説明

電波伝搬路推定装置及び電波伝搬路推定方法

【課題】 地物データの複雑さを増す事無く、建物面の複雑さや道路上の障害物を考慮して現実に即した高速な伝播路推定を行い、受信信号データを演算すること。
【解決手段】 境界検出部104は、レイ放射部103によって放射されたレイの直線上に存在するポリゴン(障害物)及び受信機を探索する。一様乱数発生部105は、一様乱数を発生する。乱数分布選択部106は、障害物の属性情報から乱数分布を選択する。乱数分布ウエイト部107は、乱数分布選択部106にて選択された乱数分布に従って一様乱数に重み付けを行う。境界減衰演算部108は、障害物面の傾き、障害物の属性に基づいて、レイと障害物面との空間上の成す角を求め、反射、透過、回折による減衰量の演算及びレイのベクトル方位の変化量の演算を行う。その際、境界減衰演算部108は、演算を行うか否か等を乱数分布ウエイト部107から出力された乱数によって決定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電波の発信源とその受信装置との間の伝播経路を、地物データを用いて推定するレイトレース法を用いた電波伝搬路推定装置及び電波伝搬路推定方法に関する。
【背景技術】
【0002】
現在、送受信間距離の関数である統計式を利用した伝搬予測が一般に利用されている。統計式は市街地、郊外などのケースを細分化することで高い精度を出している。奥村−秦カーブがこれに相当する。
【0003】
これの発展形として準経験式とよばれるものがある。これは統計的な変動に送受信局の位置関係、周辺建物高などのより具体的なパラメータを考慮した推定をおこなうことで、より地域特性にあった推定をおこなうもので、坂上式や池上式がこの方式に分類されている。
【0004】
しかしながら、これらの推定式で得られるものは受信電界強度のみで遅延プロファイル推定(パス推定)、電波到来角度推定はできない。これら、受信電界強度、遅延プロファイルなどの推定パラメータと到来角度(Angle Of Arrival)、送信角度(Angle Of Departure)の推定を建造物や地表などの地物データをもとに同時に推定してしまう方法がレイトレース法である。
【0005】
ある送信機から送信された電波をある受信機で受信した場合、電波はいくつもの経路を通り、ある波は直接、ある波は障害物で反射、透過、回折を経て受信機に到達する。このひとつの経路(パス)を伝搬チャネルと呼ぶ。この伝搬チャネルが複数存在した時、電波はその位相成分によって、お互いに打消しあったり足しあわさったりする。また、到達した電波の経路長により光速と波長から遅延時間と位相を計算することができる。
【0006】
この経路を探索するために送信機からΔθで光線(レイ)を離散的に放射し、障害物で反射・透過・回折を繰り返しながら受信機をトレースする方法をラウンチング法(launching-method)と呼ぶ(図13)。ラウンチング法において、反射点、透過点、回折点では電波は減衰と偏波状態の変化を繰り返していく。
【0007】
レイトレース法のもう一つの方法として全ての障害物に対して送信機の虚像を作って経路を探索する方法をイメージ法(Imaging-method)と呼ぶ。この方法は、厳密な探索ができる反面、障害物が増えると指数関数的に探索する経路の組み合わせが増えてしまうため、室内など比較的狭いエリアを評価するモデルとして使われる。
【0008】
レイトレース法は、演算量が膨大であるが、近年のコンピュータパワーの進化と経路探索方法の工夫で実用化されている。特許文献1では、推定精度を犠牲にすること無く高速に経路推定を行い、電界強度を演算する方法が開示されている。市街地で基地局アンテナ高が周辺建物より低い場合、電波の主たる経路は道路に沿うことがわかっている。特許文献1では、あらかじめ推定した道路上の経路に沿う形で存在する建物データを障害物として限定し、対象障害物数を減少させる方法について開示している。
【0009】
一方、レイトレース法による絶対推定経路にレイリー分布則を用いた統計的処理により受信信号データを加工する方法が開示されている(例えば、特許文献2を参照)。多経路合成波はそれぞれの位相成分によって、その受信レベルが局所的に大きく変動(フェージング)する。レイトレース法によってこの変動を推定する場合、一般に搬送波周波数の半波長程度のポイントごとに経路探索をする必要がある。この場合、例えば5GHzで3cmとなり、広範囲なエリアで推定しようとすると現実的な時間で演算を終えることは不可能となる。フェージングによる受信レベル変動はレイリー分布することが知られており、特許文献2では、受信ポイントを増やすこと無く、フェージングによる変動を表現する方法について開示している。
【特許文献1】特開平9−33584号公報
【特許文献2】特開2001−28570号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
しかしながら、レイトレース法を用いた電波伝搬路推定ではその推定精度は使用する地物データの精度に依存し、これにより推定精度および推定時間は拘束される。
【0011】
特許文献1のように、あらかじめ伝播路を限定して演算に使用する障害物数を限定する等の処理を行っても、自動車、歩行者、街路樹等の道路上の障害物を考慮した高精度な推定を行おうとすると演算時間が増大する。
【0012】
また、特許文献2のように、統計・経験的な処理による受信信号データを加工する演算量削減方法では、その削減量次第でレイトレース法の特長である地物による決定論的な推定結果が崩れ統計処理的で都市特性に依存しない一様な分布になってしまう可能性があり、やはり道路上の障害物を考慮した高精度な推定を行うことができない。
【0013】
本発明はかかる点に鑑みてなされたものであり、地物データの複雑さを増す事無く、建物面の複雑さや道路上の障害物を考慮して現実に即した高速な伝播路推定を行い、受信信号データを演算することができる電波伝搬路推定装置及び電波伝搬路推定方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
かかる課題を解決するため、本発明の電波伝搬路推定装置は、放射されたレイの直線上に存在する障害物及び受信機を探索する境界検出手段と、前記レイの直線上に前記障害物が存在する場合、障害物面の傾き、障害物の属性に基づいて前記レイと前記障害物面との空間上の成す角を求め、反射、透過、回折による減衰量の演算及びレイのベクトル方位の変化量の演算を行う境界減衰演算手段と、乱数を発生させる乱数生成手段と、を具備し、前記境界減衰演算手段は、前記演算を行うか否かを前記乱数生成手段にて発生した乱数によって決定する構成を採る。
【0015】
本発明の電波伝搬路推定方法は、放射されたレイの直線上に存在する障害物及び受信機を探索する境界検出工程と、前記レイの直線上に前記障害物が存在する場合、障害物面の傾き、障害物の属性に基づいて前記レイと前記障害物面との空間上の成す角を求め、反射、透過、回折による減衰量の演算及びレイのベクトル方位の変化量の演算を行う境界減衰演算工程と、乱数を発生させる乱数生成工程と、を具備し、前記境界減衰演算工程は、前記演算を行うか否かを前記乱数生成工程にて発生した乱数によって決定する方法を採る。
【発明の効果】
【0016】
本発明によれば、建物表面の構造的な凹凸や、路上の自動車による反射経路の変化、歩行者や街路樹による遮蔽等を、地物データを複雑化すること無しに、つまり演算時間を増大させること無く表現することができる。結果として各受信結果データを総括した受信レベルが送信源から見通し外に近い場所ではレイリー分布となり、送信源から見通しに近い場所ではKファクターの異なるライス分布となる。
【発明を実施するための最良の形態】
【0017】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0018】
(実施の形態1)
図1は、本発明の実施の形態1に係る電波伝搬路推定装置の構成を示すブロック図である。図1に示す電波伝搬路推定装置は、送受信機データ記憶部101と、地物データ記憶部102と、レイ放射部103と、境界検出部104、一様乱数発生部105と、乱数分布選択部106と、乱数分布ウエイト部107と、境界減衰演算部108、追跡停止判定部109と、受信伝搬路保存部110と、受信結果演算部111と、受信結果表示部112と、受信結果記憶部113と、から主に構成される。
【0019】
送受信機データ記憶部101は、送信機と受信機の位置、送信出力、アンテナ利得、アンテナパターン、ケーブルロス、搬送波周波数、放射離散角度等のパラメータからなる送信機及び受信機のデータを記憶する。送信機のデータはレイ放射部103に出力され、受信機のデータは境界検出部104に出力される。
【0020】
地物データ記憶部102は、地表面情報、建物情報等の地物データを記憶する。地物データ記憶部102は、地物データを、3次元(X,Y,Z)の直交座標系上に面を形成するポリゴンに変換し、そのポリゴンを道路、畑、山林、コンクリート住宅、木造住宅、オフィスビル、商業ビルなどの属性情報と共に保存する。属性情報には当該カテゴリーごとに伝播特性(導電率、誘電率、透磁率)が割り付けられている。
【0021】
ポリゴン及び属性情報は、境界検出部104及び乱数分布選択部106に出力される。また、属性毎に反射、透過、回折を行うか否かを示すオプションスイッチが設定される場合があり、当該スイッチの情報は、境界減衰演算部108に出力される。
【0022】
レイ放射部103は、追跡停止判定部109からの指示に基づいて送受信機データ記憶部101に記憶された送信機の位置からレイを離散的に1本ずつ放射する。なお、レイは線ベクトルであり、ポリゴンと同様に3次元(X,Y,Z)上に存在する。また、レイは、減衰量、位相、遅延時間、送信機識別子、伝搬経路、レイ送信角度、レイ受信角度等のパラメータを持つ。放射されたレイのパラメータ情報は境界検出部104に出力される。
【0023】
境界検出部104は、レイ放射部103によって放射されたレイの直線上に存在するポリゴン及び受信機を探索する。この境界検出部104での探索結果は以下の3つのケースのいずれかとなる。第1のケースはレイの直線上に何も存在しない場合である。第2のケースはレイの直線上に受信機が存在する場合である。第3のケースはレイの直線上にポリゴンが存在する場合である。レイの直線上に存在するポリゴンが障害物となる。
【0024】
境界検出部104は、探索結果が第1のケースの場合、「追跡終了」の状態を示すフラグ情報のみを追跡停止判定部109に出力する。また、境界検出部104は、探索結果が第2のケースの場合、「追跡終了」の状態を示すフラグ情報とともにレイのパラメータ情報を追跡停止判定部109に出力する。また、境界検出部104は、探索結果が第3のケースの場合、レイのパラメータ情報、障害物及びその属性情報を境界減衰演算部108に出力する。
【0025】
一様乱数発生部105は、同一条件に伝搬路推定が毎回同じ結果になるように設定された乱数初期値から一様乱数を発生する。乱数分布選択部106は、道路、山林、壁面等、その障害物の属性情報から乱数分布を選択する。乱数分布ウエイト部107は、乱数分布選択部106にて選択された乱数分布に従って一様乱数に重み付けを行う。
【0026】
境界減衰演算部108は、障害物面の傾き、障害物の属性に基づいて、レイと障害物面との空間上の成す角を求め、反射、透過、回折による減衰量の演算及びレイのベクトル方位の変化量の演算を行う。その際、境界減衰演算部108は、演算を行うか否か等を乱数分布ウエイト部107から出力された乱数によって決定する。なお、境界減衰演算部108における乱数を用いた演算方法の詳細は後述する。
【0027】
減衰され、経路変化したレイのパラメータ情報は、「追跡中」の状態を示すフラグ情報とともに追跡停止判定部109に出力される。なお、障害物面が複数の障害物面から形成されたエッジである場合、回折による減衰量算出及びレイのベクトル方位変化、レイの新たな生成が行われる。新たに生成されたレイは、新規のレイとしてレイ放射部103及び追跡停止判定部109に新規に登録される。
【0028】
追跡停止判定部109は、レイの放射を指示する情報をレイ放射部103に出力し、境界検出部104あるいは境界減衰演算部108から入力したレイについて追跡を停止するか否かの判定を行う。具体的には、追跡停止判定部109は、レイのフラグ情報が「追跡中」である場合(第3のケースの場合)、当該レイについて追跡条件を満たすか否かの判定を行う。追跡条件として、レイの電力レベルが閾値未満であること、反射、透過あるいは回折の回数が閾値以内であること等が挙げられる。追跡停止判定部109は、追跡条件を満たす場合にはレイのパラメータ情報を境界検出部104に出力し、追跡条件を満たさない場合にはレイのフラグを「追跡終了」の状態にする。追跡対象のレイのフラグ情報が「追跡終了」である場合(第1のケース、第2のケース、第3のケースにおいて追跡条件を満たさない場合)、追跡停止判定部109は、次のレイの放射を指示する情報をレイ放射部103に出力する。また、追跡停止判定部109は、第2のケースの場合、レイのパラメータ情報を受信伝搬路保存部110に出力する。そして、追跡停止判定部109は、レイの総数を予め記憶し、フラグ情報が「追跡終了」となったレイが総数に達した場合、全てのレイの追跡が終了したことを示す情報を受信伝搬路保存部110に出力する。
【0029】
受信伝搬路保存部110は、レイのパラメータ情報を受信機と関連付けられて保存し、全てのレイの追跡が終了した時点で、保存しているデータを受信結果演算部111に出力する。
【0030】
受信結果演算部111は、図2に示すように、受信伝搬路保存部110に保存された全てのレイの瞬時受信電力を受信機ごとに結合し、受信電力、遅延スプレッド、角度スプレッド等の受信結果を演算する。
【0031】
受信結果表示部112は、受信結果演算部111にて演算された受信結果を表示する。受信結果記憶部113は、受信結果演算部111にて演算された受信結果を保存する。
【0032】
次に、境界減衰演算部108における乱数を用いた演算方法の詳細について説明する。
【0033】
道路上に存在する歩行者、街路樹等によって電波は減衰する。また、街路樹、歩行者等の障害物に衝突するレイは、地表面とレイとの成す角度θが小さい場合に限られる。例えば、図3の場合、地表面との成す角度θが大きいレイE3(φ)は地表面で反射して受信機に届くが、地表面との成す角度θが小さいレイE2(φ)は地表面で反射する際に樹木や歩行者等に衝突するために減衰量が大きく受信機に届かない。
【0034】
従って、ある成す角度を閾値として、それ以下のレイに対して追加減衰を加算したり破棄したりすることによってそれらの障害物を考慮することができる。また、ある閾値を境界に一律の減衰を掛けるのでは無く、以下の式(1)の様な地表面とレイの成す角度に依存した減衰を追加することにより、歩行者・樹木等の障害物を表現することもできる。
Lcomp = 1 - exp{min(-θin + θreg, 0) / K} ・・・(1)
【0035】
なお、式(1)において、Lcompは減衰量、θinは地表面とレイの成す角度、θregは規制角度(閾値)、Kは傾き補正値を示す。
【0036】
ここで、歩行者や街路樹の存在はランダムであるため、境界減衰演算部108は、これらの閾値または式(1)の適応の有無を、乱数分布ウエイト部107からの乱数によって決定する。
【0037】
閾値や使用する乱数の分布は乱数分布選択部106にて選ばれる。なお、分布状態はガウス分布、レイリー分布、ポアソン分布など、実験的統計的な値を用いる。
【0038】
また、歩行者や街路樹は道路(通路)上にのみ存在するため、乱数分布選択部106において、地表面の属性によって境界減衰演算部108における演算の有無を決定したり統計分布の種類、係数を切り替えたりすることができる。
【0039】
このように、反射、透過、回折の演算を行うか否か、入射角度に応じて減衰量を変化させるか否かを乱数によって制御することにより、ランダムに存在する歩行者、街路樹等の障害物を地物データとして作成しなくても、実態に即したシミュレーション結果を得ることができる。
【0040】
なお、境界減衰演算部108に出力される乱数は、一様乱数発生部105によって生成された一様乱数に乱数分布ウエイト部107にて重み付けられた有限な値であり、ある一定周期で繰り返されてしまうため、乱数初期値にて乱数の開始場所をずらすことで、重複を減少させることができる。なお、ここで一様乱数の発生方法として、PN系列による乱数発生方法が挙げられる。
【0041】
また、建物の壁面には窓が存在し、図4に示すように通常の壁面部分と窓部分とでは反射率、透過率等が異なるのに対し、通常3Dの地物データを作成する場合、建物の壁面は壁のみで、窓のひとつひとつを作成することは無い。
【0042】
これに対し、本実施の形態では、壁面属性の場合、その透過の有無(壁面の種類)を任意の分布に沿った乱数で切り替えることができる。
【0043】
これにより、建物の壁面データに窓を作成しなくても、実態に即したシミュレーション結果を得ることができる。また、乱数分布選択部106は、窓の有無の切り替えだけで無く、伝搬パラメータ(導電率、誘電率、透磁率)を切り替えることもできる。
【0044】
このように、本実施の形態によれば、障害物の有無、障害物の属性等を乱数制御することにより、地物データの複雑さを増す事無く、建物面の複雑さや道路上の障害物を考慮して現実に即した高速な伝播路推定を行い、受信信号データを演算することができる。
【0045】
(実施の形態2)
本発明の実施の形態2では、反射の方向を決定するために乱数を使用する。図5は、本実施の形態に係る電波伝搬路推定装置の構成を示す図である。なお、図5の電波伝搬路推定装置において、図1と共通する構成部分については、図1と同一符号を付して説明を省略する。
【0046】
図5の電波伝搬路推定装置は、図1に対して、境界減衰演算部108の代わりに、レイ再放射部201、減衰量演算部202、アクティブ識別子変更部203及び周期トリガ発生部204を追加した構成を採る。
【0047】
境界検出部104は、第3のケースの場合に、レイのパラメータ情報、障害物及びその属性情報をレイ再放射部201に出力する。
【0048】
レイ再放射部201は、乱数分布ウエイト部107にて発生した乱数に従い、障害物に当たったレイの進行方位並びに散乱分割数、分割後レイの方位を決定する。
【0049】
減衰量演算部202は、レイ再放射部201にて方位が決定されたレイに対して入射角度と最終方位角度の絶対値差分量に応じた減衰を行う。減衰量演算部202にて減衰されたレイは、新規のレイとして追跡停止判定部109に新規に登録される。
【0050】
ここで、レイ再放射部201にてランダムに方位が決められ、減衰量演算部202にて減衰させる物理的な意味として、例えば以下の2つの例があげられる。1つ目の例として、図6に示すように、道路上には自動車、看板等の反射物により、ある受信機ではあるレイが遮蔽され、ある受信機ではそのレイが受信される。図6ではE2(φ)のレイがこれに相当する。また、2つ目の例として、図7に示すように、建物の表面は鏡面状では無く、建物の出入口、張り出し屋根などが存在し、その部分で乱反射する。
【0051】
レイ再放射部201で放出される乱反射の方向は一度にひとつとは限らない。ひとつの反射点で複数の方位に反射する場合について図8を用いて説明する。図8では反射体としてトラックが描かれている。しかしながら、トラックの形状は単純な直方体ではなく、複雑な形状を取っている。当然ながら、トラックは時間と共に移動する。このことは、反射の方向は一意ではないことを意味する。図8の場合、単純化のため元となるレイは(O1)ひとつであり、トラックにより再放射されるレイは3通り(R1〜R3)である。
【0052】
この場合、再放射されたレイは同時に複数存在することができない。このため、レイ再放射部201にて再放射されたレイにはレイ再放射部201にて大元となるレイの識別番号と乱数により決定された唯一のアクティブ識別子が付与され受信伝搬路保存部110で管理される。受信結果演算部111ではアクティブ識別子が正であるレイのみを演算の対象とする。
【0053】
この大元となるレイの識別番号を持つことで識別される再放射されたレイは、アクティブ識別子変更部203にてアクティブ識別子が正であるレイを乱数に則って変化させることで、レイの探索が終了した後に違う結果を得ることができる。
【0054】
これは、時間のかかる冗長な処理であるレイの探索処理を行う事無く、瞬時に自動車等による移動反射体による伝搬路の変化を表すことができることを意味する。
【0055】
つまり、周期トリガ発生部204により発生したトリガごとにアクティブ識別子変更部203にて再放射されたレイを乱数に則って変化させることにより、受信機が静止している状態でも自動車、歩行者等の周辺環境の動きによる動的な伝搬状態の推定値を取得することができる。
【0056】
アクティブ識別子変更部203では、ひとつの大元のレイから派生したレイに対して、ひとつのレイを選択するだけでなく、レイごとに重み付けを行うことにより、拡散反射と呼ばれる現象を表すことができる。拡散反射とは、図9に示すように反射面のざらつきにより反射したレイが正規反射波を中心に拡散する状態を言う。減衰量は入射した角度と反射した方向に乗じた重み付けが全反射波合計で元のレイのポテンシャルを越えることはないように行われる。
【0057】
このように、本実施の形態によれば、境界における電波の反射方向をその境界に存在する障害物が属する属性に沿った乱数分布から理論値にばらつきを加えることができ、乱反射または拡散反射したレイを全て保存して動的な受信結果データ作成に使うことができる。
【0058】
(実施の形態3)
図10は、本発明の実施の形態3による発明の構成を示す図である。なお、図10の電波伝搬路推定装置において、図5と共通する構成部分については、図5と同一符号を付して説明を省略する。
【0059】
図10の電波伝搬路推定装置は、図5に対して、受信移動経路記憶部301及び受信移動経路選択部302を追加した構成を採る。
【0060】
実施の形態3では、任意の位置における伝搬状態を任意のグリッド間隔で上記実施の形態1あるいは実施の形態2によりあらかじめ演算し、受信伝搬路保存部110に保存しておく。グリッドのサイズは例えば、送受信にデータのひとつのパラメータとして設定する。
【0061】
受信移動経路記憶部301は、グリッドの位置を記憶し、入力した受信機の移動経路に対応するグリットの番号を示す情報を受信移動経路選択部302に出力する。
【0062】
周期トリガ発生部204は、受信機の移動速度とグリッド間隔から計算できる受信結果データの更新間隔に相当するトリガを発生させる。
【0063】
受信移動経路選択部302は、図11に示すように、トリガごとに当該グリッドの受信結果データに更新していく。
【0064】
ここで、歩行者、自動車等の携帯電話通話者の移動経路は一意とは限らない。そこで、受信移動経路選択部302に乱数分布ウエイト部107からの乱数に乗じたゆらぎを与えることにより、移動によるゆらぎを与えることができる。また、シミュレーション範囲内で一様に発生したグリッドの位置を連続的に変化させることにより、移動経路入力による絶対的な移動経路を持たせずに、当該地域特性における統計的な移動特性を取得することができる。
【0065】
なお、実施の形態1、2にて作り出される伝搬データの変動は受信機が静止している状態でも発生する外部環境による変動であり、本実施の形態3にて作り出される伝搬データの変動は受信機が移動していくことにより発生する変動である。
【0066】
(他の実施の形態)
なお、上記実施の形態の説明ではレイ放射部103より離散的に発生したレイが障害物探索するレイラウンチング法に基づき説明してきたが、本発明は、全ての障害物の組合せを探索するイメージング法についても適用することができる。
【0067】
この場合、図12に示すように、図1に対してレイ放射部103の代わりに、全組合せ抽出部401及び虚像発生部402を追加する構成となる。
【0068】
全組合せ抽出部401は、送信機、受信機、障害物、回折エッジの全ての組合せを抽出して記憶する。
【0069】
虚像発生部402は、全組合せ抽出部401にて抽出された組合せごとに送信点の虚像を発生していく。
【0070】
境界検出部104は、反射点または回折点を検出する。
【産業上の利用可能性】
【0071】
本発明は、都市に依存した空間再現能力により無線システムの空間配置設計に用いるに好適である。また、本発明は、地域特性の再現、自車の任意の走行速度、周辺環境の動きによる動的な伝播環境の再現が可能であり、複数のアンテナ素子を使用する装置を用いて環境に適応させる無線通信方式の開発に用いるに好適である。
【図面の簡単な説明】
【0072】
【図1】本発明の実施の形態1に係る電波伝搬路推定装置の構成を示すブロック図
【図2】受信点に到達するレイとその結合について説明する図
【図3】路上に存在する障害物による減衰影響について説明する図
【図4】壁面の属性の違いによる減衰影響について説明する図
【図5】本発明の実施の形態2に係る電波伝搬路推定装置の構成を示すブロック図
【図6】路上に存在する障害物による乱反射について説明する図
【図7】障害物表面の構造に起因する乱反射について説明する図
【図8】路上に存在する障害物による動的な乱反射について説明する図
【図9】拡散反射について説明する図
【図10】本発明の実施の形態3に係る電波伝搬路推定装置の構成を示すブロック図
【図11】受信機の移動による変動原理について説明する図
【図12】本発明の他の実施の形態における電波伝搬路推定装置の構成を示す図
【図13】レイラウンチング法について説明する図
【符号の説明】
【0073】
101 送受信機データ記憶部
102 地物データ記憶部
103 レイ放射部
104 境界検出部
105 一様乱数発生部
106 乱数分布選択部
107 乱数分布ウエイト部
108 境界減衰演算部
109 追跡停止判定部
110 受信伝搬路保存部
111 受信結果演算部
112 受信結果表示部
113 受信結果記憶部
201 レイ再放射部
202 減衰量演算部
203 アクティブ識別子変更部
204 周期トリガ発生部
301 受信移動経路記憶部
302 受信移動経路選択部



【特許請求の範囲】
【請求項1】
放射されたレイの直線上に存在する障害物及び受信機を探索する境界検出手段と、
前記レイの直線上に前記障害物が存在する場合、障害物面の傾き、障害物の属性に基づいて前記レイと前記障害物面との空間上の成す角を求め、反射、透過、回折による減衰量の演算及びレイのベクトル方位の変化量の演算を行う境界減衰演算手段と、
乱数を発生させる乱数生成手段と、を具備し、
前記境界減衰演算手段は、前記演算を行うか否かを前記乱数生成手段にて発生した乱数によって決定する電波伝搬路推定装置。
【請求項2】
前記境界減衰演算手段は、角度に依存した減衰を行うか否かを前記乱数生成手段にて発生した乱数によって決定する請求項1記載の電波伝搬路推定装置。
【請求項3】
前記境界減衰演算手段は、障害物の属性を前記乱数生成手段にて発生した乱数によって決定する請求項1又は請求項2記載の電波伝搬路推定装置。
【請求項4】
放射されたレイの直線上に存在する障害物及び受信機を探索する境界検出手段と、
乱数を発生させる乱数生成手段と、
前記乱数生成手段にて発生した乱数に従い、障害物に当たったレイの進行方位並びに散乱分割数、分割後レイの方位を決定するレイ再放射手段と、
前記レイ再放射手段にて方位が決定されたレイに対して入射角度と最終方位角度の絶対値差分量に応じた減衰を行う減衰量演算手段と、を具備する電波伝搬路推定装置。
【請求項5】
放射されたレイの直線上に存在する障害物及び受信機を探索する境界検出工程と、
前記レイの直線上に前記障害物が存在する場合、障害物面の傾き、障害物の属性に基づいて前記レイと前記障害物面との空間上の成す角を求め、反射、透過、回折による減衰量の演算及びレイのベクトル方位の変化量の演算を行う境界減衰演算工程と、
乱数を発生させる乱数生成工程と、を具備し、
前記境界減衰演算工程は、前記演算を行うか否かを前記乱数生成工程にて発生した乱数によって決定する電波伝搬路推定方法。
【請求項6】
放射されたレイの直線上に存在する障害物及び受信機を探索する境界検出手順と、
前記レイの直線上に前記障害物が存在する場合、障害物面の傾き、障害物の属性に基づいて前記レイと前記障害物面との空間上の成す角を求め、反射、透過、回折による減衰量の演算及びレイのベクトル方位の変化量の演算を行う境界減衰演算手順と、
乱数を発生させる乱数生成手順と、を具備し、
前記境界減衰演算手順は、前記演算を行うか否かを前記乱数生成手順にて発生した乱数によって決定するシミュレーションプログラム。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2006−87038(P2006−87038A)
【公開日】平成18年3月30日(2006.3.30)
【国際特許分類】
【出願番号】特願2004−272374(P2004−272374)
【出願日】平成16年9月17日(2004.9.17)
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】