説明

電極用バインダー組成物、電極用スラリー、電極、電気化学デバイス、ならびに電極用バインダー組成物の製造方法および保管方法

【課題】良好な結着性を有し、充放電特性に優れる電極を作製可能な電極用バインダー組成物を提供する。さらには、良好な結着性と良好な充放電特性とを長期に亘って維持できる電極を作製可能な電極用バインダー組成物を提供する。
【解決手段】本発明に係る電極用バインダー組成物は、(A)α,β−不飽和ニトリル化合物に由来する構成単位5〜40質量部と、(B)不飽和カルボン酸に由来する構成単位0.3〜10質量部と、を含有し、かつ数平均粒子径が50〜400nmである重合体粒子を含み、ゲル含有率が90〜99%であり、電解液膨潤率が110〜400%であることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電極用バインダー組成物、該バインダー組成物と活物質とを含む電極用スラリー、該スラリーを集電体に塗布した電極、該電極を備えた電気化学デバイス、ならびに該バインダー組成物の製造方法および保管方法に関する。
【背景技術】
【0002】
近年、電子機器の駆動用電源として高電圧、高エネルギー密度を有する蓄電デバイスが要求されている。特にリチウムイオン二次電池やリチウムイオンキャパシタは、高電圧、高エネルギー密度を有する蓄電デバイスとして期待されている。
【0003】
このような蓄電デバイスに使用される電極は、活物質と電極用バインダーの混合物を集電体へ塗布・乾燥することで作製される。このような電極用バインダーに要求される特性としては、活物質同士の結合能力および活物質と集電体との接着能力(以下、まとめて単に「結着性」ともいう)を高めることや、電極を巻き取る工程での耐擦性、その後の裁断等で塗布された電極用組成物層(以下、単に「活物質層」ともいう)から活物質の微粉等が発生しない耐粉落ち適性等がある。これらの要求特性を電極用バインダーが満足することで、電極の折り畳み方法や捲回半径等の設計の自由度が高くなり、蓄電デバイスの小型化を達成することができる。さらには、電極用バインダーに起因する電池の内部抵抗を低減させることが挙げられる。これにより、良好な充放電特性を実現することができる。
【0004】
たとえば、特開2000−299109号公報では、電極用バインダーの組成を制御することで上記特性を向上させる技術が検討されている。また、特開2010−205722号公報や特開2010−3703号公報では、エポキシ基やヒドロキシル基を有するバインダーを用いて上記特性を向上させる技術が検討されている。さらに、特開2010−245035号公報では、残留不純物の含有量を制御する技術が検討されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2000−299109号公報
【特許文献2】特開2010−205722号公報
【特許文献3】特開2010−3703号公報
【特許文献4】特開2010−245035号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、このような従来のバインダー組成物では、バインダー自身が電極の抵抗成分となるため、良好な充放電特性と良好な結着性とを両立させることは困難であった。また、良好な充放電特性と良好な結着性とを長期に亘り維持することはさらに困難であった。
【0007】
さらに、電極用バインダー組成物は、有機粒子が分散媒に分散した状態であるため、製造後の処理や保管環境の変化により凝集体が発生する場合がある。このようにして発生した凝集体は、電極を作製する際にショートの原因となる場合がある。さらに、このような凝集体が発生したバインダー組成物を用いて作製された電気化学デバイスは、電極に不具合が生じることに起因して発火などの問題が生じるおそれがある。そのため、前記不具合の発生が極力少ない電極を製造することができる異物を低減させた新たなバインダーの開
発が切望されていた。また、異物の発生しない電極バインダー組成物の保管方法についても要求があった。
【0008】
そこで、本発明に係る幾つかの態様は、上記課題を解決することで、良好な結着性を有し、充放電特性に優れる電極を作製可能な電極用バインダー組成物を提供するものである。さらに、良好な結着性と良好な充放電特性とを長期に亘って維持できる電極を作製可能な電極用バインダー組成物を提供するものである。
【0009】
さらに、本発明の別の態様は、上述のような従来技術の課題を解決するためになされたものであり、セパレータが破損するような不良の発生率が極めて小さく、発火などの問題が極めて生じ難く、安全性が高い電気化学デバイスの電極の材料として用いることのできる電極用バインダー組成物を提供するものである。さらに、本発明の別の態様は、電極の歩留まりを向上させる観点から、このような電極用バインダー組成物を保管するに当たり、異物が発生しない保管方法を提供するものである。
【課題を解決するための手段】
【0010】
本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
【0011】
[適用例1]
本発明に係る電極用バインダー組成物の一態様は、
(A)α,β−不飽和ニトリル化合物に由来する構成単位5〜40質量部と、
(B)不飽和カルボン酸に由来する構成単位0.3〜10質量部と、
を含有し、かつ数平均粒子径が50〜400nmである重合体粒子を含み、
ゲル含有率が90〜99%であり、
電解液膨潤率が110〜400%であることを特徴とする。
【0012】
[適用例2]
適用例1の電極用バインダー組成物において、
前記重合体粒子が下記一般式(1)で示される化合物に由来する構成単位をさらに含有することができる。
【化1】

(式中、Rは水素原子または一価の炭化水素基、Rは二価の炭化水素基である。)
【0013】
[適用例3]
適用例2の電極用バインダー組成物において、
前記一般式(1)で示される化合物がヒドロキシエチルメタクリレートであることができる。
【0014】
[適用例4]
適用例1ないし適用例3のいずれか一例の電極用バインダー組成物において、
前記重合体粒子が(C)共役ジエン化合物に由来する構成単位をさらに含有することができる。
【0015】
[適用例5]
適用例1ないし適用例4のいずれか一例の電極用バインダー組成物において、
pHが6以上8以下であることができる。
【0016】
[適用例6]
適用例1ないし適用例5のいずれか一例の電極用バインダー組成物において、
パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であることができる。
【0017】
[適用例7]
本発明に係る電極用バインダー組成物の製造方法の一態様は、
ろ過処理によって、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数を0個とする工程を含むことを特徴とする。
【0018】
[適用例8]
本発明に係る電極用スラリーの一態様は、
活物質と、適用例1ないし適用例6のいずれか一例の電極用バインダー組成物と、を含有することを特徴とする。
【0019】
[適用例9]
本発明に係る電極の一態様は、
集電体と、前記集電体の表面上に適用例8の電極用スラリーが塗布および乾燥されて形成された活物質層と、を備えることを特徴とする。
【0020】
[適用例10]
本発明に係る電気化学デバイスの一態様は、
適用例9の電極を備えることを特徴とする。
【0021】
[適用例11]
本発明に係る電極用バインダー組成物の保管方法の一態様は、
適用例1ないし適用例6のいずれか一例の電極バインダー組成物を2℃以上30℃以下の温度に制御された容器に充填して、前記容器の内容積に対して前記電極用バインダー組成物の占める容積を除いた空隙部の容積の比率を1〜20%とすることを特徴とする。
【0022】
[適用例12]
適用例11の電極用バインダー組成物の保管方法において、
前記空隙部雰囲気の酸素濃度が1%以下であることができる。
【0023】
[適用例13]
適用例11または適用例12の電極用バインダー組成物の保管方法において、
前記容器からの金属イオンの溶出濃度が50ppm以下であることができる。
【発明の効果】
【0024】
本発明に係る電極用バインダー組成物によれば、結着性に優れると共に、充放電特性に優れた電極を作製することができる。また、本発明に係る電極用バインダー組成物によれば、良好な結着性と良好な充放電特性とを長期に亘って維持できる電極を作製することができる。
【0025】
本発明に係る電極用バインダー組成物の保管方法によれば、異物の発生を抑制することができ、その結果電極歩留まりの向上を図ることができる。
【図面の簡単な説明】
【0026】
【図1】本発明に係る電極用バインダー組成物の製造方法の一実施形態において使用されるろ過装置を模式的に示す説明図である。
【発明を実施するための形態】
【0027】
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。
【0028】
1.電極用バインダー組成物
本実施の形態に係る電極用バインダー組成物は、(A)α,β−不飽和ニトリル化合物に由来する構成単位5〜40質量部と、(B)不飽和カルボン酸に由来する構成単位0.3〜10質量部と、を含有し、かつ数平均粒子径が50〜400nmである重合体粒子を含み、該重合体粒子を凝固して得られたポリマーのトルエンに対する不溶解分(ゲル含有率)が90〜99%であり、該重合体粒子を乾燥して得られた連続フィルムを標準電解液に浸漬した際の膨潤率(電解液膨潤率)が110〜400%であることを特徴とする。
【0029】
本実施の形態に係る電極用バインダー組成物は、活物質のバインダーとして使用されるものであり、具体的には正極活物質の粒子同士および正極活物質と集電体金属箔とのバインダー、もしくは負極活物質の粒子同士および負極活物質と集電体金属箔とのバインダーとして作用するものである。その際、前記重合体粒子は、正極活物質もしくは負極活物質100質量部に対して固形分で0.1〜10質量部、好ましくは0.5〜5質量部の割合で含有することにより電極用スラリーとして調製することができる。前記重合体粒子の含有量が0.1質量部未満では結着性が低下することがあり、10質量部を超えると電池として組み立てた際の電池諸特性に悪影響を及ぼす傾向がある。以下、本実施の形態に係る電極用バインダー組成物に含まれる各成分について詳細に説明する。
【0030】
1.1.重合体粒子
本実施の形態に係る電極用バインダーに含まれる重合体粒子は、(A)α,β−不飽和ニトリル化合物に由来する構成単位(以下、「(A)構成単位」ともいう)と、(B)不飽和カルボン酸に由来する構成単位(以下、「(B)構成単位」ともいう)と、を含有する。なお、本発明において「構成単位」とは、単量体が重合することにより重合体となり該単量体が繰り返し単位を構成するが、この繰り返し単位のことをいう。
【0031】
1.1.1.(A)α,β−不飽和ニトリル化合物に由来する構成単位
(A)構成単位を含有することにより、重合体粒子は電解液によって適度に膨潤することができる。すなわち、重合体鎖からなる網目構造に溶媒が侵入し、網目間隔が広がるため、溶媒和したリチウムイオンがこの網目構造をすり抜けて移動し易くなる。その結果、リチウムイオンの拡散性が向上すると考えられる。これにより、電極抵抗を低減させることができるので、電極の良好な充放電特性が実現される。
【0032】
(A)構成単位を構成するために用いられるα,β−不飽和ニトリル化合物の具体例としては、アクリロニトリル、メタクリロニトリル、α−クロロアクリロニトリル、α−エチルアクリロニトリル、シアン化ビニリデン等が挙げられる。これらの中でも、アクリロニトリル、メタクリロニトリルが好ましく、アクリロニトリルが特に好ましい。なお、これら(A)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
【0033】
(A)構成単位の含有割合は、全構成単位を100質量部とした場合に5〜40質量部
であり、7〜35質量部であることが好ましく、10〜30質量部であることがより好ましい。(A)構成単位の含有割合が前記範囲にあると、使用する電解液との親和性に優れ、かつ膨潤率が大きくなりすぎず、電池特性の向上に寄与することができる。
【0034】
1.1.2.(B)不飽和カルボン酸に由来する構成単位
重合体粒子が(B)構成単位を含有することにより、本願発明の電極用バインダー組成物と活物質を混合した際に、活物質を凝集させることなく、活物質が良好に分散した混合物(スラリー)を作製することができる。これにより、混合物を塗布して作製された電極が均一に近い分布となる。その結果、結着欠陥が少ない電極を作製することができる。すなわち、結着性が向上すると考えられる。
【0035】
(B)構成単位を構成するために用いられる不飽和カルボン酸の具体例としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等のモノまたはジカルボン酸(無水物)等が挙げられる。これらの中でも、アクリル酸、メタクリル酸、イタコン酸が特に好ましい。なお、これら(B)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
【0036】
(B)構成単位の含有割合は、全構成単位を100質量部とした場合に0.3〜10質量部であり、0.3〜6質量部であることが好ましい。(B)構成単位の含有割合が前記範囲にあると、電極用スラリーの調製時、重合体粒子の分散安定性に優れ、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
【0037】
1.1.3.(C)共役ジエン化合物に由来する構成単位
本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子は、(C)共役ジエン化合物に由来する構成単位(以下、「(C)構成単位」ともいう)をさらに含有するものであることが好ましい。
【0038】
(C)構成単位を含有することにより、重合体粒子が強い結着力を有することができる。すなわち、共役ジエン化合物に由来するゴム弾性が重合体粒子に付与されるため、電極の体積収縮や拡大等の変化に追従することが可能となる。これにより、結着性を向上させて、さらには長期に充放電特性を維持する耐久性を有するものと考えられる。
【0039】
(C)構成単位を構成するために用いられる共役ジエン化合物の具体例としては、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類等が挙げられる。これらの中でも、1,3−ブタジエンが特に好ましい。なお、これら(C)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
【0040】
(C)構成単位の含有割合は、全構成単位を100質量部とした場合に60質量部以下であることが好ましく、25〜55質量部であることがより好ましく、35〜50質量部であることが特に好ましい。(C)構成単位の含有割合が前記範囲にあると、結着性のさらなる向上が可能となる。
【0041】
1.1.4.(D)芳香族ビニル化合物に由来する構成単位
本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子は、(D)芳香族ビニル化合物に由来する構成単位(以下、「(D)構成単位」ともいう)をさらに含有するものであることが好ましい。
【0042】
(D)構成単位を構成するために用いられる芳香族ビニル化合物の具体例としては、ス
チレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエン、クロロスチレン、ジビニルベンゼン等が挙げられる。これらの中でも、スチレンが特に好ましい。なお、これら(D)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
【0043】
(D)構成単位の含有割合は、全構成単位を100質量部とした場合に60質量部以下であることが好ましく、10〜55質量部であることがより好ましく、20〜50質量部であることが特に好ましい。(D)構成単位の含有割合が前記範囲にあると、重合体粒子が活物質として用いられるグラファイトに対して適度な結着性を有する。また、得られる電極層は、柔軟性や集電体に対する結着性が良好なものとなる。
【0044】
1.1.5.(E)(メタ)アクリレート化合物に由来する構成単位
本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子は、(E)(メタ)アクリレート化合物に由来する構成単位(以下、「(E)構成単位」ともいう)をさらに含有するものであることが好ましい。なお、本明細書において「〜(メタ)アクリレート」というときは、「〜アクリレート」と「〜メタクリレート」のいずれをも意味する。
【0045】
(A)構成単位を含有し、かつ(E)構成単位を含有しない重合体粒子を含む電極用バインダー組成物を用いた場合、該重合体粒子の電解液に対する膨潤度が大きくなり電極抵抗が低下する反面、活物質同士および活物質層と集電体との界面の結着性が低下して、電極構造を十分に保持できず充放電特性が劣化する場合がある。しかしながら、(A)構成単位と(E)構成単位とを含有する重合体粒子を含む電極用バインダー組成物を用いることで、それらの相乗効果により該重合体粒子の電解液に対する膨潤度が大きくなり電極抵抗が低下すると共に、活物質を十分に保持することが可能となる。
【0046】
(E)構成単位を構成するために用いられる(メタ)アクリレート化合物としては、下記一般式(1)で示される化合物であることが好ましい。
【0047】
【化2】

【0048】
上記一般式(1)中、Rは水素原子または一価の炭化水素基であるが、一価の炭化水素基であることが好ましく、炭素数が1〜6の置換もしくは非置換のアルキル基であることがより好ましく、メチル基であることが特に好ましい。また、Rは二価の炭化水素基であるが、炭素数が1〜6の置換もしくは非置換のアルキレン基であることが好ましい。(E)構成単位を構成するために用いられる上記一般式(1)で示される化合物の具体例としては、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、3−ヒドロキシプロピルメタクリレート、4−ヒドロキシブチルメタクリレート、5−ヒドロキシペンチルメタクリレート、6−ヒドロキシヘキシルメタクリレート等が挙げられる。これらの中でも、2−ヒドロキシエチルメタクリレートが好ましい。なお、これら(E)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
【0049】
また、本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子は、上記一般式(1)で示される化合物以外の(E)(メタ)アクリレート化合物に由来する構成単位を含有してもよい。このような(メタ)アクリレート化合物の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート
、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n−アミル(メタ)アクリレート、i−アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート等が挙げられる。これらの中でも、メチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレートが好ましく、メチル(メタ)アクリレートがより好ましい。なお、これら(E)構成単位は、一種単独でまたは二種以上を組み合わせて用いることができる。
【0050】
(E)構成単位の含有割合は、全構成単位を100質量部とした場合に40質量部以下であることが好ましく、5〜35質量部であることがより好ましく、10〜30質量部であることが特に好ましい。特に(E)構成単位が上記一般式(1)で示される化合物である場合には、20質量部以下であることが好ましく、1〜10質量部であることがより好ましく、2〜5質量部であることが特に好ましい。(E)構成単位の含有割合が前記範囲にあると、得られる重合体粒子は電解液との親和性が適度なものとなり、電池中で電極用バインダー組成物が電気抵抗成分となることによる内部抵抗の上昇を抑制すると共に、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
【0051】
1.1.6.その他の共重合単量体に由来する構成単位
本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子は、上記構成単位以外に、これらと共重合可能な単量体化合物(以下、単に「その他の共重合単量体」ともいう)に由来する構成単位を含有することができる。
【0052】
その他の共重合単量体の具体例としては、(メタ)アクリルアミド、N−メチロールアクリルアミド等のエチレン性不飽和カルボン酸のアルキルアミド;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;エチレン性不飽和ジカルボン酸の酸無水物;モノアルキルエステル;モノアミド類;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミド等のエチレン性不飽和カルボン酸のアミノアルキルアミド等が挙げられる。なお、これら共重合単量体は、一種単独でまたは二種以上を組み合わせて用いることができ、また架橋性の共重合単量体を併用することもできる。
【0053】
1.1.7.重合体粒子の数平均粒子径
重合体粒子の数平均粒子径は、50〜400nmの範囲にあり、70〜350nmの範囲にあることが好ましい。重合体粒子の数平均粒子径が前記範囲にあると、電極を形成する際の乾燥工程において、結着性が向上する傾向がある。また、得られる電極は、活物質・重合体粒子・集電体の各相互間に十分な数の有効接着点が形成される傾向があるため好ましい。なお、重合体粒子の数平均粒子径は、動的光散乱法を測定原理とする粒度分布測定装置を使用することにより求めることができる。
【0054】
このような粒度分布測定装置としては、たとえば、コールターLS230、LS100、LS13 320(以上、Beckman Coulter.Inc製)や、ALV5000(ALV社製)、FPAR−1000(大塚電子(株)製)などを挙げることができる。これらの粒度分布測定装置は、重合体粒子の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とすることができる。従って、これらの粒度分布測定装置によって測定された粒度分布は、電極用スラリー中に含まれる重合体粒子の分散状態の指標とすることができる。なお、重合体粒子の数平均粒子径は、電極用スラリーを遠心分離して活物質粒子を沈降させた後、その上澄み液を上記の粒度分布測定装置によって測定する方法によっても測定することができる。
【0055】
1.1.8.重合体粒子のガラス転移温度(Tg)
重合体粒子のガラス転移温度(Tg)は、JIS K7121に準拠する示差走査熱量測定(DSC)によって測定した場合、−50〜25℃であることが好ましく、−30〜5℃であることがより好ましい。ガラス転移温度が前記範囲にある場合、重合体粒子は活物質層に対してより良好な柔軟性と粘着性とを付与することができ、従って結着性をより向上させることができることとなるため好ましい。
【0056】
1.2.重合体粒子の作製方法
本実施の形態に係る電極用バインダー組成物に含まれる重合体粒子の合成方法については特に限定されないが、二段階の乳化重合工程により容易に作製することができる。
【0057】
1.2.1.1段目の重合工程
1段目の乳化重合工程に用いられる(I)単量体成分には、例えば、α,β−不飽和ニトリル化合物、共役ジエン化合物、芳香族ビニル化合物、(メタ)アクリレート化合物、およびその他の共重合単量体等の非カルボン酸系単量体と、不飽和カルボン酸等のカルボン酸系単量体と、が含有される。(I)単量体成分に含まれる非カルボン酸系単量体の含有割合は、非カルボン酸系単量体とカルボン酸系単量体の合計100質量%中、80〜92質量%であることが好ましく、82〜92質量%であることがより好ましい。非カルボン酸系単量体の含有割合が80〜92質量%であると、電極用スラリー調製時、重合体粒子の分散安定性に優れ、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
【0058】
(I)単量体成分において、前記非カルボン酸系単量体中の(メタ)アクリレート化合物の含有割合は14〜30質量%であることが好ましい。(メタ)アクリレート化合物の含有割合が前記範囲にあると、電極用スラリー調製時、重合体粒子の分散安定性に優れ、凝集物が生じにくい。また、得られる重合体粒子は電解液との親和性が適度なものとなり、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
【0059】
(I)単量体成分において、非カルボン酸系単量体中の共役ジエン化合物の含有割合は10〜60質量%であることが好ましく、芳香族ビニル化合物の割合は20〜50質量%であることが好ましい。また、カルボン酸系単量体中のイタコン酸の割合は、50〜85質量%であることが好ましい。
【0060】
1.2.2.2段目の重合工程
2段目の乳化重合工程に用いられる(II)単量体成分には、例えば、α,β−不飽和ニトリル化合物、共役ジエン化合物、芳香族ビニル化合物、(メタ)アクリレート化合物、およびその他の共重合単量体等の非カルボン酸系単量体と、不飽和カルボン酸等のカルボン酸系単量体と、が含有される。(II)単量体成分に含まれる非カルボン酸系単量体の含有割合は、非カルボン酸系単量体とカルボン酸系単量体の合計100質量%中、94〜99質量%であることが好ましく、96〜98質量%であることがより好ましい。非カルボン酸系単量体の含有割合が前記範囲にあると、電極用スラリー調製時、重合体粒子の分散安定性に優れ、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
【0061】
(II)単量体において、非カルボン酸系単量体中の(メタ)アクリレート化合物の含有割合は11.5質量%以下であることが好ましい。(メタ)アクリレート化合物の含有割合が11.5質量%以下であると、得られる重合体粒子は電解液との親和性が適度なものとなり、電解液を過大に吸収することによる結着性の低下を防ぐことができる。
【0062】
また、重合体粒子構成単量体において、(I)単量体成分と(II)単量体成分との質
量比((I)/(II)比)は、0.05〜0.5であることが好ましく、0.1〜0.4であることがより好ましい。(I)/(II)比が前記範囲にあると、電極用スラリー調製時、重合体粒子の分散安定性に優れ、凝集物が生じにくい。また、経時的なスラリー粘度の上昇も抑えることができる。
【0063】
1.2.3.乳化重合
乳化重合工程は、水性媒体中において、乳化剤、重合開始剤、および分子量調節剤の存在下に行われる。以下、乳化重合工程で用いられる各材料について説明する。
【0064】
1.2.3.1.乳化剤
乳化剤の具体例としては、高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸のホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩等のアニオン性界面活性剤;ポリエチレングリコールのアルキルエステル型、アルキルフェニルエーテル型、アルキルエーテル型等のノニオン性界面活性剤;パーフルオロブチルスルホン酸塩、パーフルオロアルキル基含有リン酸エステル、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキルエチレンオキシド付加物等のフッ素系界面活性剤が挙げられる。なお、乳化重合工程では、これらの乳化剤を一種単独でまたは二種以上組み合わせて使用することができる。
【0065】
1.2.3.2.重合開始剤
重合開始剤の具体例としては、過硫酸リチウム、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の水溶性重合開始剤;クメンハイドロパーオキサイド、過酸化ベンゾイル、t−ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド等の油溶性重合開始剤が挙げられる。これらの中でも、過硫酸カリウム、過硫酸ナトリウム、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイドが好ましい。なお、乳化重合工程では、これらの重合開始剤を一種単独でまたは二種以上組み合わせて使用することができる。重合開始剤の使用量は特に制限されず、単量体組成、重合反応系のpH、他の添加剤等の組み合わせを考慮して適宜調整される。
【0066】
1.2.3.3.分子量調節剤
分子量調節剤の具体例としては、n−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタン等のアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物;ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物;2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノール等のフェノール系化合物;アリルアルコール等のアリル化合物;ジクロロメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物;α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミド等のビニルエーテル;トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート、α−メチルスチレンダイマー等が挙げられる。なお、乳化重合工程では、これらの分子量調節剤を一種単独でまたは二種以上組み合わせて使用することができる。
【0067】
1.2.4.乳化重合の条件
1段目の乳化重合工程は、重合温度が40〜80℃、重合時間が2〜4時間の条件で行うことが好ましい。1段目の乳化重合工程においては、重合転化率が50%以上であるこ
とが好ましく、60%以上であることがより好ましい。また、2段目の乳化重合工程は、重合温度が40〜80℃、重合時間が2〜6時間の条件で行うことが好ましい。
【0068】
乳化重合終了後は中和剤を添加することにより分散液のpHが5〜10程度となるように中和処理することが好ましい。使用する中和剤としては、特に限定されるものではないが、通常水酸化ナトリウム、水酸化カリウム等の金属水酸化物やアンモニアが挙げられる。分散液のpHを5〜10の範囲に設定することで分散液の配合安定性が良好となるが、好ましくは6〜9、より好ましくは6〜8、さらに好ましくは7〜8.5である。乳化重合工程における全固形分濃度は50質量%以下とすると分散安定性良く反応を進行させることができるが、好ましくは45質量%以下、より好ましくは40質量%以下である。また、中和処理を行った後に濃縮することにより粒子の安定性をさらに良好にさせながら高固形分化させることができる。
【0069】
1.3.その他の添加剤
本実施の形態に係る電極用バインダー組成物には、必要に応じて水溶性増粘剤等の各種添加剤を添加してもよい。添加剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼイン等の水溶性増粘剤;ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、ピロリン酸ソーダ、ポリアクリル酸ソーダ等の分散剤;ノニオン性、アニオン性界面活性剤等のラテックスの安定化剤が挙げられる。
【0070】
1.4.ゲル含有率
本実施の形態に係る電極用バインダー組成物のゲル含有率は90〜99%であり、好ましくは92〜99%、より好ましくは94〜99%である。ゲル含有率が前記範囲にあると、重合体粒子が電解液に溶解し難くなり、長期に亘って過電圧の上昇による電池特性への悪影響を抑制できる。ゲル含有率が前記範囲未満では、活物質を長期に亘って固定するための電極用バインダーとしての能力が不足するため好ましくない。また、ゲル含有量が前記範囲を超えると、集電体への密着力が低下するため好ましくない。
【0071】
本実施の形態に係る電極用バインダー組成物のゲル含有率は、以下の手順により算出することができる。
【0072】
まず、電極用バインダー組成物にメタノールを添加して凝固させ、その得られた凝固物を真空乾燥して水分を除去する。このようにして得られた凝固物(W0(g))にトルエンを加えて膨潤溶解させる。その後、これを秤量済みの300メッシュの金網で濾過し、その濾液からトルエンを蒸発乾燥させて、その乾燥物の質量(W1(g))を測定する。ゲル含有率(%)は、上記で得られた値から下記式(2)に従い算出することができる。
ゲル含有率(%)=((W0−W1)/W0)×100 ・・・(2)
【0073】
1.5.電解液膨潤率
本実施の形態に係る電極用バインダー組成物の電解液膨潤率は110〜400%であり、130〜350%であることが好ましく、150〜300%であることがより好ましい。電解液膨潤率が前記範囲にあると、重合体粒子は電解液に対して適度に膨潤することができる。その結果、溶媒和したリチウムイオンが容易に活物質へ到達することができ、効果的に電極抵抗を低下させて、より良好な充放電特性を実現できる。さらに、大きな体積変化が発生しないため結着性にも優れる。一方、電解液膨潤率が前記範囲未満の場合、結着性は良好であるものの、リチウムイオンが活物質へ到達することを阻害され、電極抵抗が増大してしまうため好ましくない。電解液膨潤率が前記範囲を超えると、電極抵抗は低下するものの、結着性が劣化してしまうため好ましくない。
【0074】
本実施の形態に係る電極用バインダー組成物の電解液膨潤率は、以下の手順により算出することができる。
【0075】
まず、電極用バインダー組成物を所定の枠内に流し込み、常温にて乾燥させて乾燥フィルムを得る。その後、乾燥フィルムを枠から取り出し、さらに80℃×3時間で加熱乾燥させて試験用フィルムを得る。次に、得られた試験用フィルム(W0'(g))を標準電
解液に浸漬して80℃加温を1日間行い膨潤させる。その後、試験用フィルムを標準電解液から取り出し、フィルム表面に付着した電解液を拭き取った後に試験後の浸漬後質量(W1'(g))を測定する。電解液膨潤率(%)は、上記で得られた値から、下記式(3)に従い算出することができる。
電解液膨潤率(%)=(W1'/W0')×100 ・・・(3)
【0076】
なお、本明細書において「標準電解液」とは、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比にして5:5に混合した混合溶媒に対して電解質としてLiPFを1Mの濃度となるように溶解させた電解液をいう。
【0077】
1.6.その他の特徴
本実施の形態に係る電極用バインダー組成物は、上述のような電極用バインダー組成物を使用することができるが、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であることが好ましい。このような電極用バインダー組成物によれば、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であるため、バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成する電極の材料として用いることができる。
【0078】
従来の電極用バインダー組成物は、所定の粒子径よりも大きな粒子を除去する操作を行っていないため、所定の粒子径よりも大きな粒子が含まれていると考えられる。そうすると、電流が流れた際に前記大きな粒子が帯電していると、前記大きな粒子がセパレータを跨いだ電極側に引き寄せられ、セパレータを貫通してしまったり、セパレータを貫通する亀裂を生じさせる可能性があった。このように従来の電極用バインダー組成物はセパレータが破損される不良(具体的には、前記大きな粒子がセパレータを貫通してしまったり、セパレータを貫通する亀裂を生じさせてしまう不良)が発生する可能性があった。そして、セパレータが破損すると、通電してしまうため電気化学デバイスがハードショートを起こす可能性があり、ハードショートを起こすと電気化学デバイスが発火するなどの問題があった。一方、本実施の形態に係る電極用バインダー組成物によれば、セパレータを貫通したりセパレータを貫通する亀裂を生じさせたりするような粒子(所定の粒子径よりも大きな粒子)を含まないため、前記のような問題が無く安全性が高い電気化学デバイスの電極を作製することができる。ここで、所定の粒子径よりも大きな粒子とは、具体的には、正極と負極とを分けるセパレータの厚みと同程度の大きさの粒子径を有する粒子のことである。なお、セパレータの厚さは、通常、10〜30μmである。セパレータの厚みが10μmよりも薄過ぎると、破損し易く電気化学デバイスの不良の原因となるおそれがある。
【0079】
本実施の形態に係る電極用バインダー組成物は、前記条件を満たす限り特に制限はないが、前記条件に加えて、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径15μm以上で20μm未満の粒子の数が0〜35000個であることが好ましく、0〜4000個であることがより好ましい。更に、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径10μm超で15μm未満の粒子の数が0〜5000
00個であることがより好ましく、0〜200000個であることがより好ましい。このように所定の粒子径の粒子が前記範囲内であると、これらの粒子によってセパレータが破損してしまう可能性を更に低くすることができる。また、バインダーは、抵抗成分になり易く、このバインダーが局在化すると、抵抗が増大し易いという不具合があるが、所定の粒子径の粒子を前記範囲内とすることにより、バインダーが局在化し難くなる。従って、前記抵抗が増大し難いという利点がある。
【0080】
なお、本実施の形態に係る電極用バインダー組成物においては、1mL当たりにおける粒子の数をパーティクルカウンタで測定し、所定の粒子径ごとに分けて粒子の数を規定している。
【0081】
本実施の形態に係る電極用バインダー組成物は、上述したように、重合性の単量体を重合させて得られるものである。別言すれば、前記重合性の単量体に由来する構造単位を有する重合体粒子を含むものであり、この重合体粒子によりバインダーとしての機能が発現する。
【0082】
本実施の形態に係る電極用バインダー組成物においては、前記重合体粒子の(固形分換算)濃度が20〜56質量%であることが好ましく、23〜55質量%であることがより好ましく、25〜54質量%であることが特に好ましい。前記濃度が前記範囲内であると、重合体粒子がバインダー中で安定化する(良好に分散した状態で存在する)ため、長期安定性に優れるバインダー組成物が得られるという利点がある。前記濃度が20質量%未満であると、生産性が低くなるという不具合がある。即ち、重合により得られる反応液をそのままバインダーとして使用する場合、重合によって得られる重合体粒子の濃度を低くする必要がある。そのため、生産性が低くなる。一方、56質量%超であると、バインダーの粘度が増加し過ぎるため、長期安定性が十分に得られないおそれがある。
【0083】
1.7.電極用バインダー組成物の製造方法
本実施の形態に係る電極用バインダー組成物の製造方法は、上記のようにして重合体粒子を合成した反応液に、必要に応じて上記の添加剤を添加した後、デプスタイプまたはプリーツタイプのフィルタでろ過して、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であるろ液を得ることを特徴とするものである。本実施の形態に係る電極用バインダー組成物の製造方法によれば、バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成する電極が作製可能な電極用バインダー組成物が得られる。
【0084】
ここで、本明細書においてデプスタイプのフィルタとは、深層ろ過または体積ろ過タイプのフィルタとも称される高精度ろ過フィルタである。このようなデプスタイプのフィルタは、多数の孔が形成されたろ過膜を積層させた積層構造をなすものや、繊維束を巻き上げたものなどがある。デプスタイプのフィルタとしては、具体的には、プロファイルII、ネクシスNXA、ネクシスNXT、ポリファインXLD、ウルチプリーツプロファイル等(全て、日本ポール社製)、デプスカートリッジフィルタ、ワインドカートリッジフィルタ等(全て、アドバンテック社製)、CPフィルタ、BMフィルタ等(全て、チッソ社製)、スロープピュア、ダイア、マイクロシリア等(全て、ロキテクノ社製)等が挙げられる。
【0085】
デプスタイプのフィルタとしては、定格ろ過精度が1.0〜20μmであるものを用いることが好ましく、定格ろ過精度が5.0〜10μmであるものを用いることがより好ましい。定格ろ過精度が前記範囲のものを用いることにより、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であるろ液を効
率良く得ることができる。また、フィルタに捕捉される粗大粒子の数が最小限になるため、フィルタの使用可能期間が延びる。
【0086】
また、プリーツタイプのフィルタとは、不織布、ろ紙、金属メッシュなどからなる精密ろ過膜シートをひだ折り加工した後、筒状に成形するとともに前記シートのひだの合わせ目を液密にシールし、かつ、筒の両端を液密にシールして得られる筒状の高精度ろ過フィルタのことである。
【0087】
プリーツタイプのフィルタとしては、定格ろ過精度が1.0〜20μmであるものを用いることが好ましく、定格ろ過精度が5.0〜10μmであるものを用いることがより好ましい。定格ろ過精度が前記範囲のものを用いることにより、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であるろ液を効率良く得ることができる。また、フィルタに捕捉される粗大粒子の数が最小限になるため、フィルタの使用可能期間が延びる。
【0088】
プリーツタイプのフィルタとしては、具体的には、HDCII、ポリファインII等(全て、日本ポール社製)、PPプリーツカートリッジフィルタ(アドバンテック社製)、ポーラスファイン(チッソ社製)、サートンポア、ミクロピュア等(全て、ロキテクノ社製)等を挙げることができる。
【0089】
ろ過する際の条件(フィルタ前後の圧力差(差圧)、液温など)は、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個であるろ液を得ることができる限り特に制限はないが、例えば、差圧は、使用するフィルタの最大耐差圧を超えない範囲で適宜設定すればよいが、具体的には0.2〜0.4MPaGであることが好ましい。また、液温は10〜50℃であることが好ましい。
【0090】
ろ過工程は、例えば、図1に示すようなろ過装置100を用いて行うことができる。ろ過装置100は、異物除去前の電極用バインダー組成物を貯蔵し供給する供給タンク1と、異物除去前の電極用バインダー組成物を一定の流量で流すための定量ポンプ2と、カートリッジフィルタ(図示せず)及びこのカートリッジフィルタを収納(装着)したハウジングを有するろ過器4と、定量ポンプ2とろ過器4の途中に位置する脈動防止器3と、脈動防止器3とろ過器4との間に配置された第一圧力計7aと、ろ過器4の下流に配置された第二圧力計7bと、を備えている。そして、ろ過装置100は、ろ過器4から供給タンク1にバインダーを戻す戻り導管6と、ろ過器4によりろ過された電極用バインダー組成物を排出する排出導管5と、を備えている。
【0091】
ろ過装置100において、前記重合工程で得られた反応液は、供給タンク1から定量ポンプ2により昇圧された脈動防止器3に供給される。定量ポンプ2による脈動がある場合は、脈動防止器3によって脈動が低減される。脈動防止器3から排出された反応液は、ろ過器4に供給され、異物が除去された後、排出導管5を通って回収される。この回収された回収液が電極用バインダー組成物である。ここで、本明細書において「異物」とは、粒子径が20μm以上の粒子のことである。
【0092】
排出導管5を通って回収された液体の異物の除去が十分でない場合には、回収液を電極用バインダー組成物とすることなく、戻り導管6を通して供給タンク1に戻し、再びろ過器4にてろ過することもできる。また、定量ポンプ2による脈動が生じない場合には、脈動防止器3を配置しなくてもよい。更に、反応液の粘度が高い場合には、供給タンク、導管、またはこれらの両方を加温することにより、反応液の粘度を低下させることができる。即ち、供給タンク、導管、またはこれらの両方を加温可能な加温手段を更に備えていてもよい。このようにして、反応液の粘度が高い場合に生産性を向上させることができる。
【0093】
なお、ろ過装置100は、第一圧力計7aと第二圧力計7bとを備えているが、圧力計を備えないろ過装置を用いてもよい。但し、第一圧力計7aと第二圧力計7bとを備えることにより、ろ過器が正常に機能するようにろ過器に生じる差圧を管理することができる。また、供給タンク1に代えて、運搬用のコンテナから直接、異物除去前の電極用バインダー組成物を供給してもよい。そして、ろ過装置100は、1つのろ過器4を用いた例であるが、複数のろ過器を用いることもできる。複数のろ過器を用いる場合、複数のろ過器を直列に連結してもよいし、並列に配置してもよい。
【0094】
1.8.電極用バインダー組成物の保管方法
本実施の形態に係る電極用バインダーの保管方法(以下、単に「保管方法」ともいう)では、上述の方法で作製され、1mL当たりにおける粒子径20μm以上の粒子の数が0個である電極用バインダー組成物に好適に用いることができる。特に、電極用バインダー組成物に含有される重合体粒子が、凝集しやすい傾向のあるフッ素系重合体を含有する場合に本願の方法は効果を発揮する。
【0095】
本実施の形態に係る保管方法は、かかる電極用バインダー組成物を2〜30℃の温度で保管することが必須であり、好ましくは10〜25℃である。前記範囲を超える場合、長期間の保存の間に容器の壁面の気液界面において重合体粒子が凝集し、異物が発生する傾向にあり、安定に保管することができない。前記範囲未満では、液中で重合体粒子が凝集し、ゲル状物や異物が発生する傾向にあり、安定に保管することができない。
【0096】
本実施の形態に係る保管方法は、上記の電極用バインダー組成物を充填して保存する容器において、該容器の内容積に対する電極用バインダー組成物の占める容積を除いた空隙部の容積の比率(%)(以下、「空隙率」ともいう)が1〜20%であることが必須であり、好ましくは3〜15%であり、より好ましくは5〜10%である。空隙率が前記範囲を超えると、保管温度が変化した場合に水分の揮発が大きくなり、その結果気液界面にて重合体粒子の凝集が発生し、異物が発生するため、安定に保管することができない。空隙率が前記範囲未満では、温度の変化により電極用バインダー組成物が体積変化を起こした場合、容器の変形や容器の破裂が発生するため、安定に保管することができない。
【0097】
本実施の形態に係る保管方法は、該空隙部雰囲気の酸素濃度が1%以下であることが好ましい。該空隙部雰囲気の酸素濃度が前記の範囲であると、長期間の保存の間にバインダー成分が酸化、変質することなく、重合体粒子の凝集を抑制することができ、異物の発生を効果的に抑制することができる。
【0098】
本実施の形態に係る保管方法では、上記の電極用バインダー組成物を保管する容器からの金属イオンの溶出濃度が50ppm以下であることが好ましい。金属イオンが組成物中に溶出すると、組成物中に分散している重合体粒子表面のゼータ電位バランスが崩れるため、凝集が発生しやすくなる。このようにして凝集した粒子は活物質層を形成する際に致命的な導電バスを形成する可能性が高いため好ましくない。
【0099】
なお、このような金属溶出の少ない容器は、ガラス製、樹脂製の材質により構成されているものが好ましい。たとえば、特開昭59−035043号方法等により製造されたクリーンな容器を好ましく使用することができる。
【0100】
本実施の形態に係る保管方法によれば、保存期間が6月でも、好ましくは12月でも、さらに好ましくは18月でも、保管中に電極用バインダー組成物の品質がほとんど変化しない。また、ゲル状物を生ずることもない。このため、製造直後の電極用バインダー組成物を用いて活物質層を形成するのと同じ条件で、同様の活物質層を形成することができる
。また、電極用バインダー組成物の生産性を向上できる効果は、保存期間が6月、12月、18月と長くなるほど大きくなる。
【0101】
2.電極用スラリー
本実施の形態に係る電極用スラリーは、活物質と、上記の電極用バインダー組成物と、を含有するものである。本実施の形態に係る電極用スラリーによれば、上記の電極用バインダー組成物を含有するものであるため、良好な結着性を有し、充放電特性に優れた電極を作製することができる。また、前記バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電極を作製することができる。
【0102】
2.1.活物質
活物質は、特に限定されるものではない。リチウムイオン二次電池電極に用いる場合には、負極活物質としてカーボンを用いることができる。カーボンの具体例としては、フェノール樹脂、ポリアクリロニトリル、セルロース等の有機高分子化合物を焼成することにより得られる炭素材料;コークスやピッチを焼成することにより得られる炭素材料;人造グラファイト;天然グラファイト等が挙げられる。正極活物質としては、例えば、リン酸鉄リチウム、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、三元系ニッケルコバルトマンガン酸リチウム、リチウムニッケルコバルトアルミニウム複合酸化物等が挙げられる。また、電気二重層キャパシタ電極に用いる場合には、活性炭、活性炭繊維、シリカ、アルミナ等を用いることができる。また、リチウムイオンキャパシタ電極に用いる場合には、黒鉛、難黒鉛化炭素、ハードカーボン、コークスなとの炭素材料や、ポリアセン系有機半導体(PAS)等を用いることができる。
【0103】
2.2.添加剤
本実施の形態に係る電極用スラリーには、増粘剤、ヘキサメタリン酸ナトリウム、トリポリリン酸ナトリウム、ポリアクリル酸ナトリウム等の分散剤、ラテックスの安定化剤としてのノニオン性またはアニオン性界面活性剤、消泡剤等の添加剤を添加することができる。
【0104】
2.3.電極用スラリーの調製
本実施の形態に係る電極用スラリーには、活物質100質量部に対して、前述の電極用バインダー組成物が、固形分換算で0.1〜10質量部含有されていることが好ましく、0.5〜5質量部含有されていることがより好ましい。電極用バインダー組成物の含有量が前記範囲にあると、電極用バインダー組成物が電解液に溶解し難くなり、過電圧の上昇による電池特性への悪影響を抑制できる。
【0105】
本実施の形態に係る電極用スラリーの調製において、電極用バインダー組成物と、活物質と、必要に応じて用いられる添加剤とを混合するには、攪拌機、脱泡機、ビーズミル、高圧ホモジナイザー等を利用することができる。また、電極用スラリーの調製は、減圧下で行うことが好ましい。これにより、得られる活物質層内に気泡が生じることを防止することができる。
【0106】
3.電極
本実施の形態に係る電極は、集電体と、前記集電体の表面上に前述の電極用スラリーが塗布および乾燥されて形成された活物質層と、を備えるものである。なお、本実施の形態に係る電極は、集電体の一方の面に活物質層が形成されていてもよく、集電体の両方の面に活物質層が形成されていてもよい。本実施の形態に係る電極によれば、上記の電極用スラリーを集電体の表面に塗布・乾燥して得られる活物質層を備えるものであるため、結着性が良好となり、充放電特性にも優れたものとなる。また、前記バインダー中に含まれる
粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電極となる。
【0107】
3.1.集電体
集電体の具体例としては、金属箔、エッチング金属箔、エキスパンドメタル等が挙げられる。集電体を構成する材料の具体例としては、アルミニウム、銅、ニッケル、タンタル、ステンレス、チタン等の金属材料が挙げられ、目的とする蓄電デバイスの種類に応じて適宜選択して用いることができる。集電体の厚みは、リチウムイオン二次電池用の電極を構成する場合には、5〜30μmであることが好ましく、8〜25μmであることがより好ましい。また、電気二重層キャパシタ用の電極を構成する場合には、集電体の厚みは5〜100μmであることが好ましく、10〜70μmであることがより好ましく、15〜30μmであることが特に好ましい。
【0108】
3.2.活物質層の作製
電極用スラリーを塗布する手段の具体例としては、ドクターブレード法、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法等が挙げられる。また、電極用スラリーの塗布膜の乾燥処理の条件としては、処理温度が20〜250℃であることが好ましく、50〜150℃であることがより好ましい。また、処理時間は1〜120分間であることが好ましく、5〜60分間であることがより好ましい。
【0109】
プレス加工する手段の具体例としては、高圧スーパープレス、ソフトカレンダー、1トンプレス機等が挙げられる。プレス加工の条件は、用いる加工機に応じて適宜設定される。このようにして形成される活物質層は、厚みが40〜100μmであり、密度が1.3〜2.0g/cmである。このようにして得られる電極は、リチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等の蓄電デバイスの電極として好適に用いることができる。
【0110】
4.蓄電デバイス
本実施の形態に係る電極を用いてリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ、等の蓄電デバイスを作製することができる。たとえば、リチウムイオン二次電池を構成する場合には、リチウム化合物からなる電解質を溶媒中に溶解した電解液が用いられる。
【0111】
電解質の具体例としては、LiClO、LiBF、LiI、LiPF、LiCFSO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON等が挙げられる。
【0112】
溶媒の具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類;γ−ブチロラクトン等のラクトン類;トリメトキシシラン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン等の窒素含有化合物;ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類;ジグライム、トリグライム、テトラグライム等のグライム類;アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;スルホラン等のスルホン類;2−メチル−2−オキサゾリジノン等のオキサゾリジノン類;1,3−プロパンスルトン、1,4−ブタンスルトン、2,4−ブタンスルトン、1,8−ナフタスルトン等のスルトン
類等が挙げられる。
【0113】
本実施の形態に係る電極を用いて電気二重層キャパシタを構成する場合には、上記の溶媒中に、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロホスフェート等の電解質を溶解した電解液が用いられる。また、本実施の形態に係る電極を用いてリチウムイオンキャパシタを構成する場合には、上記のリチウムイオン二次電池を構成する場合と同様の電解液を用いることができる。
【0114】
5.実施例
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
【0115】
5.1.実施例1
5.1.1.電極用バインダー組成物の調製
攪拌機を備えた温度調節可能なオートクレーブ中に、水200部、ドデシルベンゼンスルホン酸ナトリウム0.6部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部、α−メチルスチレンダイマー0.2部、ドデシルメルカプタン0.1部、および表1に示した1段目重合成分を一括して仕込み、70℃に昇温し2時間重合反応させた。重合添加率が80%以上であることを確認した後、反応温度を70℃に維持したまま、表1に示す2段目重合成分を6時間かけて添加した。2段目重合成分添加開始から3時間経過した時点で、α−メチルスチレンダイマー0.5部およびドデシルメルカプタン0.1部を添加した。2段目重合成分添加終了後、温度を80℃に昇温し、さらに2時間反応させた。重合反応終了後、ラテックスのpHを7.5に調節し、トリポリリン酸ナトリウム5部(固形分換算)を添加した。その後、残留モノマーを水蒸気蒸留で処理し、減圧下で固形分50%まで濃縮することで、電極用バインダー組成物を得た。
【0116】
得られた電極用バインダー組成物について、以下の各物性値を測定した。その結果を表1に併せて示す。
【0117】
(1)重合体粒子の数平均粒子径
得られた電極用バインダー組成物に含まれる重合体粒子の数平均粒子径を、動的光散乱法を測定原理とする測定装置により測定したところ、150nmであった。この測定装置には、22mWのHe−Neレーザー(λ=32.8nm)を光源とする光散乱測定装置(ALV社製、商品名「ALV5000」)を使用した。
【0118】
(2)ゲル含有率
得られた電極用バインダー組成物の水分散体2.0gをメタノール100g中に投入して凝固させ、300メッシュの金網で濾過して水分散体凝固物を取り出した。取り出した水分散体凝固物をメタノールで洗浄した後、60℃で5時間真空乾燥を行って乾燥水分散体凝固物を得た。得られた乾燥水分散体凝固物の質量(W0(g))を測定し、この乾燥水分散体凝固物を50mLのトルエンに投入し、50℃で3時間攪拌した後、25℃まで冷却し300メッシュの金網でろ過した。ろ液を10mL採取し、120℃のホットプレートでその質量が一定となるまで乾燥させて、その乾燥物の質量(W1(g))を測定した。ゲル含有率(%)は、下記式(2)より算出した。
ゲル含有率(%)=((W0−W1)/W0)×100 ・・・(2)
【0119】
(3)電解液膨潤率
電極用バインダー組成物に水を加えて固形分濃度30%の分散液を調製し、8cm×1
4cmの枠内に得られた分散液を固形分換算で25g流しこみ、常温にて5日間乾燥させて乾燥フィルムを得た。その後、乾燥フィルムを枠から取り出し、さらに80℃×3時間乾燥させて試験用フィルムを得た。次に、得られた試験用フィルムを2cm×2cmの大きさに複数枚切り出し、初期質量(W0'(g))を測定した。その後、標準電解液が入ったスクリュー瓶に試験用フィルムを80℃にて24時間浸漬した。その後、試験用フィルムを標準電解液から取り出し、フィルム表面に付着した電解液を拭き取った後に試験後の浸漬後質量(W1'(g))を測定した。得られた初期質量(W0'(g))および浸漬後質量(W1'(g))から、下記式(3)に従い電解液膨潤率を算出した。
電解液膨潤率(%)=(W1'/W0')×100 ・・・(3)
【0120】
(4)pH
得られた電極用バインダー組成物のpHを、pHメーター(東亜ティーディーケー株式会社製、「HM−7J」)を用いて測定したところ、7.5であった。
【0121】
5.1.2.リチウムイオン二次電池負極の作製
(1)作製方法
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に増粘剤(商品名「CMC2200」、ダイセル化学工業株式会社製)1部(固形分換算)、負極活物質としてグラファイト100部(固形分換算)、水68部を投入し、60rpmで1時間攪拌を行った。その後、上記で調製された電極用バインダー組成物1部(固形分換算)を加え、さらに1時間攪拌しペーストを得た。得られたペーストに水を投入し、固形分を50%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。銅箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、活物質層の密度が1.8g/cmとなるようにロールプレス機によりプレス加工することにより、リチウムイオン二次電池負極を得た。
【0122】
(2)結着性評価(ピール強度の測定)
作製した負極から、幅2cm×長さ12cmの試験片を切り出し、この試験片の活物質層側の表面を、両面テープを用いてアルミ板に貼り付けた。一方、試験片の集電体の表面に、幅18mmテープ(ニチバン株式会社製、商品名「セロテープ(登録商標)」、JIS Z1522に規定)を貼り付けた。この幅18mmテープを90°方向に50mm/minの速度で2cm剥離したときの力(mN/2cm)を6回測定し、その平均値を密着強度(ピール強度、mN/2cm)として算出した。なお、ピール強度の値が大きいほど、集電体と活物質層との密着強度が高く、集電体から電極層が剥離し難いと評価することができるが、ピール強度の値が20mN/2cm以上である場合には良好であると判断できる。
【0123】
5.1.3.リチウムイオン二次電池正極の作製
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に電極用バインダー(株式会社クレハ製、商品名「KFポリマー#1120」)4.0部(固形分換算)、導電助剤(電気化学工業株式会社製、商品名「デンカブラック50%プレス品」)3.0部、正極活物質として粒径5μmのLiCoO(ハヤシ化成株式会社製)100部(固形分換算)、N−メチルピロリドン(NMP)36部を投入し、60rpmで2時間攪拌を行った。得られたペーストにNMPを投入し、固形分を65%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。アル
ミ箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、電極層の密度が3.0g/cmとなるようにロールプレス機によりプレス加工することにより、リチウムイオン二次電池正極を得た。
【0124】
5.1.4.リチウムイオン二次電池(コイン型)の作製
(1)作製方法
露点が−80℃以下となるようAr置換されたグローブボックス内で、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)に、上記で作製した負極を直径15.95mmに打ち抜き成型したものを載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した。その後、上記で作製した正極を直径16.16mmに打ち抜き成型したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより本願発明の二次電池を作製した。なお、使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1の溶媒に、LiPFを1モル/リットルの濃度で溶解した溶液である。
【0125】
(2)充電レートおよび放電レートの評価
上記で作製したリチウムイオン二次電池を定電流(0.2C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として0.2Cでの充電容量を測定した。その後、定電流(0.2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、0.2Cでの放電容量を測定した。0.2Cでの放電容量に対する3Cでの放電容量の割合(%)を計算し、放電レート特性(%)とした。
【0126】
次に、同じセルを定電流(3C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として3Cでの充電容量を測定した。その後、定電流(3C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、3Cでの放電容量を測定した。0.2Cでの充電容量に対する3Cでの充電容量の割合(%)を計算し、充電レート特性(%)とした。放電レート特性および充電レート特性が80%以上である場合、負極表面に形成された皮膜抵抗が低く高速放電が可能なため良好と判断できる。
【0127】
なお、本実施例の測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値を示す。たとえば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、「10C」とは0.1時間かけて放電完了となる電流値のことをいう。
【0128】
(3)サイクル特性の評価
上記で作製したリチウムイオン二次電池を、定電流(1C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(1C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして50回充放電を繰り返し、50サイクル目の放電容量を算出した。このようにして測定した50サイクル目の放電容量を、1サイクル目の放電容量で割った値を放電容量維持率(%)とした。放電容量維持率が80%以上である場合、良好と判断できる。
【0129】
5.1.5.電気二重層キャパシタ電極の作製
(1)作製方法
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に、活性炭(クラレケミカル株式会社製、商品名「クラレコールYP」)100部、導電性カーボン(電気化学工業株式会社製、商品名「デンカブラック」)6部、増粘剤(ダイセル化学工業株式会社製、商品名「CMC2200」)2部、水278部を投入し、60rpmで1時間攪拌を行った。その後、上記で調製された電極用バインダー組成物を4部加え、さらに1時間攪拌を行いペーストを得た。得られたペーストに水を投入し、固形分を25%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。アルミ箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理することにより電気二重層キャパシタ電極を得た。
【0130】
(2)結着性評価(ピール強度の測定)
電気二重層キャパシタ電極から、幅2cm×長さ12cmの試験片を切り出し、この試験片のアルミ箔面を、両面テープを用いてアルミ板に貼り付けた。また、試験片の活物質層側の表面に、幅18mmテープ(ニチバン株式会社製、商品名「セロテープ(登録商標)」、JIS Z1522に規定)を貼り付けた。この幅18mmテープを90ー方向に50mm/minの速度で2cm剥離したときの力(mN/2cm)を6回測定し、その平均値を密着強度(ピール強度、mN/2cm)として算出した。なお、ピール強度の値が大きいほど、集電体と活物質層との密着強度が高く、集電体から活物質層が剥離し難いと評価することができる。
【0131】
(3)キャパシタ特性
グローブボックス内で2極式コインセル(宝泉社製、商品名「HSフラットセル」)に、直径15.95mmに打ち抜いた電気二重層キャパシタ電極を載置した。次いで、直径18mmに打ち抜いたセパレータ(日本高度紙社製、商品名「TF4535」)を載置し、空気が入らないように電解液を注入した。その後、直径16.16mmに打ち抜いた同様の電気二重層キャパシタ電極を載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することによりキャパシタを作製した。なお、使用した電解液は、プロピレンカーボネートの溶媒に、(CNBFが1モル/リットルの濃度で溶解した溶液である。
【0132】
(3−1)キャパシタ容量
定電流(10mA/F)一定電圧(2.7V)方式にて8分間かけて充電し、定電流(10mA/F)方式にて放電したときの容量を、キャパシタ容量(F/cm)の指標とした。
【0133】
(4)内部抵抗
放電終止電圧と充電初期電圧の差(ΔV)を放電電流で割った値を、Rintとし、内部抵抗の指標とした。
【0134】
5.2.実施例2〜6、比較例1〜5
表1に示す組成とした以外は実施例1と同様にして電極用バインダー組成物を得た。得られた電極用バインダー組成物を使用した以外は、実施例1と同様にして前述のリチウムイオン二次電池負極および電気二重層キャパシタ電極を作製し、それぞれの各種物性値を測定した。測定結果を表1に併せて示す。
【0135】
5.3.実施例7
5.3.1.電極用バインダー組成物の調製
表2に示す組成とし、2段目重合成分添加開始から3時間経過した時点で、「α−メチルスチレンダイマー1.0部およびドデシルメルカプタン0.3部」を添加した以外は、実施例1と同様にして電極用バインダー組成物を得た。
【0136】
得られた電極用バインダー組成物について、実施例1と同様にして、数平均粒子径、ゲル含有率、電解液膨潤率、pHを測定した。その結果を表2に併せて示す。
【0137】
5.3.2.リチウムイオン二次電池負極の作製
上記で得られた電極用バインダー組成物を用いた以外は、実施例1と同様にしてリチウムイオン二次電池負極を作製し、ピール強度を測定した。その結果を表2に併せて示す。
【0138】
5.3.3.正極の作製
実施例1と同様にしてリチウムイオン二次電池正極を作製した。
【0139】
5.3.4.リチウムイオン二次電池(ラミネート型)の作製
(1)作製方法
グローブボックス内で2極式単層ラミネートセルの内側に、アルミニウムからなるフィルム状の外装アルミシール上に、50mm×25mmに切り出した前記負極を載置した。次いで、この負極上に、54mm×27mmに切り出したポリプロピレン製の多孔膜からなるセパレータ(セルガード社製、商品名「セルガード#2400」、厚み25μm)を載置するとともに、空気が入らないように前記セル内に電解液を注入した。その後、48mm×23mmに切り出した前記正極を前記セパレータ上に載置した。そして、この正極上に、上記外装アルミシールと同様の外装アルミシールを載置した。このようにして、外装アルミシール、負極、セパレータ、正極、及び外装アルミシールからなる積層体を得た。その後、外装アルミシールを加温シーリング装置で2つの外装アルミシールの外周縁部を互いに接合させ封止した。そして、各層の間に空気が入らないように電解液を注入することにより2極式単層ラミネートセルからなる二次電池(電気化学デバイス)を作製した。なお、使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1の溶媒に、LiPFが1モル/リットルの濃度で溶解した溶液である。これらの操作は、グローブボックス内で行った。
【0140】
(2)充電レートおよび放電レートの評価
実施例1と同様にして、充電レートおよび放電レートの評価を行った。その結果を表2に併せて示す。
【0141】
(3)サイクル特性の評価
実施例1と同様にして、サイクル特性の評価を行った。その結果を表2に併せて示す。
【0142】
(4)サイクル特性評価前の内部直流抵抗値(DC−IR)の評価
25℃に設定した恒温槽に、上記にて作製したリチウムイオン二次電池を配置し、定電流(0.2C)にて50%DOD(3.8V)まで充電した。その後、定電流(0.5C)にて10秒間充電を行った際の電圧変化を読み取り、1分間休止した後、さらに定電流(0.5C)にて10秒間放電を行った際の電圧変化を読み取った。電流値を0.5Cから1.0C、2.0C、3.0C、5.0Cに変更した以外は同様の方法で充放電時の電圧を読み取った。印加した電流値(A)を横軸、電圧値(V)を縦軸としたグラフを作成し、充放電各時において、プロット点を結んだ直線の勾配値を算出した。その勾配値をそれぞれ充電時および放電時の内部直流抵抗値(DC−IR)とした。なお、測定条件において、「DOD」とは、充電容量に対する放電容量の割合を示す。たとえば、「50%DODまで充電する」とは、全容量を100%とした場合、50%の容量だけ充電することを示す。
【0143】
(5)60℃サイクル特性の評価
前記「(4)内部直流抵抗値(DC−IR)の評価」の評価後、60℃に設定した恒温槽に同じリチウムイオン二次電池を配置し、定電流(2.0C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(2.0C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返し、100サイクル目の放電容量を算出した。このようにして測定した100サイクル目の放電容量を、1サイクル目の放電容量で割った値を100サイクル放電維持率(%)とした。100サイクル目の放電容量維持率が40%以上である場合、良好と判断できる。
【0144】
(6)抵抗変化率の評価
前記「(5)60℃サイクル特性の評価」の評価後に、「(4)サイクル特性評価前の内部直流抵抗値(DC−IR)の評価」に記載と同様な手法でサイクル特性評価後の放電時の内部直流抵抗値(DC−IR)を測定した。サイクル特性評価前の内部直流抵抗値(DC−IR)に対する、本項で測定したサイクル特性評価後の内部直流抵抗値の割合を抵抗変化率と定義し、この数値が低いものほど、抵抗劣化が小さいと判断することができる。なお、抵抗変化率が10以下である場合、良好と判断できる。
【0145】
5.4.実施例8〜22、比較例6〜8
表2または表3に示す組成とした以外は実施例7と同様にして電極用バインダー組成物を得た。得られた電極用バインダー組成物を使用した以外は、実施例7と同様にして前述のリチウムイオン二次電池負極を作製し、各種物性値を測定した。測定結果を表2または表3に併せて示す。
【0146】
5.5.比較例9
攪拌機を備えた温度調節可能なオートクレーブ中に、水200部、ドデシルベンゼンスルホン酸ナトリウム0.6部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部、α−メチルスチレンダイマー0.2部、ドデシルメルカプタン0.6部、および表3に示した1段目重合成分を一括して仕込み、70℃に昇温し2時間重合反応させた。重合添加率が80%以上であることを確認した後、反応温度を70℃に維持したまま、表3に示す2段目重合成分を6時間かけて添加した。2段目重合成分添加開始から3時間経過した時点で、α−メチルスチレンダイマー1.0部およびドデシルメルカプタン0.9部を添加した。2段目重合成分添加終了後、温度を80℃に昇温し、さらに2時間反応させた。重合反応終了後、ラテックスのpHを7.5に調節し、トリポリリン酸ナトリウム5部(固形分換算)を添加した。その後、残留モノマーを水蒸気蒸留で処理し、減圧下で固形分50%まで濃縮することで、電極用バインダー組成物を得た。
【0147】
上記の電極用バインダー組成物を用いたこと以外は、実施例7と同様にして前述のリチウムイオン二次電池負極を作製し、各種物性値を測定した。測定結果を表3に併せて示す。
【0148】
5.6.比較例10
攪拌機を備えた温度調節可能なオートクレーブ中に、水200部、ドデシルベンゼンスルホン酸ナトリウム0.6部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部、ドデシルメルカプタン0.2部、および表3に示した1段目重合成分を一括して仕込み、70℃に昇温し2時間重合反応させた。重合添加率が80%以上であることを確認した後、反応温度を70℃に維持したまま、表3に示す2段目重合成分を6時間かけて添加した。2段目重合成分添加開始から3時間経過した時点で、ドデシルメルカプタン0.3部を
添加した。2段目重合成分添加終了後、温度を80℃に昇温し、さらに2時間反応させた。重合反応終了後、ラテックスのpHを7.5に調節し、トリポリリン酸ナトリウム5部(固形分換算)を添加した。その後、残留モノマーを水蒸気蒸留で処理し、減圧下で固形分50%まで濃縮することで、電極用バインダー組成物を得た。
【0149】
上記の電極用バインダー組成物を用いたこと以外は、実施例7と同様にして前述のリチウムイオン二次電池負極を作製し、各種物性値を測定した。測定結果を表3に併せて示す。
【0150】
【表1】

【0151】
【表2】

【0152】
【表3】

【0153】
表1〜表3に示すように、本発明に係る電極用バインダー組成物は、比較例1〜10の
電極用バインダー組成物と比較して、リチウムイオン二次電池での集電体と活物質層との結着性、充放電レート特性およびサイクル特性、ならびに電気二重層キャパシタでの集電体と電極層との結着性および内部抵抗の諸特性において優れているという結果であった。
【0154】
5.7.実験例1
前記実施例1で調製した電極用バインダー組成物について、ろ過工程の有無による性能の差異について下記のようにして評価した。
【0155】
まず、実施例1で作製した電極用バインダー組成物について、図1に示すろ過装置100を用いてろ過を行った(ろ過工程)。図1に示すろ過装置100は、異物除去前の電極用バインダー組成物を貯蔵し供給する供給タンク1と、異物除去前の電極用バインダー組成物を一定の流量で流すための定量ポンプ2と、カートリッジフィルタ(図示せず)及びこのカートリッジフィルタを収納(装着)したハウジングを有するろ過器4と、定量ポンプ2とろ過器4の途中に位置する脈動防止器3と、脈動防止器3とろ過器4との間に配置された第一圧力計7aと、ろ過器4の下流に配置された第二圧力計7bと、を備えている。そして、ろ過装置100は、ろ過器4から供給タンク1にバインダーを戻す戻り導管6と、ろ過器4によりろ過された電極用バインダーを排出する排出導管5と、を備えている。
【0156】
本実験例において、ろ過器4は、ハウジング内にデプスタイプのカートリッジフィルタ「プロファイルII」(日本ポール社製、定格ろ過精度10μm、長さ1インチ)を1本装着したものである。定量ポンプ2は、エア駆動式のダイヤフラムポンプを用い、ろ過器前後の差圧が0.34MPaGとなるようにした。なお、図1に示すろ過装置100によるろ過後の電極用バインダー組成物における数平均粒子径はろ過前と比較して変化は確認されなかった。ここで、数平均粒子径は、オートサンプラー付き濃厚系粒径アナライザー「FPAR1000」(大塚電子株式会社製)により測定した値である。
【0157】
なお、異物除去(ろ過工程)前後の粒子において数平均粒子径に変化がなければ、異物除去後の電極用バインダー組成物はバインダーとしての諸特性に変化は無い(即ち、電極用バインダー組成物として従来のバインダーと同等の機能を維持している)と評価することができる。
【0158】
ろ過前の電極用バインダー組成物及びろ過工程を経て得られた電極用バインダー組成物のそれぞれについて、1mL当たりにおける粒子の数を下記のようにして測定した。また、それらを用いてそれぞれリチウムイオン二次電池を作製し、下記のようにして良品率を算出した。評価結果を表4に示す。
【0159】
(1)1mL当たりにおける粒子数の測定
パーティクルカウンタには、Particle Sizing Systems製の個数カウント式粒度分布測定器「Accusizer 780APS」を使用した。具体的には、測定される粗大粒子の数が「4000個/mL(0.56μm)」(即ち、「粒子径が0.56μmよりも大きな粒子が、1mL中に4000個以下」)となるまで超純水でブランク測定を繰り返した。その後、超純水で100倍に希釈したバインダー(サンプル)100mLを用意し、このサンプルを前記粒度分布測定器にセットした。セット後、前記粒度分布測定器により最適濃度になるように自動でサンプルの希釈が行われる。その後、前記粒度分布測定器により前記サンプルの1mL当りにおける粒子の数が2回測定され、平均値が算出される。この平均値を100倍して、バインダー1mL当りにおける粒子の数とした。
【0160】
(2)ハードショートの有無
実施例1と同様にして100個の二次電池を作製し、作製した二次電池について、60℃保存試験を行った。具体的には、定電流(0.2C)−定電圧(4.2V)方式にて2.5時間かけて充電し、定電流(0.2C)方式にて放電し、再度、定電流(0.2C)−定電圧(4.2V)方式にて2.5時間かけて充電した100個の二次電池を60℃に設定した恒温槽に30日間放置した。そして、30日間放置後の各二次電池の開回路電圧(OCV)を測定して評価を行った。評価においては、OCVの低下傾向をハードショート発生の指標とした。具体的には、著しい電圧降下が発生しなければ(OCVの低下が確認できなければ)、ハードショートが無いと判断し、急激な電圧降下(瞬間的に電圧が降下すること)が発生した場合にはハードショートが有りと判断した。
【0161】
(3)良品率(%)
上記「ハードショートの有無」の評価から二次電池の良品率(%)を算出した。具体的には、式:二次電池の良品率(%)=[{(ハードショートの有無の試験を実施した二次電池の個数)−(ハードショートが発生した二次電池の個数)}/(ハードショートの有無の試験を実施した二次電池の個数)]×100により算出した。良品率(%)が98%以上であれば良好と判断できるが、99%以上であれば生産性が向上するためより良好と判断できる。
【0162】
【表4】

【0163】
表4に示すように、ろ過装置100によるろ過後の電極用バインダー組成物は、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数、粒子径15μm以上で20μm未満の粒子の数、及び粒子径10μm超で15μm未満の粒子の数は全て0個であった。ろ過工程を経ることにより、前記粒子数が大幅に低減された。これにより、二次電池の良品率が99.9%となり、生産性が大幅に向上することが判った。
【0164】
5.8.実験例2
前記実施例1で得られた電極用バインダー組成物について、ろ過装置を用いてろ過を行った。本実験例で使用したろ過装置は、図1に示すろ過装置100のデプスタイプのカートリッジフィルタ「プロファイルII」(日本ポール社製、定格ろ過精度10μm、長さ1インチ)1本に代えて、デプスタイプのカートリッジフィルタ「プロファイルII」(日本ポール社製、定格ろ過精度20μm、長さ1インチ)1本を装着したものを用いた。なお、ろ過器前後の差圧は0.25MPaGとした。なお、ろ過後の電極用バインダー組成物における数平均粒子径はろ過前と比較して変化は確認されなかった。ろ過前の電極用バインダー組成物及びろ過工程を経て得られた電極用バインダー組成物のそれぞれについて、前記各種評価を行った。評価結果を表5に示す。
【0165】
【表5】

【0166】
表5に示すように、ろ過装置100によるろ過後の電極用バインダー組成物は、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数、粒子径15μm以上で20μm未満の粒子の数、及び粒子径10μm超で15μm未満の粒子の数が大幅に低減された。これにより、二次電池の良品率が99.9%となり、生産性が大幅に向上することが判った。
【0167】
5.9.実験例3
前記実施例1で得られた電極用バインダー組成物について、実験例1と同様にして図1に示すろ過装置100でろ過を行った。なお、本実験例においては、ろ過前後の差圧を0.38MPaGとし、ろ過装置100によるろ過開始から5分後のろ液をサンプリングした。ろ過前の電極用バインダー組成物及びろ過工程を経て得られた電極用バインダー組成物のそれぞれについて、前記各種評価を行った。評価結果を表6に示す。なお、ろ過後の電極用バインダー組成物における数平均粒子径は濾過前と比較して変化は確認されなかった。
【0168】
5.10.実験例4
ろ過開始から10分後のろ液をサンプリングしたこと以外は、前記実験例3と同様にしてろ液(ろ過装置によるろ過後の電極用バインダー組成物)をサンプリングした。得られたろ液について前記各種評価を行った。評価結果を表6に示す。なお、ろ過後の電極用バインダーにおける数平均粒子径は濾過前と比較して変化は確認されなかった。
【0169】
5.11.実験例5
ろ過開始から15分後のろ液をサンプリングしたこと以外は、前記実験例3と同様にしてろ液(ろ過装置によるろ過後の電極用バインダー組成物)をサンプリングした。得られたろ液について前記各種評価を行った。評価結果を表6に示す。なお、ろ過後の電極用バインダーにおける数平均粒子径は濾過前と比較して変化は確認されなかった。
【0170】
【表6】

【0171】
表4〜表6から明らかなように、ろ過工程を経て得られた電極用バインダー組成物によれば、ろ過前の電極用バインダー組成物に比べて、セパレータが破損するような不良の発生率が極めて小さく安全性が高い電気化学デバイスの電極を構成するための材料として用いることが可能であることが確認できた。
【0172】
5.12.実験例7(電極用バインダー組成物の保管試験)
前記実施例1〜3で作製された電極用バインダー組成物のいずれか1種を保存容器に入れ、容器の内容積との比率(空隙率)、保管温度、容器内に残留する気体中の酸素濃度を
表7に記載の条件とし、静置して6ヶ月保管した。6ヶ月保管後の後の電極用バインダー組成物の異物発生有無、容器態様を目視にて判断した結果を表7に示す。なお、酸素濃度は電極用バインダー組成物を保管容器へ移し替えた後、容器内へ高純度窒素を吹き付けて置換することにより調整した。
【0173】
表7において、「クリーンボトル」はアイセロ化学株式会社より市販されている20リットルの角缶型のクリーンボトルを使用した。「洗浄ポリ容器」は、市販されている20リットルの角缶型のポリプロピレン容器の内部をクリーンルーム中で洗浄したものを使用した。「金属缶」は、市販の金属製の一斗缶を使用した。また、異物発生有無は、目視にて凝集物のある場合を不良として×、凝集物のない場合を良好として○と示した。容器態様は、目視にて容器外観に変化ない場合を良好と判断して○、容器外観に変化があるものを×と示した。ハードショートの有無、良品率は前述の方法にて評価した。
【0174】
【表7】

【0175】
表7の結果によれば、本発明に係る電極用バインダー組成物の保管方法は有効であることが明らかになった。
【0176】
本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は
、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
【産業上の利用可能性】
【0177】
本発明に係る電極用バインダー組成物は、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料として好適である。本発明に係る電気化学デバイス電極用スラリーは、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料として好適である。本発明に係る電気化学デバイス電極は、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極として好適である。本発明に係る電極用バインダーの製造方法は、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料の電極用バインダーを製造する方法である。
【符号の説明】
【0178】
1…供給タンク、2…定量ポンプ、3…脈動防止器、4…ろ過器、5…排出導管、6…戻り導管、7a…第一圧力計、7b…第二圧力計、100…ろ過装置

【特許請求の範囲】
【請求項1】
(A)α,β−不飽和ニトリル化合物に由来する構成単位5〜40質量部と、
(B)不飽和カルボン酸に由来する構成単位0.3〜10質量部と、
を含有し、かつ数平均粒子径が50〜400nmである重合体粒子を含み、
ゲル含有率が90〜99%であり、
電解液膨潤率が110〜400%である、電極用バインダー組成物。
【請求項2】
前記重合体粒子が下記一般式(1)で示される化合物に由来する構成単位をさらに含有する、請求項1に記載の電極用バインダー組成物。
【化3】

(式中、Rは水素原子または一価の炭化水素基、Rは二価の炭化水素基である。)
【請求項3】
前記一般式(1)で示される化合物がヒドロキシエチルメタクリレートである、請求項2に記載の電極用バインダー組成物。
【請求項4】
前記重合体粒子が(C)共役ジエン化合物に由来する構成単位をさらに含有する、請求項1ないし請求項3のいずれか一項に記載の電極用バインダー組成物。
【請求項5】
pHが6以上8以下である、請求項1ないし請求項4のいずれか一項に記載の電極用バインダー組成物。
【請求項6】
パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数が0個である、請求項1ないし請求項5のいずれか一項に記載の電極用バインダー組成物。
【請求項7】
ろ過処理によって、パーティクルカウンタで測定したときの、1mL当たりにおける粒子径20μm以上の粒子の数を0個とする工程を含む、請求項6に記載の電極用バインダー組成物の製造方法。
【請求項8】
活物質と、請求項1ないし請求項6のいずれか一項に記載の電極用バインダー組成物と、を含有する、電極用スラリー。
【請求項9】
集電体と、前記集電体の表面上に請求項8に記載の電極用スラリーが塗布および乾燥されて形成された活物質層と、を備えた電極。
【請求項10】
請求項9に記載の電極を備えた電気化学デバイス。
【請求項11】
請求項1ないし請求項6のいずれか一項に記載の電極バインダー組成物を2℃以上30℃以下の温度に制御された容器に充填して、前記容器の内容積に対して前記電極用バインダー組成物の占める容積を除いた空隙部の容積の比率を1〜20%とすることを特徴とする、電極用バインダー組成物の保管方法。
【請求項12】
前記空隙部雰囲気の酸素濃度が1%以下である、請求項11に記載の電極用バインダー
組成物の保管方法。
【請求項13】
前記容器からの金属イオンの溶出濃度が50ppm以下である、請求項11または請求項12に記載の電極用バインダー組成物の保管方法。

【図1】
image rotate


【公開番号】特開2012−248546(P2012−248546A)
【公開日】平成24年12月13日(2012.12.13)
【国際特許分類】
【出願番号】特願2012−187284(P2012−187284)
【出願日】平成24年8月28日(2012.8.28)
【分割の表示】特願2012−514664(P2012−514664)の分割
【原出願日】平成23年12月8日(2011.12.8)
【出願人】(000004178)JSR株式会社 (3,320)
【Fターム(参考)】