電性支持体
22・・・電荷発生層
23・・・電荷輸送層
24・・・下引き層
25・・・感光層

【特許請求の範囲】
【請求項1】
少なくとも感光体と、該感光体の表面を一様に帯電する帯電装置と、一様帯電後に像露光を行ない静電潜像を形成する像露光手段と、前記静電潜像を現像する現像手段と、現像像を転写する転写手段とを有する電子写真装置において、前記電子写真装置が、感光体上に現像されたトナー画像を中間転写体上に一次転写したのち、該中間転写体上のトナー画像を記録材上に二次転写する中間転写手段を有する電子写真装置であって、前記感光体が、少なくとも導電性支持体上に感光層を有し、該感光層中に少なくとも電荷発生材料と下記一般式(1)で表わされる電子輸送材料を含むことを特徴とする電子写真装置。
【化1】


式中、R1、R2は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わし、R3、R4、R5、R6、R7、R8、R9、R10はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表わす。
【請求項2】
少なくとも感光体と、該感光体の表面を一様に帯電する帯電装置と、一様帯電後に像露光を行ない静電潜像を形成する像露光手段と、前記静電潜像を現像する現像手段と、現像像を転写する転写手段とを有する電子写真装置において、前記電子写真装置が、感光体上に現像されたトナー画像を中間転写体上に一次転写したのち、該中間転写体上のトナー画像を記録材上に二次転写する中間転写手段を有する電子写真装置であって、前記感光体が、少なくとも導電性支持体上に感光層を有し、該感光層中に少なくとも電荷発生材料と下記一般式(A)で表わされる電子輸送材料を含むことを特徴とする電子写真装置。
【化2】

式中、R1、R2は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表し、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表し、nは繰り返し単位であり、1から100までの整数を表す。
【請求項3】
前記電荷発生材料がフタロシアニンであることを特徴とする請求項1又は2に記載の電子写真装置。
【請求項4】
前記フタロシアニンがチタニルフタロシアニンであることを特徴とする請求項3に記載の電子写真装置。
【請求項5】
前記チタニルフタロシアニンがCu−Kα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2°に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さないことを特徴とする請求項4に記載の電子写真装置。
【請求項6】
前記感光層中に更に下記一般式(B)で表される電子輸送材料を含有することを特徴とする請求項1乃至5のいずれかに記載の電子写真装置。
【化3】

式中、R15、R16は、それぞれ独立に水素原子、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表し、R17、R18、R19、R20はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、水酸基、置換又は無置換のアルキル基、置換又は無置換のシクロアルキル基、置換又は無置換のアラルキル基からなる群より選ばれる基を表す。」
【請求項7】
正帯電で帯電プロセスを行なうことを特徴とする請求項1乃至6のいずれかに記載の電子写真装置。
【請求項8】
前記電子写真装置が複数の感光体を具備してなり、それぞれの感光体上に現像された単色のトナー画像を順次重ね合わせてカラー画像を形成することを特徴とする請求項1乃至7のいずれかに記載の電子写真装置。
【請求項9】
少なくとも感光体を具備してなる電子写真装置用プロセスカートリッジであって、該感光体が請求項1乃至8のいずれかに記載の電子写真装置に用いられることを特徴とする電子写真装置用プロセスカートリッジ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−108646(P2007−108646A)
【公開日】平成19年4月26日(2007.4.26)
【国際特許分類】
【出願番号】特願2006−114052(P2006−114052)
【出願日】平成18年4月18日(2006.4.18)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】