説明

電池制御装置

【課題】蓄電池を複数並列接続してなる蓄電池システムを制御する電池制御装置において、温調システムを用いることなく、並列接続された各蓄電池間の劣化バラツキを抑制し、これにより、蓄電池システムの寿命を向上させること。
【解決手段】蓄電池を複数並列接続してなる蓄電池システムであって、並列接続された各蓄電池の温度の検出およびSOCの算出を行い、他の蓄電池よりも温度の高い蓄電池のSOCが、蓄電池の劣化速度を促進する特定のSOC範囲内となる時間が、他の蓄電池と比較して短くなるように、並列接続された各蓄電池の充放電電流を制御することを特徴とする蓄電池システムを提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蓄電池を複数並列接続してなる蓄電池システムを制御する電池制御装置に関するものである。
【背景技術】
【0002】
従来より、比較的に厳しい温度環境で用いられる蓄電池システムとして、定置型蓄電池システムが知られている。このような定置型蓄電池システムとしては、電池容量を大きくするために、通常、複数の蓄電池を並列接続したものが用いられるが、このように複数の蓄電池を並列接続した構成においては、並列接続された各蓄電池は異なる温度環境に置かれることが多く、このように異なる温度環境に置かれると、各蓄電池間における劣化速度が異なることとなってしまい、これにより、各蓄電池間の劣化バラツキが促進し、結果として、定置型蓄電池システム全体の寿命が短くなってしまうという問題がある。一方、各蓄電池の温度環境を同一にするために、各蓄電池に対して温調を行なう方法も考えられるが、この場合においては、各蓄電池に対応した温調システムを設ける必要が生じてしまう。
【0003】
これに対して、たとえば、特許文献1では、2個の蓄電池を並列接続してなる蓄電池システムにおいて、蓄電池間において温度差が生じている場合に、蓄電池間における劣化バラツキの促進を抑制するために、まず、温度の低い蓄電池の充電を行ない、温度の低い蓄電池の充電が終了した後に、温度の高い蓄電池の充電を行なう技術が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平7−153498号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記従来技術においては、蓄電池間において温度差が生じている場合に、単に蓄電池の充電タイミングを制御するものであり、蓄電池のSOCに起因する蓄電池の劣化速度を考慮するものではないため、各蓄電池間の劣化バラツキを充分に解消することができないという問題があった。
【0006】
本発明が解決しようとする課題は、蓄電池を複数並列接続してなる蓄電池システムを制御する電池制御装置において、温調システムを用いることなく、並列接続された各蓄電池間の劣化バラツキを抑制し、これにより、蓄電池システムの寿命を向上させることにある。
【課題を解決するための手段】
【0007】
本発明は、蓄電池を複数並列接続してなる蓄電池システムにおいて、並列接続された各蓄電池の温度の検出およびSOCの算出を行い、他の蓄電池よりも温度の高い蓄電池のSOCが、蓄電池の劣化速度を促進する特定のSOC範囲内となる時間が、他の蓄電池と比較して短くなるように、並列接続された各蓄電池の充放電電流を制御することにより、上記課題を解決する。
【発明の効果】
【0008】
本発明によれば、他の蓄電池よりも温度の高い蓄電池のSOCが、蓄電池の劣化速度を促進する特定のSOC範囲内となる時間が、他の蓄電池と比較して短くなるように、各蓄電池の充放電電流を制御することにより、蓄電池のSOCに基づく劣化速度を調整することができ、これにより、蓄電池システムを構成する各蓄電池間の劣化の進行を略等しくすることができる。そして、その結果として、各蓄電池間の劣化バラツキを抑制することができ、これにより、蓄電池システムの寿命を向上させることができる。
【図面の簡単な説明】
【0009】
【図1】図1は、本実施形態に係る蓄電池システムを示す構成図である。
【図2】図2は、コントローラ40の機能ブロック図である。
【図3】図3(A)は、各蓄電池の温度と劣化速度との関係を示すグラフ、図3(B)は、各蓄電池のSOCと劣化速度との関係を示すグラフである。
【図4】図4は、本実施形態に係る充放電制御処理を示すフローチャートである。
【図5】図5は、劣化速度に基づいて設定される各SOC領域を示すグラフである。
【図6】図6は、本実施形態の劣化速度調整処理を行なった際における、各蓄電池のSOCの変化の一例を示すグラフである。
【発明を実施するための形態】
【0010】
以下、本発明の実施形態を図面に基づいて説明する。
【0011】
図1は、本実施形態に係る蓄電池システムを示す構成図である。以下においては、本実施形態に係る蓄電池システムが、定置型蓄電池システムである場合を例示して説明するが、特にこれに限定されるものではない。
【0012】
本実施形態に係る蓄電池システムは、図1に示すように、第1蓄電池1aおよび第2蓄電池1b、第1DC/DC制御器5a、第2DC/DC制御器5b、変換機10、交流電源20、交流負荷30、およびコントローラ40を備える。第1蓄電池1aおよび第2蓄電池1bは、第1DC/DC制御器5aおよび第2DC/DC制御器5bを介して、互いに並列に接続されるとともに、変換機10に接続されている。そして、第1蓄電池1aおよび第2蓄電池1bは、変換機10を介して、交流電源20からの電力が入力可能となっているとともに、交流負荷30への電力の供給が可能となっている。なお、図1中、太実線は電力線を、破線は通信線を示している。
【0013】
第1蓄電池1aは、たとえば、リチウムイオン二次電池であり、第1蓄電池1aには、第1蓄電池1aの温度Taを検出するための第1温度センサ2a、第1蓄電池1aの電圧Vaを検出するための第1電圧センサ3a、および、第1蓄電池1aに入出力される電流Iaを検出するための第1電流センサ4aが設けられている。そして、これら第1温度センサ2a、第1電圧センサ3a、および第1電流センサ4aにより検出された第1蓄電池1aの温度Ta、電圧Vaおよび電流Iaは、コントローラ40に、所定の間隔で送信される。また、第1蓄電池1aは、第1DC/DC制御器5aを介して、電力線と接続されており、第1DC/DC制御器5aを制御することで、入出力される電流が制御されるようになっている。
【0014】
同様に、第2蓄電池1bは、たとえば、リチウムイオン二次電池であり、第2蓄電池1bも、第2蓄電池1bの温度Tbを検出するための第2温度センサ2b、第2蓄電池1bの電圧Vbを検出するための第2電圧センサ3b、および、第2蓄電池1bに入出力される電流Ibを検出するための第2電流センサ4bを備えており、これら第2温度センサ2b、第2電圧センサ3b、および第2電流センサ4bにより検出された第2蓄電池1bの温度Tb、電圧Vbおよび電流Ibは、コントローラ40に、所定の間隔で送信される。また、第2蓄電池1bも、第2DC/DC制御器5bを介して、電力線と接続されており、第2DC/DC制御器5bを制御することで、入出力される電流が制御されるようになっている。
【0015】
変換機10は、直流電力と交流電力との変換を行なうための変換機である。変換機10は、第1蓄電池1aおよび第2蓄電池1bからの直流電力を交流電力に変換し、交流負荷30に供給するとともに、交流電源20からの交流電力を直流電力に変換し、第1蓄電池1aおよび第2蓄電池1bに供給する。また、変換機10は、交流電源20からの供給電力、および交流負荷30の負荷電力を検出し、これらをコントローラ40に送信する。
【0016】
コントローラ40は、第1温度センサ2a、第1電圧センサ3aおよび第1電流センサ4aから、第1蓄電池1aの温度Ta、電圧Vaおよび電流Iaを、第2温度センサ2b、第2電圧センサ3bおよび第2電流センサ4bから、第2蓄電池1bの温度Tb、電圧Vbおよび電流Ibを、変換機10から、交流電源20からの供給電力、および交流負荷30の負荷電力を、それぞれ取得し、これらの情報に基づき、蓄電池システムを制御する。
【0017】
図2に、コントローラ40の機能ブロック図を示す。図2に示すように、コントローラ40は、第1SOC演算部41a、第2SOC演算部41b、第1電池温度検出部42a、第2電池温度検出部42b、充放電指令演算部43、入出力電力検出部44、および制御信号送出部45を備える。
【0018】
第1SOC演算部41aは、第1電圧センサ3a、および第1電流センサ4aにより検出された第1蓄電池1aの電圧Vaおよび電流Iaを取得し、これら電圧Vaおよび電流Iaに基づいて、第1蓄電池1aのSOC(State of Charge)を算出する。第1蓄電池1aのSOCは、たとえば、電圧VaとSOCとの関係を示すテーブルを用いる方法や、電流Iaを積算する方法、さらにはこれらの方法を組み合わせた方法により、算出することができる。算出された第1蓄電池1aのSOCは、充放電指令演算部43に送出される。
【0019】
第2SOC演算部41bは第2電圧センサ3b、および第2電流センサ4bにより検出された第2蓄電池1bの電圧Vbおよび電流Ibを取得し、これら電圧Vbおよび電流Ibに基づいて、第2蓄電池1bのSOCを算出する。なお、第2蓄電池1bのSOCは、上述の第1蓄電池1aのSOCと同様の方法により、算出することができる。算出された第2蓄電池1bのSOCは、充放電指令演算部43に送出される。
【0020】
第1電池温度検出部42aは、第1温度センサ2aにより検出された第1蓄電池1aの温度Taを取得し、取得した温度Taを、充放電指令演算部43に送出する。また、第2電池温度検出部42bは、第2温度センサ2bにより検出された第2蓄電池1bの温度Tbを取得し、取得した温度Tbを、充放電指令演算部43に送出する。
【0021】
充放電指令演算部43は、第1蓄電池1aおよび第2蓄電池1bを充電または放電するための充電電力または放電電力を設定し、これらの情報を、制御信号送出部45に送出する。なお、充放電指令演算部43による、充電電力・放電電力の具体的な算出方法については、後述する。
【0022】
入出力電力検出部44は、交流電源20からの供給電力、および交流負荷30の負荷電力の検出を行い、検出結果を充放電指令演算部43に送出する。
【0023】
制御信号送出部45は、充放電指令演算部43により設定された充電電力または放電電力の情報に基づき、これらの情報を含む制御信号を、第1DC/DC制御器5aおよび第2DC/DC制御器5bに送出することで、第1蓄電池1aおよび第2蓄電池1bに入出力される電力を制御する。
【0024】
次いで、第1蓄電池1aおよび第2蓄電池1bの劣化速度について、図3(A)、図3(B)を参照して説明する。
【0025】
図3(A)は、各蓄電池1a、1bの温度と劣化速度との関係を示すグラフ、図3(B)は、各蓄電池1a、1bのSOCと劣化速度との関係を示すグラフである。本実施形態においては、第1蓄電池1aおよび第2蓄電1bの劣化は、主として、その温度およびSOCの影響により引き起こされるという特性を有し、そして、その劣化速度は、図3(A)、図3(B)に示すものとなる。すなわち、図3(A)に示すように、第1蓄電池1aおよび第2蓄電1bは、その温度が高いほど、劣化速度が高くなるという特性を有する。一方、図3(B)に示すように、第1蓄電池1aおよび第2蓄電1bは、SOCに応じて劣化速度が変化する特性を有する。
【0026】
具体的には、図3(A)に示すように、第1蓄電池1aの温度に基づく劣化速度DTaは、温度Taに応じたものとなり、また、第2蓄電池1bの温度に基づく劣化速度DTbは、温度Tbに応じたものとなる。同様に、図3(B)に示すように、第1蓄電池1aのSOCに基づく劣化速度DSaは、そのSOCであるSaに応じたものとなり、また、第2蓄電池1bのSOCに基づく劣化速度DSbは、そのSOCであるSbに応じたものとなる。
【0027】
そして、本実施形態においては、第1蓄電池1aの劣化速度Daは、温度に基づく劣化速度DTaと、SOCに基づく劣化速度DSaを乗じ、Da=DTa×DSaで求められる。また、同様に、第2蓄電池1bの劣化速度Dbは、温度に基づく劣化速度DTbと、SOCに基づく劣化速度DSbを乗じ、Db=DTb×DSbで求められる。なお、本実施形態の蓄電池システムにおいては、このような各蓄電池1a、1bの温度に基づく劣化速度DTa、DTb、SOCに基づく劣化速度DSa、TSbを求め、これらに基づき、各蓄電池1a、1bの劣化速度Da、Dbを算出できるように、図3(A)、図3(B)に示すような、温度と劣化速度との関係、およびSOCと劣化速度との関係を示す温度−劣化速度テーブル、およびSOC−劣化速度テーブルが、コントローラ40に予め記憶されている。
【0028】
次いで、本実施形態に係る充放電制御処理について説明する。図4は、本実施形態に係る充放電制御処理を示すフローチャートである。
【0029】
まず、ステップS1では、コントローラ40の第1SOC演算部41aおよび第1電池温度検出部42aにより、第1蓄電池1aの温度Ta、電圧Vaおよび電流Iaの取得が行なわれる。また、同様に、コントローラ40の第2SOC演算部41bおよび第2電池温度検出部42bにより、第2蓄電池1bの温度Tb、電圧Vbおよび電流Ibの取得が行なわれる。
【0030】
ステップS2では、コントローラ40の第1SOC演算部41aにより、ステップS1で取得した第1蓄電池1aの電圧Vaおよび電流Iaに基づいて、第1蓄電池1aのSOCの算出が行なわれ、算出された第1蓄電池1aのSOCは、充放電指令演算部43に送出される。また、同様に、コントローラ40の第2SOC演算部41bにより、ステップS1で取得した第2蓄電池1bの電圧Vbおよび電流Ibに基づいて、第2蓄電池1bのSOCの算出が行なわれ、算出された第2蓄電池1bのSOCは、充放電指令演算部43に送出される。
【0031】
ステップS3では、コントローラ40の充放電指令演算部43により、ステップS1において取得した第1蓄電池1aの温度Ta、および第2蓄電池1bの温度Tbの比較が行なわれ、第1蓄電池1aおよび第2蓄電池1bのうち、より温度の高い蓄電池を、高温蓄電池として設定する。上述したように、図3(A)に示すように、第1蓄電池1aおよび第2蓄電1bは、その温度が高いほど、劣化速度が高くなるという関係にある。そのため、ステップS3においては、第1蓄電池1aおよび第2蓄電池1bのうち、いずれの蓄電池の温度が高いか(すなわち、いずれの蓄電池の方が、温度の影響による劣化速度が大きいか)を判定する。
【0032】
ステップS4では、充放電指令演算部43により、第1蓄電池1aおよび第2蓄電池1bのうち、ステップS3において高温蓄電池として設定された蓄電池について、そのSOCが、図5に示す第1低劣化領域RL1、第1劣化促進領域RH1、第2低劣化領域RL2、および第2劣化促進領域RH2の各SOC領域のうち、いずれのSOC領域内にあるかの判定が行なわれる。ここで、図5は、劣化速度に基づいて設定される各SOC領域を示すグラフである。なお、図5は、図3(B)に示す各蓄電池1a、1bのSOCと劣化速度との関係を示すグラフにおいて、劣化速度に基づいて設定される各SOC領域を示したグラフである。上述したように、第1蓄電池1aおよび第2蓄電1bは、SOCに応じて劣化速度が変化する性質がある。そのためステップS4では、充放電指令演算部43は、第1蓄電池1aおよび第2蓄電池1bのうち、ステップS3において高温蓄電池として設定された蓄電池について、第1低劣化領域RL1、第1劣化促進領域RH1、第2低劣化領域RL2、および第2劣化促進領域RH2の各SOC領域のうち、いずれの領域内にあるかの判定を行なう。なお、図5に示すように、第1劣化促進領域RH1および第2劣化促進領域RH2は、SOCに基づく劣化速度の影響が大きく、劣化速度の速い領域であり、一方、第1低劣化領域RL1および第2低劣化領域RL2は、SOCに基づく劣化速度の影響が小さく、劣化速度の遅い領域である。なお、図5に示す各SOC領域は、温度−劣化速度テーブル、およびSOC−劣化速度テーブルと同様に、コントローラ40に予め記憶されている。
【0033】
ステップS5では、充放電指令演算部43により、第1蓄電池1aおよび第2蓄電1bが、充電を行なうための充電スケジュール中であるか、あるいは放電を行なうための放電スケジュール中であるか、の判定が行なわれる。なお、充電スケジュール中か、あるいは放電スケジュール中かの判定は、コントローラ40に記憶された運転スケジュール情報や、日付情報、時間情報に基づいて行なわれる。
【0034】
次いで、ステップS6では、充放電指令演算部43により、第1温度センサ2aにより検出された第1蓄電池1aの温度Ta、および第2温度センサ2bにより検出された第2蓄電池1bの温度Tbに基づき、図3(A)に示す、温度と劣化速度との関係を示す温度−劣化速度テーブルを用いて、第1蓄電池1aの温度に基づく劣化速度DTa、および第2蓄電池1bの温度に基づく劣化速度DTbの算出が行なわれる。そして、充放電指令演算部43は、第1蓄電池1aの温度に基づく劣化速度DTaと、第2蓄電池1bの温度に基づく劣化速度DTbとを比較し、これらの差(|DTa−DTb|)が所定値α以上であるか否かの判断を行なう。すなわち、ステップS6では、これらの差(|DTa−DTb|)が大きく、そのため、第1蓄電池1aと第2蓄電池1bとの劣化速度を調整するための処理である劣化速度調整処理を行なう必要があるか否かを、判定する。そして、差(|DTa−DTb|)が所定値α未満である場合には、劣化速度調整処理を行なう必要がないと判断し、ステップS7に進む。一方、差(|DTa−DTb|)が所定値α以上である場合には、劣化速度調整処理を行なう必要があると判断し、ステップS8に進む。
【0035】
ステップS7では、ステップS6において、差(|DTa−DTb|)が所定値α未満であり、劣化速度調整処理は必要ないと判断されたため、第1蓄電池1aおよび第2蓄電池1bについて、均等に充放電を行なうための処理が行なわれる。
【0036】
具体的には、ステップS5において、充電スケジュール中と判定された場合(たとえば、夜間など)には、充放電指令演算部43により、交流負荷30の負荷電力と、交流電源20からの供給電力との差から、第1蓄電池1aおよび第2蓄電1bに供給可能な電力を演算し、第1蓄電池1aおよび第2蓄電1bの許容電力を超えない範囲で、第1蓄電池1aおよび第2蓄電1bを均等に充電するための充電電力が設定される。そして、充放電指令演算部43は、設定した充電電力を、制御信号送出部45に送信し、制御信号送出部45は、充放電指令演算部43により設定された充電電力の情報を含む制御信号を、第1DC/DC制御器5aおよび第2DC/DC制御器5bに送出し、第1蓄電池1aおよび第2蓄電1bについて、均等に充電を行なう。
【0037】
あるいは、ステップS5において、放電スケジュール中と判定された場合(たとえば、昼間など)には、充放電指令演算部43により、交流負荷30の負荷電力から、第1蓄電池1aおよび第2蓄電1bの許容電力を超えない範囲で、第1蓄電池1aおよび第2蓄電1bから均等に放電するための放電電力が設定される。なお、充放電指令演算部43は、交流負荷30の負荷電力に対して、第1蓄電池1aおよび第2蓄電1bの放電電力の和では不足する場合には、交流電源20に電力を補充させるための補充電力を設定する。そして、充放電指令演算部43は、設定した放電電力を、制御信号送出部45に送信し、制御信号送出部45は、充放電指令演算部43により設定された放電電力の情報を含む制御信号を、第1DC/DC制御器5aおよび第2DC/DC制御器5bに送出し、第1蓄電池1aおよび第2蓄電1bを均等に放電させる。また、充放電指令演算部43は、交流電源20に電力を補充させるための補充電力を設定した場合には、放電電力の情報に加えて、補充電力の情報を、制御信号送出部45に送信し、制御信号送出部45は、充放電指令演算部43により設定された補充電力の情報を含む制御信号を、変換機10に送出し、変換機10に補充電力を出力させる。
【0038】
一方、ステップS6において、差(|DTa−DTb|)が所定値α以上であり、劣化速度調整処理が必要であると判断された場合には、ステップS8に進み、以下に説明する劣化速度調整処理が行なわれる。
【0039】
本実施形態の劣化速度調整処理においては、充放電指令演算部43により、図3(A)、図3(B)に示すような、温度と劣化速度との関係を示す温度−劣化速度テーブル、およびSOCと劣化速度との関係を示すSOC−劣化速度テーブルに基づき、各蓄電池1a、1bの温度に基づく劣化速度DTa、DTb、およびSOCに基づく劣化速度DSa、DSbが、下記式(1)を満足するような充放電条件の設定することにより(各SOC領域内に置かれる時間を設定することにより)、第1蓄電池1aおよび第2蓄電1bの劣化速度の調整が行なわれる。
【数1】

【0040】
すなわち、上記ステップS7では、第1蓄電池1aおよび第2蓄電1bの充放電電力を均等に設定していたのに対し、ステップS8においては、上記式(1)を満足するような第1蓄電池1aの充放電電力、および第2蓄電1bの充放電電力が個別に設定される。なお、ステップS8においては、各蓄電池1a、1bの充放電電力が個別に設定される以外は、上述したステップS7と同様にして、各蓄電池1a、1bの充放電電力が設定される。
【0041】
本実施形態においては、具体的には、次の(A)〜(E)のように、各蓄電池1a、1bの充放電電力が設定される。なお、以下においては、ステップS3において、第1蓄電池1aが、高温蓄電池であると判断されているものとして説明する。
【0042】
(A)ステップS5において充電スケジュール中であると判断され、高温蓄電池である第1蓄電池1aのSOCが、図5に示す第1低劣化領域RL1内にある場合
この場合においては、高温蓄電池である第1蓄電池1aのSOCの上昇速度が、第2蓄電池1bのSOCの上昇速度よりも遅くなるように、高温蓄電池である第1蓄電池1aの充電電流が、第2蓄電池1bの充電電流よりも小さくなるように、各蓄電池1a、1bの充電電力が設定される。
【0043】
(B)ステップS5において充電スケジュール中であると判断され、高温蓄電池である第1蓄電池1aのSOCが、図5に示す第1劣化促進領域RH1内にある場合
この場合においては、高温蓄電池である第1蓄電池1aのSOCが早く上昇することで、第1劣化促進領域RH1内に置かれる時間を短くするために、高温蓄電池である第1蓄電池1aの充電電流が、第2蓄電池1bの充電電流よりも大きくなるように、各蓄電池1a、1bの充電電力が設定される。
【0044】
(C)ステップS5において充電スケジュール中であると判断され、高温蓄電池である第1蓄電池1aのSOCが、図5に示す第2劣化促進領域RH2内にある場合
この場合においては、高温蓄電池である第1蓄電池1aのSOCの上昇を低く抑え、これにより、第1蓄電池1aのSOCに基づく劣化速度DSaを低く抑えるために、高温蓄電池である第1蓄電池1aの充電電流が、第2蓄電池1bの充電電流よりも小さくなるように、各蓄電池1a、1bの充電電力が設定される。
【0045】
(D)ステップS5において放電スケジュール中であると判断され、高温蓄電池である第1蓄電池1aのSOCが、図5に示す第2低劣化領域RL2内にある場合
この場合においては、高温蓄電池である第1蓄電池1aのSOCの低下速度が、第2蓄電池1bのSOCの低下速度よりも遅くなるように、高温蓄電池である第1蓄電池1aの放電電流が、第2蓄電池1bの放電電流よりも小さくなるように、各蓄電池1a、1bの放電電力が設定される。
【0046】
(E)ステップS5において放電スケジュール中であると判断され、高温蓄電池である第1蓄電池1aのSOCが、図5に示す第1劣化促進領域RH1内にある場合
この場合においては、高温蓄電池である第1蓄電池1aのSOCが早く低下することで、第1劣化促進領域RH1内に置かれる時間を短くするために、高温蓄電池である第1蓄電池1aの放電電流が、第2蓄電池1bの放電電流よりも大きくなるように、各蓄電池1a、1bの放電電力が設定される。
【0047】
なお、上記(A)〜(E)以外の場合、たとえば、ステップS5において充電スケジュール中であると判断され、高温蓄電池である第1蓄電池1aのSOCが、図5に示す第2低劣化領域RL2内にある場合等においては、第1蓄電池1aの充電電力および第2蓄電池1bの充電電力は、均等に設定される。
【0048】
そして、充放電指令演算部43は、充電スケジュール中である場合には、上記方法にしたがって設定した第1蓄電池1aおよび第2蓄電池1bの充電電力を、制御信号送出部45に送信し、制御信号送出部45は、充放電指令演算部43により設定された第1蓄電池1aおよび第2蓄電池1bの充電電力の情報を含む制御信号を、第1DC/DC制御器5aおよび第2DC/DC制御器5bに送出し、第1蓄電池1aおよび第2蓄電1bの充電が行なわれる。
【0049】
また、充放電指令演算部43は、放電スケジュール中である場合には、上記方法にしたがって設定した第1蓄電池1aおよび第2蓄電池1bの放電電力を、制御信号送出部45に送信し、制御信号送出部45は、充放電指令演算部43により設定された第1蓄電池1aおよび第2蓄電池1bの放電電力の情報を含む制御信号を、第1DC/DC制御器5aおよび第2DC/DC制御器5bに送出し、第1蓄電池1aおよび第2蓄電1bの放電が行なわれる。
【0050】
なお、充放電指令演算部43は、放電スケジュール中である場合において、交流負荷30の負荷電力に対して、第1蓄電池1aおよび第2蓄電1bの放電電力の和では不足する場合には、上記したステップS7と同様に、交流電源20に電力を補充させるための補充電力を設定する。そして、この場合には、放電電力の情報に加えて、補充電力の情報を、制御信号送出部45に送信し、制御信号送出部45は、充放電指令演算部43により設定された補充電力の情報を含む制御信号を、変換機10に送出し、変換機10に補充電力を出力させる。
【0051】
このようにして、第1蓄電池1aおよび第2蓄電池1bの劣化速度を調整するための処理の劣化速度調整処理が行なわれる。
【0052】
そして、本実施形態の劣化速度調整処理においては、図6に示すようにして、第1蓄電池1aおよび第2蓄電1bの充放電電力の制御が行われる。ここで、図6は、本実施形態の劣化速度調整処理を行なった際における、第1蓄電池1aおよび第2蓄電1bのSOCの変化の一例を示すグラフであり、図6においては、充放電指令演算部43により、第1蓄電池1aが、高温蓄電池であると判断された場合における、SOCの変化を示している。なお、図6中において、第1蓄電池1aのSOCの変化を実線で、第2蓄電池1bのSOCの変化を破線で示した。
【0053】
図6に示すように、時間tからtにおいては、充電スケジュール中であり、かつ、高温蓄電池である第1蓄電池1aのSOCが、第1低劣化領域RL1内にあるため、高温蓄電池である第1蓄電池1aの充電電流が、第2蓄電池1bの充電電流よりも小さくなるように、各蓄電池1a、1bの充電電力が設定される。これにより、第1蓄電池1aのSOCの上昇速度が、第2蓄電池1bのSOCの上昇速度よりも遅くなり、第2蓄電池1bのSOCが、時間tよりも前に、第1劣化促進領域RH1に到達した後、第1蓄電池1aのSOCが、時間tにおいて、第1劣化促進領域RH1に到達する。
【0054】
次いで、時間tからtにおいては、充電スケジュール中であり、かつ、高温蓄電池である第1蓄電池1aのSOCが、第1劣化促進領域RH1内にあるため、高温蓄電池である第1蓄電池1aの充電電流が、第2蓄電池1bの充電電流よりも大きくなるように、各蓄電池1a、1bの充電電力が設定される。これにより、第1蓄電池1aのSOCの上昇速度が、第2蓄電池1bのSOCの上昇速度よりも速くなり、第1蓄電池1aのSOCおよび第2蓄電池1bのSOCが、時間tにおいて、第2低劣化領域RL2に到達する。
【0055】
次いで、時間tからtにおいて、第1蓄電池1aおよび第2蓄電池1bについて、均等に充電が行なわれる。そして、その後、時間tにおいて、第1蓄電池1aのSOCおよび第2蓄電池1bのSOCが、第2劣化促進領域RH2に到達すると、時間tからtにおいては、充電スケジュール中であり、かつ、高温蓄電池である第1蓄電池1aのSOCが、第2劣化促進領域RH2内にあるため、高温蓄電池である第1蓄電池1aの充電電流が、第2蓄電池1bの充電電流よりも小さくなるように、各蓄電池1a、1bの充電電力が設定される。これにより、第1蓄電池1aのSOCの上昇速度が、第2蓄電池1bのSOCの上昇速度よりも遅くなる。
【0056】
なお、図6に示すように、時間tからtにおいて、高温蓄電池である第1蓄電池1aのSOCが、第1低劣化領域RL1内にある場合に、高温蓄電池である第1蓄電池1aの充電電流を小さく設定しておくことにより、時間tにおいて、第1蓄電池1aのSOCと、第2蓄電池1bのSOCとを揃えることが可能となる。そして、第1蓄電池1aのSOCと、第2蓄電池1bのSOCとを揃えることにより、第1蓄電池1aおよび第2蓄電池1bの両方について、ほぼ同時に満充電状態とすることができるため、充電に要する時間を短くすることができる。
【0057】
一方、時間t以降は、放電スケジュール中となり、時間tからtにおいては、第1蓄電池1aおよび第2蓄電池1bについて、均等に充電が行なわれる。そして、その後、時間tにおいて、第1蓄電池1aのSOCが、第2低劣化領域RL2に到達すると、時間tからtにおいては、放電スケジュール中であり、かつ、高温蓄電池である第1蓄電池1aのSOCが、第2低劣化領域RL2内にあるため、高温蓄電池である第1蓄電池1aの放電電流が、第2蓄電池1bの放電電流よりも小さくなるように、各蓄電池1a、1bの放電電力が設定される。これにより、第1蓄電池1aのSOCの低下速度が、第2蓄電池1bのSOCの低下速度よりも遅くなり、第2蓄電池1bのSOCが、時間tよりも前に、第1劣化促進領域RH1に到達した後、第1蓄電池1aのSOCが、時間tにおいて、第1劣化促進領域RH1に到達する。
【0058】
次いで、時間tからtにおいては、放電スケジュール中であり、かつ、高温蓄電池である第1蓄電池1aのSOCが、第1劣化促進領域RH1内にあるため、高温蓄電池である第1蓄電池1aの放電電流が、第2蓄電池1bの放電電流よりも大きくなるように、各蓄電池1a、1bの放電電力が設定される。これにより、第1蓄電池1aのSOCの低下速度が、第2蓄電池1bのSOCの低下速度よりも速くなり、第1蓄電池1aのSOCおよび第2蓄電池1bのSOCが、時間tにおいて、第1低劣化領域RL1に到達する。
【0059】
そして、時間tからtにおいては、第1蓄電池1aおよび第2蓄電池1bについて、均等に充電が行なわれる。
【0060】
なお、図6に示すように、時間tからtにおいて、高温蓄電池である第1蓄電池1aのSOCが、第2低劣化領域RL2内にある場合に、高温蓄電池である第1蓄電池1aの放電電流を小さく設定しておくことにより、時間tにおいて、第1蓄電池1aのSOCと、第2蓄電池1bのSOCとを揃えることが可能となる。そして、第1蓄電池1aのSOCと、第2蓄電池1bのSOCとを揃えることにより、時間tからtにおいて、第1蓄電池1aおよび第2蓄電池1bについて、均等に放電した場合でも、一方の蓄電池のみが放電下限電圧に達してしまい、これにより、蓄電池システムの効率が低下してしまうことを有効に防止することができる。
【0061】
本実施形態においては、第1蓄電池1aおよび第2蓄電池1bのうち、温度の高い蓄電池である高温蓄電池のSOCが、第1劣化促進領域RH1内にある場合に、高温蓄電池のSOCが、第1劣化促進領域RH1内となる時間が短くなるように、第1蓄電池1aおよび第2蓄電池1bの充放電電流を制御するものである。具体的には、充電スケジュール中の場合には、高温蓄電池の充電電流を、高温蓄電池以外の蓄電池の充電電流よりも大きく設定し、また、放電スケジュール中の場合には、高温蓄電池の放電電流を、高温蓄電池以外の蓄電池の放電電流よりも大きく設定する。すなわち、本実施形態においては、各蓄電間のSOCを異ならせることにより、SOCに基づく劣化速度に差異を設け、これにより、温度の差による劣化速度の差異を、SOCによる劣化速度の差異で相殺し、これにより、高温蓄電池の劣化の進行度合いと、高温蓄電池以外の蓄電池の劣化の進行度合いとを揃えることができるものである。そして、その結果として、本実施形態によれば、各蓄電池間の劣化バラツキを抑制することができ、これにより、蓄電池システムの寿命を向上させることができる。
【0062】
なお、上述した実施形態において、温度センサ2a,2bは本発明の温度検出手段に、コントローラ40の第1SOC演算部41aおよび第2SOC演算部41bは本発明のSOC演算手段に、コントローラ40の充放電指令演算部43は本発明の高温蓄電池検出手段および制御手段に、それぞれ相当する。
【0063】
以上、本発明の実施形態について説明したが、これらの実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
【0064】
なお、上述した劣化速度調整処理において、たとえば、第1蓄電池1aが高温蓄電池であり、充電スケジュール中、かつ、高温蓄電池である第1蓄電池1aのSOCが、図5に示す第1劣化促進領域RH1内にある場合において、高温蓄電池以外の蓄電池である第2蓄電池1bを放電させることにより、高温蓄電池である第1蓄電池1aの充電電流を増加させるような構成としてもよい。この場合においては、充電スケジュール中に、交流電源20から供給される供給電力が不足した場合でも、第2蓄電池1bから、高温蓄電池である第1蓄電池1aに、エネルギーを移すことで、高温蓄電池のSOCを上昇させることができ、これにより、高温蓄電池である第1蓄電池1aのSOCが、第1劣化促進領域RH1内となる時間を短くすることができる。
【0065】
また、同様に、上述した劣化速度調整処理において、たとえば、第1蓄電池1aが高温蓄電池であり、放電スケジュール中、かつ、高温蓄電池である第1蓄電池1aのSOCが、図5に示す第1劣化促進領域RH1内にある場合において、高温蓄電池以外の蓄電池である第2蓄電池1bを充電させることにより、高温蓄電池である第1蓄電池1aの放電電流を増加させるような構成としてもよい。この場合においては、放電スケジュール中に、交流負荷30への電力供給が不要となった場合でも、高温蓄電池である第1蓄電池1aから、第2蓄電池1bに、エネルギーを移すことで、高温蓄電池である第1蓄電池1aのSOCを低下させることができ、これにより、高温蓄電池である第1蓄電池1aのSOCが、第1劣化促進領域RH1内となる時間を短くすることができる。
【0066】
また、上述した実施形態においては、蓄電池が2個並列に接続されてなる蓄電池システムに、本発明を適用した例を示したが、蓄電池が3個以上並列に接続されてなる蓄電池システムに、本発明を適用することももちろん可能である。
【符号の説明】
【0067】
1a…第1蓄電池
1b…第2蓄電池
5a…第1DC/DC制御器
5b…第2DC/DC制御器
10…変換機
20…交流電源
30…交流負荷
40…コントローラ
41a…第1SOC演算部
41b…第2SOC演算部
42a…第1電池温度検出部
42b…第2電池温度検出部
43…充放電指令演算部
44…入出力電力検出部
45…制御信号送出部

【特許請求の範囲】
【請求項1】
蓄電池を複数並列接続してなる蓄電池システムを制御する電池制御装置であって、
前記並列接続された各蓄電池の温度を検出する温度検出手段と、
前記並列接続された各蓄電池のSOCを算出するSOC演算手段と、
前記温度検出手段により検出された各蓄電池の温度に基づいて、他の蓄電池よりも温度の高い蓄電池を特定し、特定した蓄電池を高温蓄電池として検出する高温蓄電池検出手段と、
蓄電池の劣化速度を促進する特定のSOC範囲を、特定SOC範囲とした場合に、前記高温蓄電池のSOCが、該特定SOC範囲内となる時間が、前記高温蓄電池以外の他の蓄電池と比較して短くなるように、前記並列接続された各蓄電池の充放電電流を制御する制御手段と、を備えることを特徴とする電池制御装置。
【請求項2】
請求項1に記載の電池制御装置において、
前記制御手段は、前記並列接続された各蓄電池が放電状態にあり、かつ、前記高温蓄電池のSOCが、前記特定SOC範囲内にある場合に、前記高温蓄電池の放電電流を、前記高温蓄電池以外の他の蓄電池の放電電流よりも大きくすることを特徴とする電池制御装置。
【請求項3】
請求項2に記載の電池制御装置において、
前記制御手段は、前記並列接続された各蓄電池が放電状態にあり、かつ、前記高温蓄電池のSOCが、前記特定SOC範囲内にある場合に、前記高温蓄電池以外の他の蓄電池を充電することにより、前記高温蓄電池の放電電流を増加させることを特徴とする電池制御装置。
【請求項4】
請求項2または3に記載の電池制御装置において、
前記制御手段は、前記並列接続された各蓄電池が放電状態にあり、前記高温蓄電池のSOCが、前記特定SOC範囲よりも高いSOCである場合に、前記高温蓄電池のSOCの低下速度が、前記高温蓄電池以外の他の蓄電池のSOCの低下速度よりも遅くなるように、前記並列接続された各蓄電池の充放電電流を制御することを特徴とする電池制御装置。
【請求項5】
請求項1に記載の電池制御装置において、
前記制御手段は、前記並列接続された各蓄電池が充電状態にあり、かつ、前記高温蓄電池のSOCが、前記特定SOC範囲内にある場合に、前記高温蓄電池の充電電流を、前記高温蓄電池以外の他の蓄電池の充電電流よりも大きくすることを特徴とする電池制御装置。
【請求項6】
請求項5に記載の電池制御装置において、
前記制御手段は、前記並列接続された各蓄電池が充電状態にあり、かつ、前記高温蓄電池のSOCが、前記特定SOC範囲内にある場合に、前記高温蓄電池以外の他の蓄電池を放電することにより、前記高温蓄電池の充電電流を増加させることを特徴とする電池制御装置。
【請求項7】
請求項5または6に記載の電池制御装置において、
前記制御手段は、前記並列接続された各蓄電池が充電状態にあり、前記高温蓄電池のSOCが、前記特定SOC範囲よりも低いSOCである場合に、前記高温蓄電池のSOCの上昇速度が、前記高温蓄電池以外の他の蓄電池のSOCの上昇速度よりも遅くなるように、前記並列接続された各蓄電池の充放電電流を制御することを特徴とする電池制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−65449(P2012−65449A)
【公開日】平成24年3月29日(2012.3.29)
【国際特許分類】
【出願番号】特願2010−207550(P2010−207550)
【出願日】平成22年9月16日(2010.9.16)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】