説明

顕微鏡装置及び球面収差補正方法

【課題】カバーガラスの厚み誤差に起因する球面収差の補正を高速且つ良好に行うことのできる顕微鏡装置を提供する。
【解決手段】コントラスト評価値の応答曲線の非対称性を定量化した非対称性パラメータκと、カバーガラスGの厚みの最適値からの誤差に起因する球面収差を補正するための球面収差補正レンズ13A,13Bの位置情報との相関を実測等により予め作成して相関表記憶部173に記憶しておく。補正レンズ制御部174は、コントラスト計測部171及び非対称性計算部172による処理によって観察あるいは撮影対象の標本1から得られた非対称性パラメータκをもとに、相関表記憶部173から球面収差補正レンズの位置情報を取得し、この位置情報をもとに球面収差補正レンズの位置を制御する。これにより、カバーガラスGの厚み誤差に起因する球面収差の補正を高速且つ良好に行うことができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カバーガラスの厚さ誤差に起因する収差の補正機能を有する対物レンズを備えた顕微鏡装置及び球面収差補正方法に関する。
【背景技術】
【0002】
顕微鏡は、観察対象である標本をその上に重ねられたカバーガラスを通して観察する。顕微鏡の顕微鏡用対物レンズは、カバーガラスに起因する収差の影響を想定して設計されている。このため、製造誤差などによってカバーガラスの厚さが設計値からずれると収差の発生状況が変わり、結像性能が劣化する傾向にある。この傾向は、特に開口数の大きい高性能な対物レンズほど顕著になる。
【0003】
そこで顕微鏡用対物レンズに光軸方向への移動が可能な球面収差補正用レンズを設け、カバーガラスの厚さの変動による収差変動を球面収差補正用レンズの位置の調整により補正することが行われている。そして、球面収差補正用レンズの位置調整による収差補正は、対物レンズに組み込まれた補正環のマニュアル操作によって行うことが主流であった(例えば特許文献1、2,3)。
【0004】
一方、特許文献4は、球面収差補正用レンズによる収差補正を自動化する技術を開示している。これは、球面収差補正用レンズの移動、撮像、撮像した画像のコントラストの評価を繰り返し、最もコントラストが高くなった球面収差補正用レンズの位置を判断するというものである。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−43624号公報(段落[0017−0018])
【特許文献2】特開2010−48841号公報(段落[0011−0012])
【特許文献3】特開平2002−169101号公報(段落[0022−0024])
【特許文献4】特開2001−83428号公報(段落[0037−0038])
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、球面収差補正用レンズを移動させると対物レンズの合焦位置も変動する。したがって、球面収差補正用レンズを移動させて最もコントラストが高くなった位置を球面収差の補正結果とする方法では、コントラストの計測結果にフォーカス変動に起因する成分も含まれてしまうため、球面収差補正を精度良く行うことが困難であった。コントラストの計測結果からフォーカス変動による成分を排除するためには、球面収差補正用レンズの移動に伴いフォーカス調整を行う必要があり、この結果、手間がかかり、球面収差補正を高速に行うことが困難であった。
【0007】
以上のような事情に鑑み、本発明の目的は、カバーガラスの厚み誤差に起因する球面収差の補正を高速且つ良好に行うことのできる顕微鏡装置及び球面収差補正方法を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成するため、本発明の一形態に係る顕微鏡装置は、光軸方向に移動が可能な球面収差補正レンズを有する対物レンズと、カバーガラスを通して標本の顕微像を前記対物レンズと協働して得る結像レンズと、前記結像レンズの結像面に配置された撮像部と、前記対物レンズと前記標本との間隔を合焦位置を含む範囲内で変化させ、それぞれの間隔で前記撮像部にて撮像された画像の画質の評価値を計測する計測部と、前記計測された画質の評価値の前記間隔位置に対する応答曲線の前記合焦位置を基準とする非対称性を定量化する定量化部と、前記カバーガラスの厚み誤差を補正可能な前記球面収差補正レンズの位置情報と前記非対称性との相関を記憶する記憶部と、前記定量化部にて定量化された非対称性をもとに前記記憶部から前記球面収差補正レンズの位置情報を取得し、この位置情報をもとに前記球面収差補正レンズの位置を制御する補正レンズ制御部とを具備する。
【0009】
コントラスト評価値の応答曲線は、カバーガラスの厚みが最適値である場合に、合焦位置を基準に左右対称となり、カバーガラスの厚みが最適値よりずれている場合には、そのずれ量とずれの方向が、コントラスト評価値の応答曲線の合焦位置を基準する非対称性の形状となって現れる。本発明では、コントラスト評価値の応答曲線の非対称性の形状を定量化した値と、カバーガラスの厚みの最適値からの誤差に起因する球面収差を補正するための球面収差補正レンズの位置情報との相関を実測等により予め作成して記憶部に記憶する。そして、定量化部にて、観察あるいは撮影対象の標本について定量化した非対称性をもとに、記憶部から球面収差補正レンズの位置情報を取得し、この位置情報をもとに球面収差補正レンズの位置を制御する。これにより、カバーガラスの厚み誤差に起因する球面収差の補正を高速且つ良好に行うことができる。
【0010】
前記計測部は、前記画像の画質の評価値としてコントラスト評価値を計測するものであってもよい。
【0011】
前記計測部は、コントラスト方式のオートフォーカス評価値を計測するものであってもよい。これにより、合焦位置の判定と同時に画像の画質の評価値が得られることで、球面収差補正をより高速化できる。
【0012】
前記記憶部は、空間周波数別に前記カバーガラスの厚み誤差を補正可能な前記球面収差補正レンズの位置情報と前記非対称性との相関を記憶し、前記計測部は、前記撮像された画像において支配的な空間周波数を分析し、前記補正レンズ制御部は、前記分析された空間周波数と前記定量化部にて定量化された非対称性をもとに前記記憶部から前記球面収差補正レンズの位置情報を取得し、この位置情報をもとに前記球面収差補正レンズの位置を制御するようにしてもよい。これにより、画像の空間周波数の違いによる球面収差補正の誤差を低減することができる。
【0013】
前記計測部は、前記画像の画質の評価値としてS/N比を計測するものとしてもよい。
【0014】
本発明の別の側面の球面収差補正方法は、光軸方向に移動が可能な球面収差補正レンズを有する対物レンズと、カバーガラスが上面に配置された標本との間隔を合焦位置を含む範囲内で可変して、それぞれの間隔位置で撮像された画像の画質の評価値を計測し、前記画質の評価値の前記各間隔位置に対する応答曲線の前記合焦位置を基準とする非対称性を定量化し、前記定量化された非対称性をもとに、前記カバーガラスの厚み誤差を補正可能な前記球面収差補正レンズの位置情報と前記非対称性との相関を記憶する前記記憶部から前記球面収差補正レンズの位置情報を取得し、この位置情報をもとに前記球面収差補正レンズの位置を制御することを特徴とするものである。
【発明の効果】
【0015】
本発明によれば、標本のカバーガラスの厚み誤差に起因する球面収差の補正を高速且つ良好に行うことができる。
【図面の簡単な説明】
【0016】
【図1】本発明の第1の実施形態に係る顕微鏡装置の構成を示す図である。
【図2】図1の対物レンズにおける球面収差補正レンズの駆動について説明する図である。
【図3】(A)は標本のカバーガラス厚が最適値(設計値)である場合の撮影画像のコントラストのデフォーカスに対する応答曲線を示すグラフ、(B)は標本のカバーガラス厚が最適値(設計値)より厚い場合の撮影画像のコントラストのデフォーカスに対する応答曲線を示すグラフ、(C)は標本のカバーガラス厚が最適値(設計値)より薄い場合の撮影画像のコントラストのデフォーカスに対する応答曲線を示すグラフである。
【図4】非対称性パラメータκの定義の一例を示す図である。
【図5】カバーガラスの厚み誤差δCGとレンズ間隔d1、d2の各値との相関を示す図である。
【図6】カバーガラスの厚み誤差δCGと非対称性パラメータκとの相関の一例を示す図である。
【図7】非対称性パラメータκとレンズ間隔d1、d2の各値との相関表の例を示す図である。
【図8】第1の実施形態の球面収差補正のフローチャートである。
【図9】第2の実施形態に係る顕微鏡装置の構成を示す図である。
【図10】(A)はカバーガラスの厚みが基準厚CGそのものである場合の各間隔位置(デフォーカス位置)のAF評価値の応答曲線を示すグラフ、(B)は基準厚CGに対して0.01[mm]の厚み誤差δCGをもつカバーガラスGを用いた場合の各間隔位置(デフォーカス位置)のAF評価値の応答曲線を示すグラフ、(C)は基準厚CGに対して-0.035[mm]の厚み誤差δCGをもつカバーガラスGを用いた場合の各間隔位置(デフォーカス位置)のAF評価値の応答曲線を示すグラフである。
【図11】第2の実施形態の球面収差補正のフローチャートである。
【図12】第3の実施形態に係る顕微鏡装置の構成を示す図である。
【図13】第3の実施形態の球面収差補正のフローチャートである。
【図14】変形例1の球面収差補正のフローチャートである。
【図15】非対称性パラメータκの定義の別の例を示す図である。
【発明を実施するための形態】
【0017】
以下、図面を参照しながら、本発明の実施形態を説明する。
<第1の実施形態>
[顕微鏡装置の構成]
図1は、本発明の一実施形態に係る顕微鏡装置の構成を示す図である。
同図に示すように、この顕微鏡装置100は、ステージ11、ステージ駆動部12、球面収差補正レンズ付き対物レンズ13、補正レンズ駆動部14、結像レンズ15、撮像部16、及び制御装置17などで構成される。
【0018】
ステージ11は、カバーガラスGを載せたカバーガラス付き標本(以下単に「標本」と呼ぶ。)1が載置され、ステージ駆動部12によって光軸方向OpをZ軸方向としてX,Y,Zの3軸方向に駆動される。ステージ駆動部12は、制御装置17からの制御信号に基づきステージ11を駆動する。球面収差補正レンズ付き対物レンズ(以下単に「対物レンズ」と呼ぶ。)13は、ステージ11の上方に配置される。この対物レンズ13は、標本1におけるカバーガラスGの厚さ誤差などに起因した球面収差を補正する球面収差補正レンズ13A,13Bを含む対物レンズシステムである。対物レンズ13において、球面収差補正レンズ13A,13Bは光軸方向Op(=Z軸方向)に移動可能である。補正レンズ駆動部14は、対物レンズ13内にて球面収差補正レンズ13A,13Bを光軸方向Opに駆動する。結像レンズ15は、対物レンズ13と協働して標本1の顕微像を撮像部16の撮像面に結ぶ。撮像部16は、CCD(Charge Coupled Device)のようなイメージセンサなどで構成され、顕微像を構成する光信号を電気的な信号に変換するとともにデジタル化して制御装置17に供給する。
【0019】
制御装置17は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、各種のインタフェースを有する典型的なコンピュータシステムなどにより構成される。制御装置17はPC(Personal Computer)であってもよい。
【0020】
制御装置17のROMには、顕微鏡装置100を制御するためのプログラム及びデータなどのソフトウェアが格納されており、運用時はROMからメインメモリとしてのRAMに必要なプログラム及びデータがロードされる。CPUはRAMにロードされたプログラム及びデータを読み込んで制御を実行する。
【0021】
次に、CPUがRAMにロードされたプログラムを読み込んで制御を実行することによって実現される制御装置17の機能的な構成を説明する。
【0022】
図1に示すように、制御装置17は、コントラスト計測部171(計測部)、非対称性計算部172(定量化部)、相関表記憶部173(記憶部)、補正レンズ制御部174(補正レンズ制御部)を有する。
【0023】
コントラスト計測部171は、ステージ11を制御して標本1と対物レンズ13との間隔を合焦位置を含む範囲内で変化させ、それぞれの間隔位置(デフォーカス位置)で撮像部16より取得した画像のコントラストの例えば平均値などのコントラスト評価値を計測して非対称性計算部172に与える。また、間隔の変化の方法は上記に限定されず、対物レンズ13を駆動して行っても良い。
【0024】
非対称性計算部172は、コントラスト計測部171より計測されたコントラスト評価値の間隔位置(デフォーカス位置)に対する応答曲線の合焦位置を基準とする非対称性を定量化した非対称性パラメータκを計算する。
【0025】
相関表記憶部173は、カバーガラスGの厚み誤差を補正可能な球面収差補正レンズ13A,13Bの位置情報と非対称性パラメータκとの相関表を記憶する。
【0026】
補正レンズ制御部174は、非対称性計算部172により求められた非対称性パラメータκをもとに、相関表記憶部173に記憶された相関表から球面収差補正レンズ13A,13Bの位置情報を取得し、補正レンズ駆動部14に制御信号を供給する。
【0027】
図2は対物レンズ13における球面収差補正レンズの駆動について説明する図である。
本例の対物レンズ13は、例えば、4つのレンズ13A,13B,13C,13Dで構成される。これらのレンズ13A,13B,13C,13Dにおいて、観察対象である標本1寄りの2つのレンズ13A,13Bは球面収差補正レンズ13A,13Bとして光軸方向Opに移動可能とされ、レンズ13Aとレンズ13Bとの距離d1及びレンズ13Bとレンズ13Cとの距離d2の制御によって、球面収差補正を行うことが可能とされている。ここで、距離d1及び距離d2が球面収差補正レンズ13A,13Bの位置情報とされる。
【0028】
[非対称性パラメータκについて]
図3(A)(B)(C)は、ある空間周波数における撮影画像のコントラスト評価値のデフォーカス位置に対する応答曲線を、カバーガラスGの厚みが最適値(設計値)である場合(A)、最適値より厚い場合(B)、最適値より薄い場合(C)についてそれぞれ示したグラフである。
【0029】
図3(A)に示すように、ある空間周波数における撮影画像のコントラスト評価値のデフォーカス位置に対する応答曲線は、カバーガラスGの厚みが設計値通り(最適値)であれば、合焦位置を基準にほぼ左右対称の形状となる。ところが、図3(B)及び(C)に示すように、カバーガラスGの厚みが最適値からずれると、応答曲線の形状が合焦位置に対して非対称になる。これは光軸方向における光学性能の非対称性を示している。光軸方向の対称性の崩れから発生する収差は球面収差であるため、図3(B)及び(C)は球面収差そのものを表していると言える。また、カバーガラスGが最適値よりも厚い場合と薄い場合とでは互いに逆向きの非対称性を示す。
【0030】
本実施形態では、コントラスト評価値の応答曲線の非対称性を定量化する非対称性パラメータκを定義する。
図4は、この非対称性パラメータκの定義の一例を示す図である。
図4において、CNTmax はコントラスト評価値の応答曲線における最大値、CNT1/e2は最大値CNTmax の1/eに相当するコントラスト評価値、Z0は最大値CNTmax が得られるときのデフォーカス位置、Z1はCNT1/e2が得られるときのマイナス側のデフォーカス位置、Z2はCNT1/e2が得られるときのプラス側のデフォーカス位置である。
【0031】
この例では、非対称性パラメータκは、上記のZ0,Z1,Z2を用いて次のように定義される。
κ=(|Z0−Z1|−|Z2−Z0|)/(|Z2−Z1|)×100 …(1)
【0032】
勿論、これは一例に過ぎず、非対称性を良好に定量化できるものであればよい。
【0033】
図15は、非対称性パラメータκの定義の別の例を示す図である。
図15において、CNTmax はコントラスト評価値の最大値、CNTFWHMは最大値CNTmax の半値全幅(FWHM:Full Width at Half Maximum)に相当するコントラスト評価値、Z0は最大値CNTmax が得られるときのデフォーカス位置、Z1はCNTFWHMが得られるときのマイナス側のデフォーカス位置、Z2はCNTFWHMが得られるときのプラス側のデフォーカス位置である。この場合も、非対称性パラメータκは上記(1)式により定義される。
【0034】
次に、本実施形態の顕微鏡装置100の動作を説明する。
図8は、本実施形態の顕微鏡装置100による球面収差補正のフローチャートである。
【0035】
[球面収差補正のための事前準備]
まず、球面収差補正のための事前準備が行われる。
カバーガラスGの基準厚をCG、カバーガラスGの基準厚CGに対する厚み誤差をδCGとする(ステップSS101,S102)。事前準備において、制御装置17は、基準厚CG(厚み誤差δCG=0)のカバーガラスGが付けられたテストチャート画像標本を用いて、基準厚CGのカバーガラスGに対して最適なレンズ間隔d1、d2をシミュレーションまたは実測等により求める。また制御装置17は、基準厚CGに対して様々な厚み誤差δCGをもつカバーガラスGが付けられた複数のテストチャート画像標本を順次用いて、それぞれの厚み誤差δCGに対して最適なレンズ間隔d1、d2をシミュレーションまたは実測等により求める(ステップS103)。図5はカバーガラスGの基準厚CGを0.17[mm]とした場合の厚み誤差δCGとレンズ間隔d1、d2との相関を示す図である。
【0036】
次に、基準厚CG(厚み誤差δCG=0)に対して最適なレンズ間隔d1、d2が設定された状態で(ステップS104)、コントラスト計測部171は、基準厚CGのカバーガラスGが付けられたテストチャート画像標本を用いて、このテストチャート画像標本と対物レンズ13との間隔を±x[μm]の範囲でy[μm]刻みで変更し、それぞれの間隔位置(デフォーカス位置)で撮影された画像のコントラスト評価値を計測する。各計測結果は非対称性計算部172に与えられる。非対称性計算部172は、コントラスト計測部171より与えられたコントラスト評価値の応答曲線から(1)式により非対称性パラメータκを計算する。この結果、基準厚CG(厚み誤差δCG=0)と非対称性パラメータκとの相関が得られる。基準厚CGに対して様々な厚み誤差δCGを有するカバーガラスGが付けられたテストチャート画像標本についても同様に、画像のコントラスト評価値の計測と、コントラスト評価値の応答曲線からの非対称性パラメータκの計算が行われ、この結果、各厚み誤差δCG と非対称性パラメータκとの相関が得られる(ステップS105)。図6はカバーガラスGの基準厚CGを0.17[mm]とした場合の厚み誤差δCGと非対称性パラメータκとの相関の一例を示す図である。
【0037】
以上により求められた、カバーガラスGの基準厚CG及び各厚み誤差δCGとレンズ間隔d1、d2との相関と、カバーガラスGの基準厚CG及び各厚み誤差δCGと非対称性パラメータκとの相関から、非対称性パラメータκとレンズ間隔d1、d2との相関表が生成され、相関表記憶部173に格納される(ステップS106)。図7は、カバーガラスGの基準厚CGを0.17[mm]とした場合の非対称性パラメータκとレンズ間隔d1、d2との相関表の例を示す図である。
以上で、球面収差補正のための事前準備が完了となる。
【0038】
[球面収差補正のための制御]
まず、ステージ11の上に標本1がセットされ、透過照明が標本1に照射される(ステップS107)。次に、制御装置17は、オートフォーカスにより合焦位置を決定する(ステップS108)。次に、コントラスト計測部171が、合焦位置を中心に±x[μm]の範囲でy[μm]刻みで標本1と対物レンズ13との間隔を変更し、それぞれの間隔位置(デフォーカス位置)で撮像部16にて撮像された画像のコントラスト評価値を計測し、その計測結果を非対称性計算部172に供給する(ステップS109)。非対称性計算部172は、コントラスト計測部171からのコントラスト評価値の応答曲線から(1)式により非対称性パラメータκを計算する(ステップS110)。
【0039】
続いて、補正レンズ制御部174は、計算された非対称性パラメータκをもとにレンズ間隔d1、d2を決定する。すなわち、補正レンズ制御部174は、相関表記憶部173に記憶された非対称性パラメータκとレンズ間隔d1、d2との相関表を参照して、例えば、計算された非対称性パラメータκに最も近い相関表記憶部173内の非対称性パラメータκを判定し、この非対称性パラメータκに対応するレンズ間隔d1、d2を取得する(ステップS111)。そして補正レンズ制御部174は、取得したレンズ間隔d1、d2をもとにそれぞれの球面収差補正レンズ13A,13Bの光軸方向Opでの位置を算出し、補正レンズ駆動部14に制御信号を供給する。補正レンズ駆動部14は、補正レンズ制御部174からの制御信号をもとに2つの球面収差補正レンズ13A,13Bを駆動する。これにより、対物レンズ13内のレンズ間隔d1、d2が、非対称性パラメータκに対応する各値に設定される(ステップS112)。
【0040】
以上で、球面収差補正のための制御が完了し、この後、制御装置17はオートフォーカス処理を実行して合焦位置を決定し(ステップS113)、標本1の実際の撮影が行われる(ステップS114)。
【0041】
以上のようにコントラスト評価値の応答曲線は、カバーガラスGの厚みが最適値である場合に、合焦位置を基準に左右対称となり、カバーガラスGの厚みが最適値よりずれている場合には、そのずれ量とずれの方向が、コントラスト評価値の応答曲線の合焦位置を基準する非対称性の形状となって現れる。本実施形態では、コントラスト評価値の応答曲線の非対称性を定量化した非対称性パラメータκと、カバーガラスGの厚みの最適値からの誤差に起因する球面収差を補正するための球面収差補正レンズ13A,13Bの位置情報との相関を実測等により予め作成して相関表記憶部173に記憶しておく。補正レンズ制御部174は、コントラスト計測部171及び非対称性計算部172による処理によって観察あるいは撮影対象の標本1から得られた非対称性パラメータκをもとに、相関表記憶部173から球面収差補正レンズ13A,13Bの位置情報を取得し、この位置情報をもとに球面収差補正レンズ13A,13Bの位置を制御する。これにより、カバーガラスGの厚み誤差に起因する球面収差の補正を高速且つ良好に行うことができる。
【0042】
<第2の実施形態>
自動撮影のAF(オートフォーカス)方式としてコントラストAFがよく用いられる。コントラストAFは、ステージを駆動して標本と対物レンズとの間隔の距離を変化させながら、各間隔位置(デフォーカス位置)でのコントラスト評価値(AF評価値)を算出し、AF評価値が最大となったステージの位置(標本と対物レンズとの間隔の距離)を探す方式である。
【0043】
図9は、第2の実施形態の顕微鏡装置100Aの構成を示す図である。
第2の実施形態は、球面収差補正の制御においてコントラスト評価値を計測する手段としてコントラストAF部171Aを採用したものである。コントラストAFの際に得られるAF評価値は、y[μm]刻みで標本と対物レンズとの間隔を変更し、それぞれの間隔位置(デフォーカス位置)で撮像された画像のAF評価値であることから、第1の実施形態のコントラスト計測部171によって計測されるコントラスト評価値と等価なものである。このことからAF評価値から非対称性パラメータκを計算することが可能である。
【0044】
図10(A)はカバーガラスGの厚みが基準厚CGと等しい(δCG=0)場合の各間隔位置(デフォーカス位置)でのAF評価値を示すグラフである。このAF評価値の間隔位置(デフォーカス位置)に対する応答曲線は合焦位置を基準に左右対称性を有していることが分かる。したがって、対称性パラメータκは、κ=0に近い値となる。完全にκ=0にならない理由としては、本実施形態に用いた光学系の残存球面収差、製造公差に起因すると考えられる。それらが除去されていれば、当然、κ=0となる。一方、図10(B)は基準厚CGに対して+0.01[mm]の厚み誤差δCGをもつカバーガラスGを用いた場合の各間隔位置(デフォーカス位置)のAF評価値である。この応答曲線は、合焦位置を基準に非対称性を有しており、例えば(1)式によって非対称性パラメータκを計算するとκ=36.8となる。一方、図10(C)は基準厚CGに対して−0.035[mm]の厚み誤差δCGをもつカバーガラスGを用いた場合の各間隔位置(デフォーカス位置)のAF評価値である。この応答曲線は、合焦位置を基準に非対称性を有しており、例えば(1)式によって非対称性パラメータκを計算するとκ=−26.0となる。
【0045】
図11は、コントラストAFを採用した球面収差補正のフローチャートである。
ここでステップS201からステップS206までの事前準備は、第1の実施形態の図8のステップS101からステップS106までの事前準備と同じである。
準備処理が完了した後、ステージ11の上に標本1がセットされ、透過照明が標本1に照射される(ステップS207)。この後、制御装置17は、コントラストAF部171Aを起動してコントラストAFを実行させて合焦位置を決定する(ステップS208)。次に、制御装置17は、コントラストAFの際に得られたAF評価値から非対称性計算部172にて非対称性パラメータκを計算する(ステップS209)。
【0046】
この後は第1の実施形態の図8のフローのステップS107以降の動作と同様に、補正レンズ制御部174が、非対称性パラメータκをもとにレンズ間隔d1、d2を決定する。
【0047】
例えば、図10(B)に示したAF評価値から非対称性パラメータκがκ=36.8と計算された場合、補正レンズ制御部174は、相関表記憶部173に記憶された相関表(図7参照)からκ=36.8に対応するレンズ間隔d1、d2を抽出する。例えば、AF評価値から求められた非対称性パラメータκの値が相関表におけるどのκの値と最も近いか調べ、その最も近いκに対応するレンズ間隔d1、d2が抽出される。
【0048】
次に、補正レンズ制御部174は、抽出したレンズ間隔d1、d2をもとにそれぞれの球面収差補正レンズ13A,13Bの光軸方向Opでの位置を算出し、補正レンズ駆動部14に制御信号を供給することで、対物レンズ13内のレンズ間隔d1、d2を補正する(ステップS207−S211)。以上で、球面収差補正のための制御が完了し、この後、制御装置17は再びコントラストAF部171Aを起動してコントラストAFを実行させて合焦位置を決定し(ステップS212)、標本1の実際の撮影が行われる(ステップS213)。
【0049】
本実施形態によれば、コントラストAFで合焦位置を決定し、そのコントラストAFの際に得られるAF評価値から非対称性パラメータκを計算するようにしたことで、処理の高速化を図ることができる。すなわち、第1の実施形態と比較すると、合焦位置の決定に対して別途にコントラスト計測部171で各間隔位置(デフォーカス位置)でのコントラスト評価値を計測する処理(図8のステップS109)を省くことができ、球面収差補正の処理時間の大幅な短縮が可能になる。
【0050】
また、ステップS212の球面収差補正後のコントラストAFの際に得られるAF評価値から再度非対称性パラメータκの値を算出し、球面収差補正のために求めた非対称性パラメータκの値と比較することで、正しく球面収差補正が行われているかどうかの検査を行うようにしてもよい。もし、双方の非対称性パラメータκの値の差が閾値より大きい場合には、例えば、複数回求めた対称性パラメータκの値の平均値をもとに補正を行う方法等が考えられる。
【0051】
<第3の実施形態>
以上の実施形態では、事前準備において、ある空間周波数のテストチャート画像標本を用いて非対称性パラメータκとレンズ間隔d1、d2との相関表を作成した。これに対し、実際に撮影される標本1の画像において支配的な空間周波数が相関表の作成で用いられたテストチャート画像標本において支配的な空間周波数に近いとは限らない。このような空間周波数の違いは球面収差補正の誤差原因となり得る。この問題は、空間周波数別に対称性パラメータκとレンズ間隔のデータとの相関を相関表記憶部173に記憶することで解決可能である。
【0052】
図12は、第3の実施形態の顕微鏡装置100Bの構成を示す図である。
制御装置17は、標本1を撮像した画像の空間周波数解析を行い、その結果を補正レンズ制御部174Bに出力する周波数解析部175を有する。
【0053】
図13は、第3の実施形態による球面収差補正のフローチャートである。
ここでステップS301からステップS306までの事前準備は、第1の実施形態の図8のステップS101からステップS106までの事前準備と基本的には同じであるが、ステップS305では、厚み誤差δCGと非対称性パラメータκとの相関を生成する際に、空間周波数u別に相関が生成され、さらに、ステップS306では、対称性パラメータκ(u)とレンズ間隔d1、d2との相関表が空間周波数u別に作成されて相関表記憶部173に保存される。
【0054】
空間周波数u別の対称性パラメータκ(u)と厚み誤差δCGとの相関を生成する方法としては、空間周波数uが既知であるテストチャート画像標本を使用する方法等がある。すなわち、制御装置17は、カバーガラスGの基準厚CGに対して最適なレンズ間隔d1、d2を設定したままステージ11を駆動することによってテストチャート画像標本と対物レンズ13との距離を変えて、それぞれの間隔位置(デフォーカス位置)で撮影された画像のコントラスト評価値をコントラスト計測部171にて計測する。続いて制御装置17は、非対称性計算部172にて、コントラスト応答曲線から非対称性パラメータκ(u)を計算し、この非対称性パラメータκ(u)とレンズ間隔d1、d2との相関表を既知の空間周波数uに対応する相関表として相関表記憶部173に記憶する。この処理を、他の既知の空間周波数uを有するテストチャート画像標本に切り替えて繰り返す。このコントラスト評価値の計測時に、サンプリング周波数を画像において支配的な空間周波数uに随時設定することが望ましい。
【0055】
球面収差補正のための制御において、制御装置17は、ステップS308にてオートフォーカスにより合焦位置を決定した後、周波数解析部175にて標本1の画像に対して周波数解析を行うことで、この画像において支配的な空間周波数uを計算する(ステップS309)。次に、コントラスト計測部171は合焦位置を中心に±x[μm]の範囲でy[μm]刻みで間隔位置(デフォーカス位置)を変更し、それぞれの間隔位置(デフォーカス位置)で撮像部16にて撮像された画像のコントラスト評価値を計測し、その計測結果を非対称性計算部172に供給する(ステップS310)。
【0056】
非対称性計算部172は、コントラスト計測部171からのコントラスト評価値の応答曲線から(1)式により非対称性パラメータκ(u)を計算する(ステップS311)。この後、補正レンズ制御部174は、相関表記憶部173に記憶された、当該標本1の画像において支配的な空間周波数uに応じた非対称性パラメータκ(u)と最適なレンズ間隔d1、d2との相関表を参照して、非対称性パラメータκ(u)に対して最適なレンズ間隔d1、d2を取得する(ステップS312)。
【0057】
この後、補正レンズ制御部174は、読み込んだレンズ間隔d1、d2をもとにそれぞれの球面収差補正レンズ13A,13Bの光軸方向Opでの位置を算出し、補正レンズ駆動部14に制御信号を供給することで、対物レンズ13内のレンズ間隔d1、d2を補正する(ステップS312−S313)。以上で、球面収差補正のための制御が完了し、この後、制御装置17はオートフォーカス処理を実行して合焦位置を決定し(ステップS314)、標本1の実際の撮影が行われる(ステップS315)。
【0058】
第3の実施形態によれば、画像の空間周波数の違いによる球面収差補正の誤差を低減することができる。
【0059】
<変形例1>
標本1の照明方式として暗視野落射照明を採用した場合、球面収差補正の制御において画像のコントラストを評価することが困難である。この場合、図14に示すように、コントラストに代えて画像のS/N比を間隔位置(デフォーカス位置)毎に計測し(ステップS409)、S/N比の応答曲線から非対称性パラメータκを算出して(ステップS410)、相関表記憶部173に記憶された相関表から、当該非対称性パラメータκに対応する最適なレンズ間隔d1、d2を読み込むようにしてもよい(ステップS411)。
【0060】
<変形例2>
上記の球面収差補正は、カバーガラスGを複数の領域に区分して、それぞれの領域毎に行うようにしてもよい。この方法は、カバーガラスGの厚みが場所によって変化するような場合に好適である。この場合、制御装置17は、カバーガラスGの個々の領域に対して、上記の球面収差補正のためのレンズ間隔d1、d2を求めたら、これらのデータを、領域を示す情報と対応付けて相関表記憶部173に記憶する。制御装置17は、個々の領域の本撮影の前に、相関表記憶部173から、これから撮影しようとしている領域に対応する球面収差補正のためのレンズ間隔d1、d2を読み出し、これらを設定する。
【0061】
本発明は、上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々更新を加え得ることは勿論である。
【符号の説明】
【0062】
1…標本
11…ステージ
12…ステージ駆動部
13…対物レンズ
13A.13B…球面収差補正レンズ
14…補正レンズ駆動部
15…結像レンズ
16…撮像部
17…制御装置
100…顕微鏡装置
171…コントラスト計測部
171A…コントラストAF部
172…非対称性計算部
173…相関表記憶部
174…補正レンズ制御部

【特許請求の範囲】
【請求項1】
光軸方向に移動が可能な球面収差補正レンズを有する対物レンズと、
カバーガラスを通して標本の顕微像を前記対物レンズと協働して得る結像レンズと、
前記結像レンズの結像面に配置された撮像部と、
前記対物レンズと前記標本との間隔を合焦位置を含む範囲内で変化させ、それぞれの間隔位置で前記撮像部にて撮像された画像の画質の評価値を計測する計測部と、
前記計測された画質の評価値の前記間隔位置に対する応答曲線の前記合焦位置を基準とする非対称性を定量化する定量化部と、
前記カバーガラスの厚み誤差を補正可能な前記球面収差補正レンズの位置情報と前記非対称性との相関を記憶する記憶部と、
前記定量化部にて定量化された非対称性をもとに前記記憶部から前記球面収差補正レンズの位置情報を取得し、この位置情報をもとに前記球面収差補正レンズの位置を制御する補正レンズ制御部と
を具備する顕微鏡装置。
【請求項2】
請求項1に記載の顕微鏡装置であって、
前記計測部は、前記画像の画質の評価値としてコントラストの評価値を計測する
顕微鏡装置。
【請求項3】
請求項2に記載の顕微鏡装置であって、
前記計測部は、コントラスト方式のオートフォーカス評価値を計測する
顕微鏡装置。
【請求項4】
請求項2または3に記載の顕微鏡装置であって、
前記記憶部は、空間周波数別に前記カバーガラスの厚み誤差を補正可能な前記球面収差補正レンズの位置情報と前記非対称性との相関を記憶し、
前記計測部は、前記撮像された画像において支配的な空間周波数を分析し、
前記補正レンズ制御部は、前記分析された空間周波数と前記定量化部にて定量化された非対称性をもとに前記記憶部から前記球面収差補正レンズの位置情報を取得し、この位置情報をもとに前記球面収差補正レンズの位置を制御する
顕微鏡装置。
【請求項5】
請求項1に記載の顕微鏡装置であって、
前記計測部は、前記画像の画質の評価値としてS/N比を計測する
顕微鏡装置。
【請求項6】
光軸方向に移動が可能な球面収差補正レンズを有する対物レンズと、カバーガラスが上面に配置された標本との間隔を合焦位置を含む範囲内で可変して、それぞれの間隔位置で撮像された画像の画質の評価値を計測し、
前記計測された画質の評価値の前記間隔位置に対する応答曲線の前記合焦位置を基準とする非対称性を定量化し、
前記定量化された非対称性をもとに、前記カバーガラスの厚み誤差を補正可能な前記球面収差補正レンズの位置情報と前記非対称性との相関を記憶する記憶部から前記球面収差補正レンズの位置情報を取得し、この位置情報をもとに前記球面収差補正レンズの位置を制御する
顕微鏡装置の球面収差補正方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate