説明

4次元イメージングデータを用いた放射線治療計画

【課題】4次元イメージングデータを用いた治療計画のための方法と装置を提供する。
【解決手段】4次元コンピュータ断層撮影(CT)データである4次元診断用イメージングデータを受け取り、その4次元診断用イメージングデータを用いて放射線治療計画を作成する。則ち、4次元CTスキャンデータは、3次元(空間)画像の集まりであり、3次元画像の各々は既知の時間的関係を伴い動きサイクル(例えば患者の呼吸サイクル、心周期、動脈拍動などの間)における異なる時点で撮られる。4次元CT画像に対し最適化ステップを実行する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、放射線治療の分野、詳細には4次元イメージングデータを用いた治療計画に関する。
【背景技術】
【0002】
腫瘍や病変といった病理解剖学的組織は手術といった侵襲的手順で治療することができるが、それは患者にとって有害で危険に満ちていることがある。病理解剖学的組織(例えば、腫瘍、病変、脈管奇形、神経損傷など)を治療する非侵襲的方法が、外部ビーム放射線療法である。外部ビーム放射線療法の1形式において、腫瘍がビームの回転中心(アイソセンタ)にあるように患者が配置された状態で、一連のX線を複数の角度から腫瘍部位に向ける外部放射線源が使用される。放射線源の角度が変わるにつれて、すべてのビームが腫瘍部位を通過するが、腫瘍への途中で健康な組織の異なる領域も通過する。その結果、腫瘍における蓄積放射線量は高く、健康な組織への平均放射線量は低い。
【0003】
用語「放射線療法」は、壊死性よりもむしろ治療的目的で放射線がターゲット領域に加えられる手順を指す。放射線療法治療の期間で利用される放射線の量は一般に、放射線手術の期間において使用される量に比べて、ほぼ一桁小さい。放射線療法は一般に、処置当たりの低線量(例えば100〜200センチグレイ(cGy))、短い処置時間(例えば処置当たり10〜30分)および過分割照射(hyperfractionation)(例えば30〜45日の治療)によって特徴づけられる。便宜上、用語「放射線治療」はここで、特段に言及しない限り放射線手術および/または放射線療法を意味するために使用される。
【0004】
病理解剖学的組織を治療するための放射線を送ることが直面する1つの課題は、ある特定の時点においてターゲット領域を識別することである。なぜなら、病理解剖学的組織が患者の呼吸または他の自然な動きの機能として移動するかもしれないためである。放射線治療では、治療中の呼吸または他の患者の動きに対してターゲット領域の動きを正確に突き止め追跡することが有益である。例えば肺、肝臓またはすい臓などの腹部付近の器官において放射線治療を実行するために、これらの構造が患者の呼吸サイクルの間に動くという事実を考慮に入れることが必要である。従来の方法およびシステムは、患者の呼吸および/または他の動きを測定および/または補償しながら、内部ターゲット領域の追跡を実行することが開発されてきた。
【0005】
1つの従来方法では、単にターゲット領域への線量だけを処方する代わりに、自発呼吸の間にターゲット領域によって横切られる容積全体が処方線量を受けるように、ターゲット領域の周辺のマージンが規定される。別の従来方法は、例えば、組織の移動が低減するように胸部への拘束手段を使用することによって、患者の呼吸の振幅を制御する。治療マージンが規定されるが、この場合、低減した動きの振幅を反映するために、より小さい治療容積が使用される。
【0006】
さらに他の従来方法は、患者が従来の放射線治療を受けている間、呼吸の間のターゲット領域の移動を補償するために息こらえや呼吸ゲーティング(respiratory gating)を利用する。息こらえは患者に各呼吸サイクルの同じ時点で各自の息をこらえることを要求し、その間にそれが静止していると思われる間に腫瘍が処置される。一回吸吐量を測定し、呼吸が各照射瞬時の間に呼吸サイクルの同じ場所で息がこらえられていることを保証するために、呼吸計がしばしば使用される。この方法は、相対的に長い時間がかかり、患者が反復的に各自の息をこらえるために訓練することを必要とすることが多い。
【0007】
呼吸ゲーティングは、処置の間の患者の呼吸サイクルを測定してから、患者の呼吸するサイクルの所定の部分の間だけ放射線ビームをオンにするプロセスを含む。呼吸ゲーティングは、呼吸により生じる動きを直接補償しない。むしろ、放射線治療は患者の呼吸パターンに同期され、放射線ビーム送付を腫瘍が恐らく基準位置にあると思われる時間に限定する。呼吸ゲーティングは息こらえ法よりも迅速であるかもしれないが、やはり患者に対し、長期間にわたり同様にして呼吸するために数日にわたり多くの訓練活動を行うことを要求する。従来の呼吸ゲーティングはまた、腫瘍が所定の位置に入る前後に健康な組織を放射線に曝すかもしれない。これは、治療中に通常使用される他のマージンの上に約5〜10ミリメートル(mm)のさらなる誤差の余地を追加し得る。しかし、処方容積は通常、ゲーティングを伴わず自発呼吸を用いるそれよりも小さくなり得る。これらの従来方法は、複数の治療機会にわたって一貫した様態で呼吸機能を実行できる患者の能力によって制限される。
【0008】
放射線治療の間のターゲット領域の動きに対処する別の従来方法は、ターゲット領域に、またはその近辺に配置されるフィデューシャルマーカー(fiducial marker)の画像追跡を含む。フィデューシャルマーカーの位置と動きはターゲット領域の位置と動きと相関づけられ、それによりターゲット領域の動きに追従する治療ビームの位置のリアルタイム補正が実現される。
【発明の開示】
【発明が解決しようとする課題】
【0009】
これらの技法の各々はその長所と短所を有する。拘束またはゲーティングを用いなければ、患者にとって快適な速い処置が可能である。しかし、例えば横隔膜の付近などの呼吸の動きが大きい領域では特に、この手法は、ターゲット領域よりも相当に大きい組織の容積の照射を必要とする。呼吸振幅を制御することは治療を不快にさせ、またゲーティングは治療時間の増大の原因になる。ターゲット領域に埋め込まれたフィデューシャルマーカーの移動に従ってリアルタイム補正を実行することにより、コンフォーマルな線量分布を迅速に送付させることが可能である。それにも関わらず、この方法は、それが侵襲的なフィデューシャルの移植を必要とするという短所を有する。フィデューシャルマーカーの移動に従ったリアルタイム補正はまた、迅速かつ正確に移動できる放射線送付装置を必要とする。1つのそのような放射線治療システムが、カリフォルニア州のアキュレイ・インコーポレーテッド(Accuray Incorporated)社によって開発されたCYBERKNIFE(登録商標)システムである。ロボットアームアセンブリに小型なXバンド直線加速器を取り付けることによって、CYBERKNIFE(登録商標)放射線治療システムは、呼吸の動きのリアルタイム補償を実行することができる。
【課題を解決するための手段】
【0010】
逆方向計画(inverse planning)技法を利用しているCYBERKNIFE(登録商標)放射線治療システムを用いた1つの従来の治療計画手法は、次の通りである。最初に、ターゲット領域と回避すべき危険構造が、CTスキャンで、つまり患者の関心容積(VOI:volume of interest)のCTスライスの組で描画される。より具体的には、3次元(3D)CTスキャンは、2次元(2D)CTスライスの集まりから生成された関心容積(例えば身体の一部を担持する病理解剖学的組織)の3次元モデルから構成され、各スライスは空間における異なる位置(例えば患者の上下体軸に沿って異なる位置)を表現している。CTスキャニングでは、多数のX線ビームを異なる角度で身体構造の関心容積を通過させる。その後、センサが種々の組織によって吸収された放射線の量を測定する。患者が治療台に横たわると、イメージングシステムが複数の地点からのX線ビームを記録する。コンピュータプログラムが使用されてX線吸収の差異を測定して頭と脳の断面画像、つまり「スライス」を形成する。これらのスライスは断層写真と呼ばれており、それゆえ「コンピュータ断層撮影」という名称となる。
【0011】
いったんターゲット領域と危険構造が描画されると、その後、医療施術者によって線量拘束値がそれらのターゲット領域と危険構造に適用される。医療施術者は、腫瘍に対する最小線量と随意で最大線量を、そして他の健康な組織に対する最大線量を独立に指定する。その後、治療計画ソフトウェアは、指定された線量拘束値を達成するために治療ビームパラメータのセット(例えば、方向、ビームの総数、ビームのエネルギー)を選定する。次に、線量拘束値が変更されて、チューニング構造が追加されて、そして線量分布が許容可能となるまで治療計画は最適化し直される。完成した治療計画はその後、医療実施システムに送られる。
【0012】
「4次元コンピュータ断層撮影イメージングと治療計画(4-Dimensional Computed Tomography Imaging and Treatment Planning)」(ポール・キール(Paul Keall)、放射線腫瘍学セミナー(Seminars in Radiation Oncology)、第14巻、第1号(1月)、2004、p.81〜90)と題する1つの論文は、4次元CT画像を用いた放射線療法計画の概念を検討している。この論文では、計画最適化ステップは、4次元CTを構成する3次元CT画像の各々に対し実行される1組の別個の3D最適化ステップとして記載されている。
【発明を実施するための最良の形態】
【0013】
本発明は、添付図面の各図において、限定としてではなく、例証として例示される。
【0014】
以下の説明は、本発明のいくつかの実施形態の良好な理解をもたらすために、特定のシステム、構成要素、方法などの例といった多数の具体的な詳細を述べる。しかし、本発明の少なくとも一部の実施形態がこれらの具体的な詳細を伴わずに実施できることは、当業者にとって明らかであろう。他の例で、周知の構成要素または方法は、本発明を不要に曖昧にすることを避けるために、詳述しないか、または単純なブロック図形式で提示する。従って、述べられる具体的な詳細は単に例示的であるにすぎない。特定の具体化は、これらの例示的な詳細から変化しているかもしれないが、依然として本発明の精神と適用範囲の範囲内にあると考えることができる。
【0015】
ロボットベースの画像誘導放射線治療システムに関してここでは検討するが、ここでの方法は、ガントリベース放射線送付システムといった他の形式の放射線治療システムでも使用することができるという点に特に留意しなければならない。また、方法と装置は説明の簡単のためにCTイメージングに関してのみここでは検討されることにも留意しなければならない。ここで検討される方法と装置は、例えば磁気共鳴(MR)、超音波(US)、核医学(NM)陽電子放射断層撮影(PET)、シングルフォトン放射断層撮影(SPECT)などの他の形式の4次元(4D)医療診断画像(解剖学的および/または機能的)を用いて治療計画を作成するために使用することもできる。加えて、ここで検討される「ターゲット領域」は、病理学的または通常の解剖学的組織といった患者の解剖学的特徴を含んでもよく、1つ以上の非解剖学的参照構造を含んでもよい。代替として、ターゲット領域は、医療診断イメージングと患者治療の分野以外の実施形態では解剖学的構造を含む必要はない。
【0016】
図1Aは、本発明の1実施形態に従った放射線治療計画の方法を例示している。本発明の方法は、ターゲット領域と周辺構造の、並進、回転、変形を含む、動きの4次元(4D)CTデータを取得すること(110)と、4次元CTデータを用いて治療計画を作成すること(120)とを含む。4次元CTスキャンデータは、治療計画システムにインポートされるか、または診断用4次元CTイメージングを実行するために使用された治療計画システムにもやはり使用される診断用CTイメージングシステムにすでに存在している。治療計画システムは、医用画像の配布や視聴のためのDICOM規格、および医用画像の上に重ねられた放射線療法情報を視聴するためのDICOM−RT規格に完全に準拠している。
【0017】
4次元は、4空間的次元に対して、3空間的次元と1時間的次元を指すことに留意しなければならない。より具体的には、4次元CTスキャンデータは、3次元(空間)画像の集まりであり、3次元画像の各々は既知の時間的関係を伴い動きサイクル(例えば患者の呼吸サイクル、心周期、動脈拍動などの間)における異なる時点で撮られる。図1Bは、肺60とターゲット腫瘍50を含む患者の胸部領域の4次元CTスキャンの概念的説明図である。図1Bの例示的な4次元CTスキャン10は、患者の呼吸サイクルにおける4つの時点、CT時間1、CT時間2、CT時間3、CT時間4に撮られた4つの3次元CTを含む。3次元CTスキャンの各々は、それと関係づけられ呼吸サイクルのサブセットを記述する、例えば、サイクルをインデックス0(時間1)=全呼気、インデックス100(時間4)=全吸気、そして時間2、時間3の2つの中間インデックスに分割する、インデックスを有している。図1Bにおける画像の検査からわかるように、腫瘍50は、この場合、時間1のCT画像における全呼気時のその位置と形状に対して時間4の全吸気時のCT画像において変位し変形している。
【0018】
1実施形態において、4次元CTスキャンデータは、4次元CTスキャナ、例えばゼネラル・エレクトリック(General Electric Corp.)社による製造の4次元CTスキャナを用いて生成される。代替として、他の4次元CTスキャナを使用することもできる。4次元CTスキャナは、呼吸サイクルにおける患者の位置の瞬時的測定を行うように機器構成されている、肺活量計、歪み計、光学式トラッカーなどといった装置を含む。スライスが取得される時、現在の呼吸測定位置が記録される。この測定値は、呼吸サイクルの所与の測定値に最も近いインデックスを備える3次元CTスキャンの1つにCTスライスを置くために使用される。3次元CTスキャンにより、スライスのいくつかのサブセットは同時に取得されるかもしれないが、スキャンが行われる間、患者に息を止めるように指示することによって呼吸サイクルを選択的に停止させる際以外、例えば呼吸サイクルなどの物理的プロセスにスライス取得のタイミングを索引づけようとする試みは存在しない。
【0019】
4次元CTスキャンデータは、単一の動きサイクルにおいて取得されるか、または複数の動きサイクルにわたり取得されてもよい。別の実施形態において、2個以上の従来の3次元CT画像が呼吸サイクルにおける異なる時点(例えば吸気終末および呼気終末)での息こらえの間に取得することができる。従って、用語「4次元CTスキャンデータ」はここで、スキャンデータを取得する方法に関わらず、動きサイクルにおける異なる時点を表現する2個以上の3D画像のセットを意味するために使用される。
【0020】
ステップ121において、ターゲット領域は、例えば以下でさらに詳述するように図2に例示された通り、CT画像で描画される。1実施形態において、4次元CT画像のうちの1個がターゲット領域と危険構造の描画に使用される。代替として、描画は、息こらえ(すなわち患者が各自の息をこらえる)により取得された標準のCT画像を用いて実行されるてもよい。さらに別の実施形態では、描画は、例えば磁気共鳴映像法(MRI)を用いて、異なるモダリティの画像で実行されてもよい。さらに図1Aに言及すれば、次に、動き(例えば変形)モデルが定義され、それにより治療領域内のターゲット領域と周辺構造の移動がわかる(ステップ122)。モデルは例えば、ノンリジッドレジストレーション(non-rigid registration)技法を用いて定義することができる。ノンリジッドレジストレーション技法は当業において周知であり、従って、より詳細な検討は提示しない。
【0021】
その後、線量分布が動きモデルを用いて計算される(ステップ126)。線量分布が計算される時、動きモデルは、動きサイクルにおける各時点で費やされた相対的な時間量に従った重み(以下でさらに詳細に検討するように)とともに、(例えば呼吸に起因する)動きを考慮に入れた線量推定値を付与するために適用される。このようにして、治療中の動き移動を考慮に入れた治療線量の観点を得ることができる。治療する医師または施術者はその後、この線量情報を使用して治療マージンを変更する、かつ/または必要に応じて治療計画を最適化し直すことができる(ステップ130)。治療計画はまた、最適化の後に、線量分布へのターゲット領域の動きの影響を見るために再検討される(ステップ140)。図1Aの方法ステップの実施形態のさらなる詳細は以下で提示する。
【0022】
図2は、描画が実行されるCT画像のスライスを表示する治療計画システムのグラフィカル出力の概念的説明図である。CT画像200の説明図は、治療の標的とされるターゲット(例えば、腫瘍、病変、脈管奇形などといった病理解剖学的組織)210だけでなく、ターゲット領域の近辺に位置づけられる危険領域220を含む。治療計画ソフトウェアは、危険領域220のまわりの危険領域輪郭225とターゲット領域210のまわりのターゲット領域輪郭215を生成させる。ユーザは、対応する輪郭を生成するために治療計画ソフトウェアによって使用される表示装置上で点(例えば、図2の等高線上のドットのいくつか)を手動で描画する。ターゲット領域210への指定最小線量と危険領域220への最大線量に基づき、治療計画ソフトウェアは、ターゲット領域210について線量等高線(dose isocontour)230を生成する。線量等高線230は、ターゲット領域210について指定された処方線量の任意の線量パーセンテージ(例えば60%、70%、80%など)を表現する。理想的には、線量等高線230はターゲット領域210の輪郭に完全に合致しなければならない。しかし、場合によっては、治療計画ソフトウェアによって生成された線量等高線230は、最適ではなく、図2に例示されたように危険領域220の部分を包含するこもある。
【0023】
効果的な放射線治療システムのための2つの主要な要求条件は、均質性とコンフォーマリティ(conformality)である。均質性は、線量容積ヒストグラム(DVH)によって特徴づけられるターゲット領域の容積にわたる放射線量の一様さである。ターゲット領域210についての理想的なDVH300は、図3に例示されたように、矩形の関数となるはずであり、その場合、線量はターゲット領域210の容積にわたり処方線量の100パーセントである。また、理想的な場合、線量は他の場所ではゼロになる。危険領域220についての望ましいDVH400は図4に例示されたプロファイルを有するはずであり、その場合、危険構造の容積は処方線量のうちの可能な限り少ないものを受ける。コンフォーマリティは、危険な隣接する構造への損傷を回避するために放射線量がターゲット領域(例えば腫瘍)の形状と範囲に合致する(適合する)程度である。より具体的には、ターゲット領域VOIに関するコンフォーマリティは、処方線量(Rx)以上を受ける、すなわちVOIの内部に含まれる領域の量の程度である。コンフォーマリティは、コンフォーマリティインデックス(CI)=(≧Rx線量時の全容積)/(≧Rx線量時のターゲット容積)を用いて測定することができる。完全なコンフォーマリティは、CI=1となる。治療計画ソフトウェアを使用する従来の放射線療法治療により、臨床医は、治療線量(例えば3000cGy)の適用のための対応するVOIについて線量等高線を識別する。
【0024】
いったんターゲット領域と回避構造が描画されると(図1Aのステップ121)、線量拘束値が、図5に例示されたようにこれらの構造に適用される。図5は、治療計画システムのためのユーザインタフェースの1実施形態を例示している。治療計画インタフェース500を用いて、ユーザは、ターゲット領域210の最小線量拘束値と危険領域220の最大線量拘束値を決めることができる。例えば、2400cGyの最小線量拘束値がターゲット領域について設定され、1200cGyの最大線量拘束値が図5でボックス530に図示された右目危険領域について設定される。図5のユーザインタフェースの右側の付近には、ターゲット容積DVH540と危険容積DVH550がある。例えば、上部のDVHはターゲット領域に対応し、下部のDVHは右目危険領域に対応する。ユーザインタフェース500はまた、ボックス555において、例えば、合計MU560とビーム数570、全部の現在既存のビームのうちの最小の非ゼロMU、および最大MUといったビーム統計を表示する。
【0025】
治療計画は、線量拘束値を最善に満足させるために治療ビームパラメータのセット(例えば、方向、ビームの総数、ビームのエネルギー)を計画アルゴリズムが選定するのを可能にすることによって、作成され最適化される。ユーザインタフェース500はまた、例えば、合計MU560とビーム数570、全部の現在既存のビームのうちの最小の非ゼロMU、最大MUといった、これらのビーム統計の一部を表示する(ボックス555)。
【0026】
図6は、線量容積ボクセルの中心での線量計算に使用されるジオメトリの1実施形態を例示している。ボクセルの中心は位置“p”として表されている。ビーム軸上でpに最も近い点は“c”として表されている。ビームの原点は“n”として表されている。pからcまでの距離は“d”である。図6が2D線量計算ジオメトリの説明図であることに留意しなければならない。代替として、3Dジオメトリが、例えば、図6に図示された2Dグリッドの代わりに3Dグリッドを用いて構成することができる。
【0027】
線量計算は、動きの考慮がなければ、計画アルゴリズムによってランスルーされる各種の異なるパラメータから、治療ビームから組織への放射線量を計算するために大量データ記憶モデルを用いて実行することができる。そのような実施形態において、実効深さの配列が、CT数を電子密度と関連づけるモデルとともに、ビームが通過する組織のCT数を用いて、各々のビーム軸に沿って構成される。1実施形態において、以下の単純化する仮定を立てることができる。(1)全部のエネルギーは局所的に蓄積される、すなわち荷電粒子平衡が仮定される、そして(2)コリメータと計算点pとの間の組織の実効深さは放射線ビーム源のコリメータとビーム軸上の対応する点cとの間の実効深さと同じである。線量は、線量計算容積を容積ピクセル、つまりボクセルに分割することによって離散化させることができる。各ボクセルについて、各々の治療ビームに関する線量は、計算され追加される。単一のビームについての放射線量の式は以下の通りである。
【0028】
D(p)=MU×OP(s)×TMR(s,e(c))×OCR(d,s,e(c))×(800/|nc|)2 (1)
【0029】
式中、D(p)はビームによって点pに送付されるcGy単位での放射線量であり、MUは(ビームがイネーブルにされる間の時間量と線形に関連づけられた)ビームのモニタ単位の数であり、OPは出力係数であり、TMRは組織最大線量比(tissue maximum ratio)である、OCRは軸外補正比(off-axis correction ratio)であり、sは照射野寸法(field size)であり、dはビーム中心軸からのpの距離であり、そしてe(c)はコリメータとcとの間の組織の実効深さである。
【0030】
いったん線量が計算されると、それは線量マスクアーキテクチャを用いて表現することができる。線量マスクは各ビームがマスクを有する場合の表現であり、マスク要素は各々、個別の空間位置と、その位置でビームによって寄与されるMU当たりの線量の量を表している。例示的な実施形態では、約1200の候補ビームで始まる逆方向計画アルゴリズムが使用される。ビームのこの集合は、ノードとも呼ばれることがあるほぼ100のオーダの個別の原点を有し、それらは治療の間にビームを生成する放射線源によってトラバースされる離散的な位置である。1実施形態において、これらのノードは、図7に例示されたように患者110の一部(例えば頭)を取り囲んでいる半球状シェル730にある程度似た形状をとる。代替として、ノードは他のジオメトリ的形状(例えば楕円)を形成してもよい。
【0031】
上に提示した式(1)が線量計算方法論のほんの1例にすぎないことに留意しなければならない。単一の点に放射線ビームによって送付される線量を計算するための他の方法論、例えば重ね合せ・たたみ込み(superposition convolution)やモンテカルロシミュレーションが、当業において周知であり、D(p)を導き出すために代替的にそれらを適用することができる。
【0032】
空間ノード735は、図7において“+”記号によって表現され(数個だけ例示されている)、放射線源705が患者内部のVOIへの放射線量を停止させる位置と送付させる位置を指示している。1実施形態において、治療計画の送付の間に、ロボットアーム725は、予め定義された経路に追従して個々すべての空間ノード735に放射線源705を移動させるために使用される。代替として、ガントリといった他の形式の機構が放射線源705を移動させるために利用される。たとえある特定の治療計画が特定の空間ノード735からの放射線量の送付を要求しないとしても、放射線源705はやはりその特定の空間ノード735に赴くかもしれない。完全なノードセットは例示または検討されたものよりも多いか、または少ない空間ノード735を含み得ることを理解しなければならない。
【0033】
各ノード735は、複数のビーム配向をビームの治療計画セットに寄与させることができる。図8は、ノードセットのうちの2個のノード810、820を例示しており、ノードの各々は最適化のために例示的な12の候補ビームに寄与している。ビームの各々の中心軸830だけが図8に図示されている。しかし、各ビームは、その軸を中心とする3次元(例えば円錐)領域において線量に寄与する。図8に例示された実施形態において、ノード810、820の候補ビームはコンフォーマル計画に基づくビーム送付を表現しており、その場合、放射線ビームはターゲット領域内の種々の点を通過するか、またはそこで終端する。コンフォーマル計画において、一部の放射線ビームは3次元空間における共通の点で交差または集束することもあればしないこともある。言い換えれば、送付された放射線ビームは、ビームが必ずしも単一の点で、つまりアイソセンタで集束するわけではないということから、非アイソセンタ的(non-isocentric)である。これは図9の3次元斜視図においてより容易にわかるように、ここで例示的ビーム901、902、903、904はターゲット領域210に交差しているが、互いに単一の点で集束していない。
【0034】
この例示的な実施形態において、ビームのジオメトリは、治療ターゲット領域の周辺または内部のどちらかにある12のランダムな点を選択することによって作成される。ビーム重みの最適化を実行するために(以下でさらに詳細に検討する通り)、線量容積におけるすべてのボクセルに各々のビームによって単位時間当たりにどれほどの線量が付与されるかを知っている必要がある。それゆえ、各ビームについて、式(1)おいて上述した計算の結果は、場所(線量容積ボクセルのインデックス)やその場所での単位時間当たりの線量を与える要素から構成されるリンクされたリストとして保存される。
【0035】
動き(例えば変形)モデルを定義するために、CT画像が参照画像であると指定される。参照CT画像における位置がx0として指示される。4次元CTセットを構成するN個の付加的なCT画像があると仮定しよう。x0+Δiが参照画像におけるx0と同じ解剖学的点を画像iにおいて表現するように、ベクトル{Δ1(x0)...ΔN(x0)}の集合が導き出される。3次Bスプラインと強度に基づく費用関数(intensity-based cost function)の組が変形照射野Δi(x)の集合を求めるために使用される。使用できる例示的な強度に基づく費用関数は、J.B.ウェスト(J.B.West)、C.R.モーラー・ジュニア(C.R.Maurer,Jr.)およびJ.R.ドーリー(J.R.Dooley)の「腹部CT画像のための点および強度に基づくハイブリッド可変形レジストレーション(Hybrid point-and-intensity-based deformable registration for abdominal CT images)」(メディカル・イメージング2005:イメージ・プロセッシング紀要SPIE5747(Medical Imaging 2005: Image Processing Proc.SPIE 5747)、p.204〜211)に記載されている。代替として、他の強度に基づく費用関数を使用することもできる。
【0036】
ステップ122において動きモデルを定義し終えると、重みWi;Σii=1が各画像に割り当てられる(ステップ123)。Wiモデルは、動きサイクルの各部分でターゲット領域によって費やされる相対時間である。動きサイクルは、例えば呼吸に起因するといった本質的に周期的であるターゲット領域と近傍の構造のあらゆる移動、回転および/または変形を指す。最も多くの時間を取るサイクルの部分の間に、より多くの放射線量が吸収されるであろう。動きが呼吸に起因する場合、Wiは、例えば、呼吸サイクルの種々の相において典型的な人間によって費やされる相対的な時間量を記述している標準的な表または公式を用いて計算することができる。代替として、Wiは特定の患者について測定された演繹的な呼吸データから導出される。同様に動きが他の要因(例えば心臓の動き)に起因する場合、Wiは特定の患者について測定された対応する動きの(例えば心臓の)データから導出される。
【0037】
ゼネラル・エレクトリック会社による製造の4次元CTスキャナといった一部のCTスキャナの場合、4次元CTセットを構成する画像は、等しい動き間隔ではなくて、等しい時間間隔に分離される。この場合、Wi=1/Nが全部のiに使用され、ここでNは4次元CTセットを構成する画像の数である。代替として、4次元CTを構成する画像が等しくないが既知の時間間隔に分離されている場合、Wiは各画像iの時間間隔の大きさに比例し、Wiの合計が1に等しくなるように正規化される。各ビームについて、ビームの中心軸に沿った実効深さベクトルViが各画像iについて導出される(ステップ124)。Viを導出する際に、治療の間に使用される動的ターゲット追跡法が存在する場合、フィデューシャル重心または他の標識構造に追従するためにビームの移動に注目できるであろう。動的ターゲット追跡は当業において既知であり、従って、より詳細な説明はしない。動的ターゲット追跡技法は、例えば、米国特許第5207223号において検討されている。代替として、他の動的追跡技法を使用することもできる。
【0038】
この場合、ビームの線源とターゲット座標は両方とも、治療の間の動的追跡の効果を模倣するために、追跡されている対象のオフセットだけ増分される。それゆえ、1実施形態では、4D線量分布が計算される前に3つのステップが要求される。すなわち、(例えば、動的ターゲット追跡方法が使用されるべき場合)治療の間のビームの予測された移動に従って深さベクトルViを定義し(ステップ124)、患者が呼吸サイクルの各部分で費やすと予測される相対的な時間量を記述するWiを定義し(ステップ123)、そして例えばノンリジッドレジストレーション技法を使用することによって、変形照射野Δiを生成する(ステップ125)ことである。ステップ123、124、125が図1Aに例示された順序で実行されなくてもよいことに留意しなければならない。ステップ123〜125が完了すると、4D線量計算を実行することができ(ステップ126)、それは呼吸の動きを次の通り考慮している。
【0039】
i(p)=Wi×MU×OP(s)×TMR(s,ei(c))×OCR(p+Δi(p),s,ei(c))×(800/|nc|)2 (2)
【0040】
式中、Di(p)は、呼吸サイクルの部分iの間に点pにビームによって付与されるcGy単位での線量である。式(2)において、変形が2通りで考慮されていることに留意されたい。実効深さeが使用されている全部の場所では、それを量ei、すなわち中心軸ベクトルViから探索された実効深さと置換できる。これは、ビームによってトラバースされる組織の量と形式が、身体が変形するにつれて変化するという事実を考慮しており、そしてビームはターゲットを追跡するために移動させられ、それゆえターゲット点での減衰作用の変動につながる。しかしほとんどの場合でより支配的な作用は、軸外補正比(OCR)が変形の量を考慮するために修正されているという事実である。例えば、呼吸サイクルにおけるある点でビーム軸の近くにある点は、サイクルの別の点ではさらに離れて移動するかもしれない。移動の量がビーム(例えば、放射線源から800mmで5mmないし60mmの直径を有する円錐ビーム)の横断面に関して著しい場合、放射線量は著しく変化するかもしれない。一般に、この第2の作用は、放射線量の変化のモデル化に関してよりいっそう有意義である。また、Δiが表現される座標系は容易に変化し得ることも留意しなければならない。例えばフィデューシャルコンフィギュレーションの重心といった対象を動的に追跡するためにビームが移動させられている上述の状況において、単に各々のΔiから追跡の動きを記述するオフセットを減算することによって、Δiをこの座標系に参照させることができる(直観的に言えば、ある点が組織の変形のためにビームに対して10mm上方へ移動した場合、しかしビームもまたターゲットを追跡するために10mm上方へ動かされれば、事実上、点はビームに対して移動していない)。Diを計算し終えると、D(p)をD(p)=Σiii(p)として計算することができる。
【0041】
上記の定式化において、線量計算はすべて、基準座標系に、すなわち参照画像であると指定されたCT画像のそれに参照される。それゆえ、各ビームについて、上述の通り動きモデルを用いて線量マスクを構成するか、または参照画像だけでいかなる動きモデルも用いずに標準の線量マスクを計算することができる。
【0042】
図1Aで述べた通り、最適化ステップ130は動きモデルの生成後に実行することができる。最適化ステップは、動きサイクル(例えば呼吸)の間のターゲット領域の動き(例えば変形)と線量分布の変化を考慮に入れる。最適化プロセスは、治療ビームパラメータのセット(ビームの集合、各ビームの位置と配向、各ビームの照射野寸法と随意の形状、各ビームの放射線の相対量または絶対量)を決定し、それによりこの治療ビームパラメータのセットによって生じる線量分布がユーザ指定線量拘束値のセット(ターゲット領域への最小線量と随意で最大線量、および種々の健康な組織への最大線量)を最適化する。動きの影響を最適化するために、各ビームの照射野寸法と形状、および各ビームの放射線の量は、動きサイクルにおける時間点とともに変化する。反復的アルゴリズムおよび非反復的アルゴリズムといった各種の最適化アルゴリズムを使用することができる。反復的または非反復的アルゴリズム(例えばシンプレックスアルゴリズム)のどちらかにより、各ビームについての線量/MUの離散化推定値を与える線量マスクのセットが入力として使用される。その計画タスクに望ましい線量分布を決定するためにユーザにより入力された線量拘束値のセットもまた、治療計画アルゴリズムに供給される。それゆえ、最適化ステップ130は、線量マスクを構成するために動きモデルが使用されるか否かによって影響を受けない。しかし、動きモデルが考慮された場合、結果的に得られる線量分布は、動きサイクルの間のターゲット領域の動きとビームの動きの既知の特徴を用いて自動的に最適化されている。反復的アルゴリズムとシンプレックスアルゴリズムといった最適化アルゴリズムが当業において既知であることに留意しなければならない。従って、さらなる詳細な検討は提示しない。
【0043】
本発明の方法は逆方向計画、つまりコンフォーマル計画に関して上で検討しているが、治療計画の一部または全部は順方向計画(forward planning)技法を用いて作成することもできる。順方向計画では、治療計画システムのユーザ(例えば医療施術者)は、ビームの方向とビームの強度を選択し、その後、治療計画アルゴリズムが結果的に得られる線量分布を計算し表示する。より具体的には、ユーザは、送付システム自体の拘束値によって決定された利用可能なビームのサブセットから選択して、放射線医療実施システムによって生成される放射線ビームについて特定の方向と強度を指定する。ユーザは、各自の経験に基づき、ビームの方向と強度、または重みに値を「推測」または割り当てることができる。その後、治療計画システムは結果的に得られる線量分布を計算する。線量分布を評価することによって、ユーザは、線量分布を改善する試みにおいてビームの各自の選択を手動で変更することができる。ユーザに与えられるフィードバックは、その線量プロフィールが許容できると考えられるまでビームを取り除き変更しまたは追加することができる、現在の計画に対応した線量プロフィールである。結果的に得られる線量分布を再検討した後、ユーザは治療パラメータの値を調整するかもしれない。システムは新しい結果的に得られる線量分布を再計算する。このプロセスは、所望の分布と比較して、ユーザが結果的に得られる線量分布によって満足するまで、繰り返される。
【0044】
1実施形態において、図1Aの再検討ステップ140が、単一の画像を用いて最適化された治療計画の線量分布に対する動き(例えば変形)の影響を見るために、最適化の後に実行される。そのために、4次元CTセットを用いた動き(例えば変形)モデルが構築され、元の計画からのビームジオメトリと重みづけ(ビーム当たりMU)を用いたビーム線量マスクが再計算される。このようにして、元の計画やその再計算された4DバージョンについてのDVHと線量等高線は並べて再検討することができ、それにより医師または施術者は動きが計画送付の結果に何らかの臨床的影響を及ぼすかどうかについて、判断を下すことができる。答えが「はい」または「恐らく」である場合、次のステップは計画ステップに戻り、更新された線量情報を用いて最適化し直すことになるであろう。
【0045】
図10は、本発明の実施形態が具体化される放射線治療を実行するために使用される治療システム1700の1実施形態を例示している。図示された治療システム500は、診断用イメージングシステム2000、治療計画システム3000、医療実施システム4000を含む。
【0046】
診断用イメージングシステム2000は、以降の診断、治療計画および/または医療実施に使用されるVOIの医療診断画像を生成することができるシステムを表す。例えば、診断用イメージングシステム2000は、コンピュータ断層撮影(CT)システム、磁気共鳴映像(MRI)システム、陽電子放射断層撮影(PET)システム、超音波システムなであろう。検討の簡単のために、診断用イメージングシステム2000は、CTX線イメージングモダリティに関して検討する。しかし、上記のような他のイメージングモダリティもまた使用することができる。
【0047】
診断用イメージングシステム2000は、イメージングビーム(例えば、X線、超音波波、無線周波数波など)を生成するイメージング線源2010および、イメージング線源2010によって生成されたビームまたは、イメージング線源からのビームによって刺激された二次ビームまたは放出(例えばMRIまたはPETスキャンにおける)を検出し受波するイメージング検出器2020を含む。1実施形態において、イメージングシステム2000は上述のように4次元CTスキャナを表す。1実施形態において、診断用イメージングシステム2000は、2個以上の診断用X線源と2個以上の対応するイメージング検出器を含んでもよい。例えば、2個のX線源が、撮像される患者の回りに配置され、互いに角度分離して固定され(例えば、90°、45°など)、X線源の反対側にあるイメージング検出器に向けて患者を経て照準を定める。単一の大型イメージング検出器または複数のイメージング検出器を使用することもでき、それらは各々のX線イメージング線源によって照射される。代替として、他の数や機器構成のイメージング線源とイメージング検出器を使用することもできる。
【0048】
イメージング線源2010とイメージング検出器2020は、イメージング操作を制御し画像データを処理するディジタル処理システム2030に結合されている。診断用イメージングシステム2000は、ディジタル処理システム2030、イメージング線源2010、イメージング検出器2020の間でデータとコマンドを転送するためのバスまたは他の手段2035を含む。ディジタル処理システム2030は、1個以上の汎用プロセッサ(例えばマイクロプロセッサ)、ディジタル信号プロセッサ(DSP)といった専用プロセッサまたは、コントローラまたはフィールドプログラマブルゲートアレイ(FPGA)といった他の形式の装置を含む。ディジタル処理システム2030はまた、メモリ、記憶装置、ネットワークアダプタなどといった他の構成要素(図示せず)も含んでもよい。ディジタル処理システム2030は、例えばDICOM(医用ディジタル画像と通信)フォーマットといった標準フォーマットでディジタル診断画像を生成するように機器構成することもできる。他の実施形態において、ディジタル処理システム2030は、他の標準または非標準ディジタル画像フォーマットを生成するかもしれない。ディジタル処理システム2030は診断画像ファイル(例えば上記のDICOMフォーマットファイル)をデータリンク1500によって治療計画システム3000に伝送することができ、データリンクは、例えば、直接リンク、ローカルエリアネットワーク(LAN)リンクまたはワイドエリアネットワーク(WAN)リンク(例えばインターネット)としてよい。加えて、システム間で転送される情報は、遠隔診断または治療計画構成におけるように、システムを接続している通信媒体間で引出しまたは送付することができる。遠隔診断または治療計画において、ユーザは、システムユーザと患者との間の物理的分離の存在にも関わらず、本発明の実施形態を診断または治療計画に利用することができる。
【0049】
治療計画システム3000は、上述した4次元CTデータといった画像データを受け取り処理する処理装置3010を含む。処理装置3010は、1個以上の汎用プロセッサ(例えばマイクロプロセッサ)、ディジタル信号プロセッサ(DSP)といった専用プロセッサまたは、コントローラまたはフィールドプログラマブルゲートアレイ(FPGA)といった他の形式の装置を表す。処理装置3010は、例えば記憶装置3030および/またはシステムメモリ3020から処理装置3010にロードされる、ここで検討された方法の操作を実行するための命令を実行するように機器構成される。
【0050】
治療計画システム3000はまた、バス3055によって処理装置3010に結合され、処理装置3010によって実行される情報と命令を記憶するための、ランダムアクセスメモリ(RAM)または他の動的記憶装置を含み得るシステムメモリ3020を含む。システムメモリ3020はまた、処理装置3010による命令の実行中に一時的な変数または他の中間情報を記憶するために使用される。システムメモリ3020はまた、処理装置3010のための静的情報と命令を記憶するための、バス3055と結合された読出し専用メモリ(ROM)および/または他の静的記憶装置を含むことができる。
【0051】
治療計画システム3000はまた、例えば上述した4次元CTデータといった情報とデータを記憶するための、バス3055に結合された1個以上の記憶装置(例えば磁気ディスクドライブまたは光学ディスクドライブ)を代表とする、記憶装置3030を含む。記憶装置3030はまた、ここで検討された治療計画方法を実行するための命令を記憶するために使用される。
【0052】
処理装置3010はまた、情報(例えばVOIの2次元または3次元表現)をユーザに表示するための、陰極線管(CRT)または液晶表示装置(LCD)といった表示装置3040に結合される。キーボードといった入力装置3050が、処理装置3010に情報および/またはコマンド選択を伝えるために処理装置3010に結合される。1個以上の他のユーザ入力装置(例えばマウス、トラックボールまたはカーソル方向キー)もまた、方向情報を伝え、処理装置3010のためのコマンドを選択し、表示装置3040でのカーソル移動を制御するために使用される。
【0053】
治療計画システム3000が治療計画システムのわずか1例だけを表しており、それは多くの異なる機器構成とアーキテクチャを有することができ、それらは治療計画システム3000よりも多くの構成要素または少ない構成要素を含むことができ本発明により使用されることは理解されるであろう。例えば、一部のシステムはしばしば、周辺バス、専用キャッシュバスなどといった複数のバスを有する。治療計画システム3000はまた、DICOMインポート(それにより画像が融合されターゲット領域が種々のシステム上で描画され、その後、計画と線量計算のために治療計画システムにインポートされるようになる)、ユーザが治療計画を立て各種のイメージングモダリティ(例えばMRI、CT、PETなど)のいずれか1つで線量分布を見ることを可能にする拡張された画像融合能力をサポートするためにMIRIT(医用画像レビュー・インポートツール)を含むこともできる。治療計画システムは当業において既知であり、従って、さらなる詳細な検討は提示しない。
【0054】
治療計画システム3000はそのデータベース(例えば記憶装置3030に記憶されたデータ)を医療実施システム4000といった医療実施システムと共有することができ、それにより医療実施の前に治療計画システムからエクスポートする必要がなくなる。治療計画システム3000はデータリンク2500によって医療実施システム4000に結合され、データリンクは、データリンク1500に関して上述したように直接リンク、LANリンクまたはWANリンクである。データリンク1500、2500がLANまたはWAN接続として具体化される場合、診断用イメージングシステム2000、治療計画システム3000および/または医療実施システム4000のいずれかは、それらのシステムが互いに物理的に離れているように、分散した場所にあることに留意しなければならない。代替として、診断用イメージングシステム2000、治療計画システム3000および/または医療実施システム4000のいずれかを1つ以上のシステムにおいて互いに統合することもできる。
【0055】
医療実施システム4000は、治療計画に従ってターゲット容積に規定の放射線量を投与する治療的および/または外科的放射線源4010を含む。医療実施システム4000はまた、放射線源に関して患者を位置決めするために上述した診断画像によるレジストレーションまたは相関のために患者の容積(ターゲット容積を含む)の治療中画像をキャプチャするイメージングシステム4020も含む。医療実施システム4000はまた、放射線源4010、イメージングシステム4020、治療台4040といった患者支持装置を制御するディジタル処理システム4030も含んでいる。ディジタル処理システム4030は、1個以上の汎用プロセッサ(例えばマイクロプロセッサ)、ディジタル信号プロセッサ(DSP)といった専用プロセッサまたは、コントローラまたはフィールドプログラマブルゲートアレイ(FPGA)といった他の形式の装置をも含む。ディジタル処理システム4030はまた、メモリ、記憶装置、ネットワークアダプタなどといった他の構成要素(図示せず)も含む。ディジタル処理システム4030は、バス4045または他の形式の制御および通信インタフェースによって放射線源4010、イメージングシステム4020、治療台4040に結合されている。
【0056】
説明した治療システム1700が例示的なシステムを表しているにすぎないことに留意しなければならない。システム1700の他の実施形態は、多くの異なる機器構成やアーキテクチャを有することができ、より少ないかまたは多い構成要素を含むことができる。
【0057】
1実施形態において、図11に例示された通り、医療実施システム4000は、カリフォルニア州のアキュレイ・インコーポレーテッド社によって開発されたCYBERKNIFE(登録商標)システムといった(例えば放射線手術を実行するための)画像誘導ロボットベース放射線治療システムである。図11において、放射線源4010は、患者の回りの作業容積(例えば球)において多くの角度から送付されるビームにより病理解剖学的組織(ターゲット領域または容積)を照射するLINAC4051を位置決めするために複数の(例えば5以上の)自由度を有するロボットアーム4052の端部に取り付けられた直線加速器(LINAC)4051によって表現される。治療は、単一のアイソセンタ(集束点)か、複数のアイソセンタを備えるか、または非アイソセンタ手法(すなわち、ビームは、病理学的ターゲット容積と交差する必要があるにすぎず、図9に例示されたようにターゲット領域の内部の単一の点つまりアイソセンタに必ずしも集束するわけではない)によるビーム経路を伴う。治療は、治療計画の間に決定された通り単一の期間(単一部分)または、少数の期間のどちらかで実施される。医療実施システム4000により、1実施形態において、放射線ビームを、ターゲット容積の術中位置と術前治療計画段階の間のターゲット容積の位置とのレジストレーションを取るために患者を堅い外部フレームに固定することなく治療計画に従って送ることができる。
【0058】
図11において、イメージングシステム4020は、X線源4053、4054やX線画像検出器(撮像装置)4056、4057によって表現される。1実施形態において、例えば、2個のX線源4053、4054は、2つの異なる角位置(例えば、90°、45°などに分離された)から患者を経てイメージングX線ビームを投射するために、整列され、治療台4050の上で患者を経てそれぞれの検出器4056、4057に向けて照準を定められる。別の実施形態では、各々のX線イメージング線源によって照射されるはずである単一の大型撮像装置を使用することができる。代替として、イメージング線源と撮像装置の他の数や機器構成を使用することができる。
【0059】
ディジタル処理システム4030は、医療実施システム4000の内部で治療台4050の患者を整列させるためにイメージングシステム4020から得られた画像を術前治療計画画像とレジストレーションを取り、ターゲット容積に関して放射線源を精確に位置決めするアルゴリズムを実装する。
【0060】
治療台4050は、複数の(例えば5以上の)自由度を有する別のロボットアーム(図示せず)に結合される。治療台アームは、5の回転自由度と1のほぼ垂直な直線自由度を有する。代替として、治療台アームは、6の回転自由度と1のほぼ垂直な直線自由度または少なくとも4の回転自由度を有する。治療台アームは、柱または壁に垂直に取り付けられるか、または台、床または天井に水平に取り付けられる。代替として、治療台4050は、カリフォルニア州のアキュレイ・インコーポレーテッド社によって開発されたアクスム(Axum)(登録商標)治療台といった別の機械的機構の構成要素であるか、または当業者に既知の別の形式の従来の治療台である。
【0061】
代替として、医療実施システム4000は、別の形式の医療実施システム、例えばガントリベース(アイソセンタ方式)の強度変調放射線療法(IMRT)システムである。ガントリベースシステムでは、放射線源(例えばLINAC)は、それが患者のアキシャルスライスに対応する平面で回転するような方式でガントリに取り付けられている。放射線はその後、回転の円形平面上のいくつかの位置から送付される。IMRTでは、放射線ビームの形状はビームの一部がブロックされ、それにより患者に入射する残りのビームが既定の形状を有することになる、多分割コリメータによって決められる。結果的に得られるシステムは、線量分布をターゲット領域に送付するためにアイソセンタで互いに交差する任意に整形された放射線ビームを生成する。IMRT計画において、最適化アルゴリズムは主ビームのサブセットを選定し、患者が各々のサブセットにさらされなければならない時間量を決定し、それにより処方された線量拘束値は最善に満たされる。1つの特定の実施形態において、ガントリベースシステムは、ジンバル式放射線源ヘッドアセンブリを有する。
【0062】
ここに説明された方法と装置は医療診断イメージングと治療の使用のみに限定されないことに留意しなければならない。代替的な実施形態において、ここでの方法と装置は、産業用イメージングや材料の非破壊試験(例えば、自動車産業におけるエンジンブロック、航空産業における機体、建設業における溶接部、石油産業におけるドリルコア)および地震測量といった医療技術分野以外の用途においても使用される。そのような用途では、例えば、「治療」は一般に、ビーム(例えば放射線、音響など)の適用といった治療計画システムによって制御される操作の実現を指すものであって、また「ターゲット」は非解剖学的対象または領域を指す。
【0063】
本発明の実施形態は各種の操作を含み、それらはここで説明されている。これらの操作は、ハードウェア構成要素、ソフトウェア、ファームウェアまたはそれらの組合せによって実行される。ここに説明された種々のバスによって供給される信号のいずれも、他の信号と時間多重化されて、1個以上の共通バスによって供給することができる。さらに、回路構成要素またはブロック間の相互接続は、バスまたは単一の信号線として図示されている。バスの各々は代替的に1つ以上の単一の信号線とすることができ、単一の信号線の各々は代替的にバスとすることができる。
【0064】
特定の実施形態は、機械可読媒体に記憶された命令を含むコンピュータプログラム製品として具体化することができる。これらの命令は、説明した操作を実行する汎用または専用プロセッサをプログラムするために使用される。機械可読媒体は、機械(例えばコンピュータ)によって可読な形態(例えば、ソフトウェア、処理アプリケーション)において情報を記憶または伝送するためのあらゆる機構を含む。機械可読媒体は、以下に限らないが、磁気記憶媒体(例えばフロッピー(登録商標)ディスク);光学記憶媒体(例えばCD−ROM);光磁気記憶媒体;読出し専用メモリ(ROM);ランダムアクセスメモリ(RAM);消去可能なプログラム可能メモリ(例えばEPROMおよびEEPROM);フラッシュメモリ;電気的、光学的、音響的または他の形式の伝搬信号(例えば搬送波、赤外線信号、ディジタル信号など);または、電子的命令を記憶するために適格な別の形式の媒体を含む。
【0065】
さらに、一部の実施形態を、機械可読媒体が複数のコンピュータシステムで記憶され、かつ/またはそれらによって実行される分散コンピューティング環境において実施することができる。加えて、コンピュータシステム間で転送される情報は、遠隔診断/モニタリングシステムにおけるように、コンピュータシステムを接続している通信媒体間で引出しまたは送付することができる。遠隔診断またはモニタリングにおいて、ユーザは、ユーザと患者との間の物理的分離の存在に関わらず、患者を診断またはモニタリングすることができる。加えて、医療実施システムは治療計画システムから遠隔であってもよい。
【0066】
ここでの方法の操作は特定の順序で図示説明したが、各々の方法の操作の順序は変えることができ、それにより特定の操作が逆の順序で実行されるし、または特定の操作が、少なくとも部分的に、他の操作と並行して実行される。別の実施形態において、命令または個別の操作の副次操作は、断続的および/または交番する方式である。さらに、一部の操作は特定の方法の反復の範囲内で繰り返される。
【0067】
上述の明細書において、本発明はその特定の例示的実施形態に関して説明された。しかし、添付の特許請求の範囲に述べられている本発明の幅広い精神および範囲を逸脱することなく、種々の修正および変更がそれらに行い得ることは明白である。従って、明細書および図面は、制限的な意味ではなく例証的な意味において考慮するべきである。
【図面の簡単な説明】
【0068】
【図1A】本発明の1実施形態に従った放射線治療計画の方法を例示している。
【図1B】4次元CTスキャンの概念的説明図である。
【図2】CT画像のスライスを表示する治療計画ソフトウェアのグラフィカル出力を例示している。
【図3】病理解剖学的組織についての理想的なDVHを例示している。
【図4】危険領域についての望ましいDVHの1実施形態を例示している。
【図5】予測放射線量をターゲット領域と危険構造の相対位置に相関づける例示的な線量分布図のグラフィカル表現である。
【図6】線量容積ボクセルの中心での線量計算に使用されるジオメトリの1実施形態を例示している。
【図7】本発明の実施形態に従った、放射線源を配置する空間ノードの集合を含む放射線医療実施システムの作業空間を例示する斜視図である。
【図8】本発明の1実施形態に従った最適化のための候補ビームに寄与する2個のノードを例示している。
【図9】放射線治療プロセスの1実施形態のためのビーム送付の3次元斜視図を例示している。
【図10】本発明の実施形態が具体化される放射線治療を実行するために使用される治療システム1700の1実施形態を例示している。
【図11】画像誘導ロボットベース放射線治療システムの1実施形態を例示している。
【符号の説明】
【0069】
200 CT画像、210 ターゲット、215 ターゲット領域輪郭、220 危険領域、225 危険領域輪郭、230 線量等高線、2000 診断用イメージングシステム、2010 イメージング線源、2020 イメージング検出器、2030 ディジタル処理システム、3000 治療計画システム、3010 処理装置、3020 システムメモリ、3030 記憶装置、3040 表示装置、3050 入力装置、4000 医療実施システム、4010 放射線源、4020 イメージングシステム、4030 ディジタル処理システム、4040 治療台

【特許請求の範囲】
【請求項1】
4次元診断用イメージングデータを受け取ることと、
4次元診断用イメージングデータを用いて放射線治療計画を作成することとを含む、方法。
【請求項2】
4次元診断用イメージングデータは4次元コンピュータ断層撮影(CT)データである請求項1に記載の方法。
【請求項3】
4次元CTデータは複数の3次元画像を含み、複数の3次元画像の各々は動きサイクルにおける異なる点を表現している請求項2に記載の方法。
【請求項4】
複数の3次元画像のうちの1個以上はそれに解剖学的構造が描画されている請求項2に記載の方法。
【請求項5】
放射線治療計画はコンフォーマル計画を含む請求項2に記載の方法。
【請求項6】
当該放射線治療計画を作成することは、
ターゲット領域を描画することと、
4次元CTデータを用いて動きサイクルにわたるターゲット領域の動きを記述している動きモデルを、変形モデルへの入力データとして定義することと、
動きを考慮している動きモデルを用いて複数の治療ビームからターゲット領域への線量分布を計算することとを含む請求項3に記載の方法。
【請求項7】
ターゲット領域の動きは呼吸の動きに起因する変形であり、動きサイクルは呼吸サイクルであり、そして動きモデルは変形モデルである請求項6に記載の方法。
【請求項8】
ターゲット領域は複数の3次元画像のうちの少なくとも1個に描画されている請求項6に記載の方法。
【請求項9】
ターゲット領域は患者の息こらえの間に取得されたCT画像に描画されている請求項6に記載の方法。
【請求項10】
線量分布は、動きモデルを用いて複数の3次元画像のうちの1個である参照CT画像に参照される請求項6に記載の方法。
【請求項11】
動きモデルを定義することは複数の3次元画像のノンリジッドレジストレーションを実行することを含む請求項6に記載の方法。
【請求項12】
複数の3次元画像から導出されたベクトルの集合を用いてターゲット領域の変形照射野の集合を取得することと、
複数の画像の各々について複数の治療ビームの中心軸に沿って実効深さベクトルを導出することと、
動きを考慮している線量推定値を生成するためにターゲット領域が動きサイクルの各部分で費やす時間の分量の推定値に従って複数の3次元画像の各々に重みを割り当てることとをさらに含み、ターゲット領域への線量分布は変形照射野の集合、複数の画像の各々についての実効深さベクトルと複数の3次元画像の各々の重みを用いてさらに計算される請求項6に記載の方法。
【請求項13】
重みは表または定式を用いて計算される請求項12に記載の方法。
【請求項14】
重みは患者について測定された演繹的な動きデータから導出される請求項12に記載の方法。
【請求項15】
線量分布を最適化することをさらに含む請求項12に記載の方法。
【請求項16】
最適化は動きモデルを用いて複数の治療ビームの各々の線量マスクを構成することを含む請求項15に記載の方法。
【請求項17】
最適化は参照画像を用いて標準の線量マスクを計算することを含む請求項15に記載の方法。
【請求項18】
呼吸の動きの影響を考慮している線量分布と影響を無視している別の線量分布とを比較するために最適化の後に治療計画の再検討を実行することをさらに含む請求項15に記載の方法。
【請求項19】
4次元診断用イメージングデータを用いて線量分布を最適化することをさらに含む請求項6に記載の方法。
【請求項20】
それに命令を有する機械可読媒体であって、それらの命令はディジタル処理装置によって実行された時にディジタル処理装置に、
4次元診断用イメージングデータを受け取ることと、
4次元診断用イメージングデータを用いて放射線治療計画を少なくとも部分的に作成することを実行させることを含む、機械可読媒体。
【請求項21】
ターゲット領域を描画する情報を受け取ることと、
4次元CTデータを用いて動きサイクルにわたるターゲット領域の動きを記述している動きモデルを、変形モデルへの入力データとして定義することと、
動きを考慮している動きモデルを用いて複数の治療ビームからターゲット領域への線量分布を計算すること
を実行させる命令をさらに有している請求項20に記載の機械可読媒体。
【請求項22】
複数の3次元画像から導出されたベクトルの集合を用いてターゲット領域の変形照射野の集合を取得することと、
複数の画像の各々について複数の治療ビームの中心軸に沿って実効深さベクトルを導出することと、
動きを考慮している線量推定値を生成するためにターゲット領域が動きサイクルの各部分で費やす時間の分量の推定値に従って複数の3次元画像の各々に重みを割り当てることであって、ターゲット領域への線量分布は変形照射野の集合、複数の画像の各々についての実効深さベクトルと複数の3次元画像の各々の重みを用いてさらに計算される、重みを割り当てる
ことを実行させる命令をさらに有している請求項21に記載の機械可読媒体。
【請求項23】
重みは表または定式を用いて計算される請求項21に記載の機械可読媒体。
【請求項24】
重みは患者について測定された演繹的な動きデータから導出される請求項21に記載の機械可読媒体。
【請求項25】
4次元診断用イメージングデータを用いて線量分布を最適化することを実行させる命令をさらに有している請求項21に記載の機械可読媒体。
【請求項26】
最適化は動きモデルを用いて複数の治療ビームの各々の線量マスクを構成することを含む請求項25に記載の機械可読媒体。
【請求項27】
最適化は参照画像を用いて標準の線量マスクを計算することを含む請求項25に記載の機械可読媒体。
【請求項28】
ターゲット領域の動きを考慮していない別の線量分布を生成することを実行させる命令をさらに有している請求項21に記載の機械可読媒体。
【請求項29】
線量分布を最適化することを実行させる命令をさらに有している請求項21に記載の機械可読媒体。
【請求項30】
4次元診断用イメージングデータは4次元コンピュータ断層撮影(CT)データである請求項20に記載の機械可読媒体。
【請求項31】
4次元診断用イメージングデータを記憶する記憶装置と、
記憶装置に結合されたプロセッサとを備えており、プロセッサは4次元診断用イメージングデータを用いて放射線治療計画を作成する、装置。
【請求項32】
4次元診断用イメージングデータは4次元コンピュータ断層撮影(CT)データである請求項31に記載の装置。
【請求項33】
4次元CTデータを生成する4次元CTイメージングシステムをさらに備えており、プロセッサは4次元CTイメージングシステムから4次元CTデータを受け取るために有効に結合されている請求項32に記載の装置。
【請求項34】
放射線治療計画に従って放射線治療をターゲット領域に送付する放射線源をさらに備える請求項31に記載の装置。
【請求項35】
4次元CTデータは複数の3次元画像を含み、複数の3次元画像の各々は動きサイクルにおける異なる点を表現している請求項31に記載の装置。
【請求項36】
当該放射線治療計画を作成する際に、プロセッサが
ターゲット領域を描画する情報を受け取ることと、
4次元CTデータを用いて動きサイクルにわたるターゲット領域の動きを記述している動きモデルを、変形モデルへの入力データとして定義することと、
動きを考慮している動きモデルを用いて複数の治療ビームからターゲット領域への線量分布を計算すること
を実行するように構成されている請求項35に記載の装置。
【請求項37】
当該放射線治療計画を作成する際に、プロセッサが、
複数の3次元画像から導出されたベクトルの集合を用いてターゲット領域の変形照射野の集合を取得することと、
複数の画像の各々について複数の治療ビームの中心軸に沿って実効深さベクトルを導出することと、
動きを考慮している線量推定値を生成するためにターゲット領域が動きサイクルの各部分で費やす時間の分量の推定値に従って複数の3次元画像の各々に重みを割り当てることとであって、ターゲット領域への線量分布は変形照射野の集合、複数の画像の各々についての実効深さベクトルおよび複数の3次元画像の各々の重みを用いてさらに計算される、重みを割り当てることを
実行するように構成されている請求項36に記載の装置。
【請求項38】
当該放射線治療計画を作成する際に、プロセッサは線量分布を最適化するように構成されている請求項37に記載の装置。
【請求項39】
放射線治療計画の送付の間に放射線源によって生成される放射線ビーム経路に対するターゲット領域の実際の位置を追跡する医療実施用イメージングシステムをさらに備える請求項34に記載の装置。
【請求項40】
放射線源はロボットアームに取り付けられた直線加速器(LINAC)を含む請求項34に記載の装置。
【請求項41】
放射線源はガントリに取り付けられた直線加速器(LINAC)を含む請求項34に記載の装置。
【請求項42】
LINACはジンバル式ヘッドアセンブリに取り付けられている請求項41に記載の装置。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2008−80131(P2008−80131A)
【公開日】平成20年4月10日(2008.4.10)
【国際特許分類】
【出願番号】特願2007−253810(P2007−253810)
【出願日】平成19年9月28日(2007.9.28)
【出願人】(505005625)アキュレイ・インコーポレーテッド (11)
【Fターム(参考)】