説明

III族窒化物結晶およびその製造方法

【課題】光デバイスまたは電子デバイスに用いることができるIII族窒化物結晶を提供する。
【解決手段】ガス純化装置320は、10ppm以下の酸素および/または10ppm以下の水分を含むArガスをグローブボックス300の内部空間301との間でパイプ330,340を介して循環する。そして、グローブボックス300中で外部反応容器20の内部に設置された反応容器10Aを新しい反応用器10Bに交換し、新しい反応容器10Bに金属Naと金属Gaとを所定のモル比率で入れるとともに、新しい反応容器10Bと外部反応容器20との間に金属Naを入れる。その後、外部反応容器20の本体部21に蓋部をメタルシールで接着し、反応容器10Bおよび外部反応容器20を800℃に加熱するとともに、反応容器10B内に窒素ガスを供給してGaN結晶を結晶成長させる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、III族窒化物結晶およびその製造方法に関するものである。
【背景技術】
【0002】
現在、紫外、紫〜青〜緑色光源として用いられているInGaAlN(III族窒化物半導体)系デバイスは、その殆どがサファイアおよびシリコンカーバイド(SiC)を基板とし、その基板上にMOCVD法(有機金属化学気相成長法)およびMBE法(分子線結晶成長法)等を用いて作製されている。
【0003】
このように、サファイアおよびシリコンカーバイドを基板として用いた場合、熱膨張係数および格子定数が基板とIII族窒化物半導体とでそれぞれ大きく異なっているため、III族窒化物半導体内に多くの結晶欠陥が含まれることとなる。この結晶欠陥は、デバイス特性を低下させ、たとえば、発光デバイスにおいては、寿命が短い、動作電力が大きい、等の欠点に直接関係する。
【0004】
また、サファイア基板は、絶縁体であるため、従来の発光デバイスのように基板側から電極を取り出すことが不可能であった。これにより、III族窒化物半導体側から電極を取り出すことが必要となる。その結果、デバイスの面積が大きくなり、高コスト化を招くという不都合があった。そして、デバイスの面積が大きくなると、サファイア基板とIII族窒化物半導体という異種材料の組み合わせに伴う基板の反りという新たな問題が発生する。
【0005】
さらに、サファイア基板上に作製されたIII族窒化物半導体デバイスは、劈開によるチップ分離が困難であり、レーザダイオード(LD)において必要とされる共振器端面を得ることは、容易ではない。このため、現在は、ドライエッチング、またはサファイア基板を厚さ100μm以下まで研磨した後に劈開に近い形に分離し、共振器端面の形成を行なっている。したがって、従来のLDのように、共振器端面の形成とチップ分離とを単一工程で行なうことが困難であり、工程の複雑化によるコスト高を招いていた。
【0006】
これらの問題を解決するため、サファイア基板上にIII族窒化物半導体を選択的に横方向に成長させるなどの工夫をし、結晶欠陥を低減させることが提案された。これにより、結晶欠陥を低減させることが可能となったが、サファイア基板の絶縁性および上述した劈開の困難性に関する問題は、依然として残っている。
【0007】
こうした問題を解決するためには、基板上に結晶成長する材料と同一である窒化ガリウム(GaN)基板が最適である。そのため、気相成長および融液成長等により、バルクGaNを結晶成長させる方法が、各種、提案されている。しかし、未だ高品質かつ実用的な大きさを有するGaN基板は、実現されていない。
【0008】
GaN基板を実現する1つの方法として、ナトリウム(Na)をフラックスとして用いたGaN結晶成長方法が提案されている(特許文献1)。この方法は、アジ化ナトリウム(NaN)と金属Gaとを原料として、ステンレス製の反応容器(容器内寸法:内径=7.5mm、長さ=100mm)にNaNおよび金属Gaを窒素雰囲気中で封入し、その反応容器を600〜800℃の温度で24〜100時間保持することにより、GaN結晶が成長するものである。
【0009】
この方法は、600〜800℃と比較的低温での結晶成長が可能であり、容器内圧力も高々100kg/cm程度と比較的低く、実用的な成長条件であることが特徴である。
【0010】
そして、最近では、アルカリ金属とIII族金属との混合融液と、窒素を含むV族原料とを反応させることにより、高品質なIII族窒化物結晶が実現されている(特許文献2)。
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかし、III族窒化物結晶は、結晶中において窒素の空孔が生じると、その空孔がn型のドーパントとして作用するが、III族窒化物結晶中に生成される空孔の密度を制御することは困難であり、空孔の密度によってIII族窒化物結晶の抵抗率を制御することは困難である。
【0012】
一方、III族窒化物結晶を光デバイスまたは電子デバイスに用いる場合、III族窒化物結晶の抵抗率を広い範囲で制御する必要がある。たとえば、III族窒化物結晶を光デバイスの基板として用いる場合には、抵抗率は、相対的に低い方がよく、III族窒化物結晶を用いて電界効果トランジスタ等の電子デバイスを作製するには、抵抗率は、相対的に高い方がよい。
【0013】
その結果、従来のIII族窒化物結晶は、光デバイスまたは電子デバイスに用いることが困難であるという問題がある。
【0014】
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、光デバイスまたは電子デバイスに用いることができるIII族窒化物結晶を提供することである。
【0015】
また、この発明の別の目的は、光デバイスまたは電子デバイスに用いることができるIII族窒化物結晶の製造方法を提供することである。
【課題を解決するための手段】
【0016】
この発明によれば、III族窒化物結晶は、III族金属元素と、窒素元素と、10cm−2以下の転位密度と、1020cm−3以下の酸素元素とを含む。
【0017】
好ましくは、酸素元素の濃度は、1018〜1020cm−3の範囲である。
【0018】
好ましくは、酸素元素の濃度は、1018cm−3よりも低い。
【0019】
好ましくは、III族窒化物結晶は、1020cm−3以下の水素元素をさらに含む。
【0020】
好ましくは、水素元素の濃度は、1019〜1020cm−3の範囲である。
【0021】
好ましくは、水素元素の濃度は、1019cm−3よりも低い。
【0022】
好ましくは、III族窒化物結晶は、アルカリ金属元素をさらに含む。
【0023】
また、この発明によれば、製造方法は、アルカリ金属とIII族金属とを含む混合融液を保持する反応容器を備える結晶成長装置を用いてIII族窒化物結晶を製造する製造方法であって、所定量の不純物原料を含む不活性ガスまたは窒素ガス雰囲気中でアルカリ金属およびIII族金属を反応容器内に入れる第1の工程と、反応容器内の容器空間に窒素原料ガスを充填する第2の工程と、反応容器を結晶成長温度に加熱する第3の工程と、所定の時間、反応容器の温度を結晶成長温度に保持する第4の工程と、容器空間内の圧力が所定の圧力に保持されるように窒素原料ガスを反応容器内へ供給する第5の工程とを備える。
【0024】
好ましくは、所定量の不純物原料は、10ppm以下の酸素ガスからなる。
【0025】
好ましくは、所定量の不純物原料は、0.1〜10ppmの酸素ガスからなる。
【0026】
好ましくは、所定量の不純物原料は、0.1ppm未満の酸素ガスからなる。
【0027】
好ましくは、所定量の不純物原料は、10ppm以下の酸素と、10ppm以下の水分とからなる。
【0028】
好ましくは、所定量の不純物原料は、0.1〜10ppmの酸素と、0.1〜10ppmの水分とからなる。
【0029】
好ましくは、所定量の不純物原料は、0.1ppm未満の酸素と、0.1〜10ppmの水分とからなる。
【0030】
好ましくは、所定量の不純物原料は、0.1〜10ppmの酸素と、0.1ppm未満の水分とからなる。
【0031】
好ましくは、所定量の不純物原料は、10ppm以下の水分からなる。
【0032】
好ましくは、所定量の不純物原料は、0.1〜10ppmの水分からなる。
【0033】
好ましくは、所定量の不純物原料は、0.1ppm未満の水分からなる。ここで言う水分とは、気体原料中の水蒸気濃度である。
【0034】
好ましくは、製造方法は、アルカリ金属とIII族金属との金属間化合物が入れられた反応容器を所定の減圧下において加熱処理する第6の工程をさらに備える。そして、第1の工程は、金属間化合物を不活性ガスまたは窒素ガス雰囲気中で反応容器内に入れる。また、第2から第5の工程は、第6の工程の後に実行される。
【発明の効果】
【0035】
この発明によれば、III族窒化物結晶は、10cm−2以下の転位密度と1020cm−3以下の酸素とを含む。また、III族窒化物結晶は、10cm−2以下の転位密度と1020cm−3以下の酸素と1020cm−3以下の水素とを含む。その結果、III族窒化物結晶からなる絶縁体、低抵抗なIII族窒化物半導体および高抵抗なIII族窒化物半導体が得られる。
【0036】
したがって、この発明によれば、III族窒化物結晶を光デバイスまたは電子デバイスに用いることができる。
【0037】
また、この発明によれば、アルカリ金属とIII族金属とを酸素濃度および/または水分濃度が10ppm以下の不活性ガスまたは窒素ガス雰囲気中で仕込んでIII族窒化物結晶を製造する。その結果、10cm−2以下の転位密度と1020cm−3以下の酸素とを含むIII族窒化物結晶、または10cm−2以下の転位密度と1020cm−3以下の酸素と1020cm−3以下の水素とを含むIII族窒化物結晶が得られる。
【0038】
したがって、この発明によれば、光デバイスまたは電子デバイスに用いるIII族窒化物結晶を製造できる。
【図面の簡単な説明】
【0039】
【図1】図1は、この発明の実施の形態における結晶成長装置の概略断面図である。
【図2】図2は、図1に示す抑制/導入栓の斜視図である。
【図3】図3は、抑制/導入栓の配管への取付状態を示す平面図である。
【図4】図4は、図1に示す支持装置、配管および熱電対の拡大図である。
【図5】図5は、図1に示す上下機構の構成を示す概略図である。
【図6】図6は、振動検出信号のタイミングチャートである。
【図7】図7は、反応容器および外部反応容器の温度のタイミングチャートである。
【図8】図8は、図7に示す2つのタイミングt1,t2間における反応容器および外部反応容器内の状態を示す模式図である。
【図9】図9は、種結晶の温度と窒素ガスの流量との関係を示す図である。
【図10】図10は、GaN結晶を成長させる場合の窒素ガス圧と結晶成長温度との関係を示す図である。
【図11】図11は、金属Naおよび金属Gaを反応容器および外部反応容器に仕込む方法を説明するための図である。
【図12】図12は、GaN結晶の製造方法を説明するためのフローチャートである。
【図13】図13は、図12に示すステップS9における反応容器および外部反応容器内の状態を示す模式図である。
【図14】図14は、図12に示すステップS10における反応容器および外部反応容器内の状態を示す模式図である。
【図15】図15は、図12に示すフローチャートに従ってGaN結晶の製造が終了した時点における反応容器および外部反応容器の状態を示す模式図である。
【図16】図16は、この発明による抑制/導入栓の他の斜視図である。
【図17】図17は、図16に示す抑制/導入栓の固定方法を説明するための断面図である。
【図18】図18は、この発明による抑制/導入栓のさらに他の斜視図である。
【発明を実施するための形態】
【0040】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0041】
図1は、この発明の実施の形態における結晶成長装置の概略断面図である。図1を参照して、この発明の実施の形態における結晶成長装置100は、反応容器10と、外部反応容器20と、配管30,200と、ベローズ40と、支持装置50と、抑制/導入栓60と、加熱装置70,80と、温度センサー71,81と、ガス供給管90,110,250と、バルブ120,121,160と、圧力調整器130と、ガスボンベ140,270と、排気管150と、真空ポンプ170と、圧力センサー180と、金属融液190と、熱電対210と、上下機構220と、振動印加装置230と、振動検出装置240と、流量計260と、温度制御装置280とを備える。
【0042】
反応容器10は、略円柱形状を有し、ボロンナイトライド(BN)からなる。外部反応容器20は、反応容器10と所定の間隔を隔てて反応容器10の周囲に配置される。そして、外部反応容器20は、本体部21と、蓋部22とからなる。本体部21および蓋部22の各々は、SUS316Lからなり、本体部21と蓋部22との間は、メタルオーリングによってシールされる。したがって、後述するNaが外部へ漏洩することがない。
【0043】
配管30は、重力方向DR1において、反応容器10の下側で外部反応容器20に連結される。ベローズ40は、重力方向DR1において、反応容器10の上側で外部反応容器20に連結される。支持装置50は、中空の円筒形状からなり、一部がベローズ40を介して外部反応容器20の空間23内へ挿入される。
【0044】
抑制/導入栓60は、たとえば、金属およびセラミック等からなり、外部反応容器20と配管30との連結部よりも下側の配管30内に保持される。
【0045】
加熱装置70は、外部反応容器20の外周面20Aを囲むように配置される。加熱装置80は、外部反応容器20の底面20Bに対向して配置される。温度センサー71,81は、それぞれ、加熱装置70,80に近接して配置される。
【0046】
ガス供給管90は、一方端がバルブ120を介して外部反応容器20に連結され、他方端が圧力調整器130を介してガスボンベ140に連結される。ガス供給管110は、一方端がバルブ121を介して配管30に連結され、他方端がガス供給管90に連結される。
【0047】
バルブ120は、外部反応容器20の近傍でガス供給管90に装着される。バルブ121は、配管30の近傍でガス供給管110に装着される。圧力調整器130は、ガスボンベ140の近傍でガス供給管90に装着される。ガスボンベ140は、ガス供給管90に連結される。
【0048】
排気管150は、一方端がバルブ160を介して外部反応容器20に連結され、他方端が真空ポンプ170に連結される。バルブ160は、外部反応容器20の近傍で排気管150に装着される。真空ポンプ170は、排気管150に連結される。
【0049】
圧力センサー180は、外部反応容器20に取り付けられる。金属融液190は、金属ナトリウム(金属Na)融液からなり、反応容器10と外部反応容器20との間および配管30内に保持される。
【0050】
配管200および熱電対210は、支持装置50の内部に挿入される。上下機構220は、ベローズ40よりも上側において支持装置50に取り付けられる。ガス供給管250は、一方端が配管200に連結され、他方端が流量計260を介してガスボンベ270に連結される。流量計260は、ガスボンベ270の近傍でガス供給管250に装着される。ガスボンベ270は、ガス供給管250に連結される。
【0051】
反応容器10は、金属Naと、金属ガリウム(金属Ga)とを含む混合融液290を保持する。外部反応容器20は、反応容器10の周囲を覆う。配管30は、ガス供給管90,110を介してガスボンベ140から供給された窒素ガス(N2ガス)を抑制/導入栓60に導く。
【0052】
ベローズ40は、支持装置50を保持するとともに、外部反応容器20の内部と外部とを遮断する。また、ベローズ40は、支持装置50の重力方向DR1への移動に伴って重力方向DR1に伸縮する。支持装置50は、外部反応容器20内に挿入された一方端にGaN結晶からなる種結晶5を支持する。
【0053】
抑制/導入栓60は、配管30の内壁との間に数十μmの孔が形成されるように外周面に凹凸構造を有し、配管30内の窒素ガスを金属融液190の方向へ通過させ、窒素ガスを金属融液190を介して空間23内へ供給する。また、抑制/導入栓60は、数十μmの孔の表面張力により金属融液190を反応容器10と外部反応容器20との間および配管30内に保持する。
【0054】
加熱装置70は、ヒーターと、電流源とからなる。そして、加熱装置70は、温度制御装置280からの制御信号CTL1に応じて電流源によってヒーターに電流を流し、外部反応容器20の外周面20Aから反応容器10および外部反応容器20を結晶成長温度に加熱する。温度センサー71は、加熱装置70のヒーターの温度T1を検出し、その検出した温度T1を温度制御装置280へ出力する。
【0055】
加熱装置80も、ヒーターと、電流源とからなる。そして、加熱装置80は、温度制御装置280からの制御信号CTL2に応じて電流源によってヒーターに電流を流し、外部反応容器20の底面20Bから反応容器10および外部反応容器20を結晶成長温度に加熱する。温度センサー81は、加熱装置80のヒーターの温度T2を検出し、その検出した温度T2を温度制御装置280へ出力する。
【0056】
ガス供給管90は、ガスボンベ140から圧力調整器130を介して供給された窒素ガスをバルブ120を介して外部反応容器20内へ供給する。ガス供給管110は、ガスボンベ140から圧力調整器130を介して供給された窒素ガスをバルブ121を介して配管30内へ供給する。
【0057】
バルブ120は、ガス供給管90内の窒素ガスを外部反応容器20内へ供給し、または窒素ガスの外部反応容器20内への供給を停止する。バルブ121は、ガス供給管110内の窒素ガスを配管30へ供給し、または窒素ガスの配管30への供給を停止する。圧力調整器130は、ガスボンベ140からの窒素ガスを所定の圧力にしてガス供給管90,110に供給する。
【0058】
ガスボンベ140は、窒素ガスを保持する。排気管150は、外部反応容器20内の気体を真空ポンプ170へ通過させる。バルブ160は、外部反応容器20内と排気管150とを空間的に繋げ、または外部反応容器20内と排気管150とを空間的に遮断する。真空ポンプ170は、排気管150およびバルブ160を介して外部反応容器20内の真空引きを行なう。
【0059】
圧力センサー180は、外部反応容器20内の圧力を検出する。窒素ガスは、金属融液190と抑制/導入栓60とを介して空間23へ導入される。
【0060】
配管200は、ガス供給管250から供給された窒素ガスを一方端から支持装置50内へ放出して種結晶5を冷却する。熱電対210は、種結晶5の温度T3を検出し、その検出した温度T3を温度制御装置280へ出力する。
【0061】
上下機構220は、振動検出装置240からの振動検出信号BDSに応じて、後述する方法によって、種結晶5が空間23と混合融液290との気液界面3に接するように支持装置50を上下する。
【0062】
振動印加装置230は、たとえば、圧電素子からなり、所定の周波数を有する振動を支持装置50に印加する。振動検出装置240は、たとえば、加速度ピックアップからなり、支持装置50の振動を検出するとともに、支持装置50の振動を示す振動検出信号BDSを上下機構220へ出力する。
【0063】
ガス供給管250は、ガスボンベ270から流量計260を介して供給された窒素ガスを配管200へ供給する。流量計260は、温度制御装置280からの制御信号CTL3に応じて、ガスボンベ270から供給された窒素ガスの流量を調整してガス供給管250へ供給する。ガスボンベ270は、窒素ガスを保持する。
【0064】
図2は、図1に示す抑制/導入栓60の斜視図である。図2を参照して、抑制/導入栓60は、栓61と、凸部62とを含む。栓61は、略円柱形状からなる。凸部62は、略半円形の断面形状を有し、栓61の外周面に栓61の長さ方向DR2に沿って形成される。
【0065】
図3は、抑制/導入栓60の配管30への取付状態を示す平面図である。図3を参照して、凸部62は、栓61の円周方向に複数個形成され、複数の凸部62は、数十μmの間隔dで形成される。また、凸部62は、数十μmの高さHを有する。抑制/導入栓60の複数の凸部62は、配管30の内壁30Aに接する。これにより、抑制/導入栓60は、配管30の内壁30Aに嵌合する。
【0066】
凸部62が数十μmの高さHを有し、数十μmの間隔dで栓61の外周面に配置される結果、抑制/導入栓60が配管30の内壁30Aに嵌合した状態では、抑制/導入栓60と配管30の内壁30Aとの間に、直径が略数十μmである空隙63が複数個形成される。
【0067】
この空隙63は、栓61の長さ方向DR2に窒素ガスを通過させるとともに、金属融液190を金属融液190の表面張力によって保持し、金属融液190が栓61の長さ方向DR2に通過するのを阻止する。
【0068】
図4は、図1に示す支持装置50、配管200および熱電対210の拡大図である。図4を参照して、支持装置50は、筒状部材51と、固定部材52,53とを含む。筒状部材51は、略円形の断面形状を有する。固定部材52は、略L字形状の断面形状を有し、筒状部材51の一方端511側において筒状部材51の外周面51Aおよび底面51Bに固定される。また、固定部材53は、略L字形状の断面形状を有し、筒状部材51の一方端511側において固定部材52と対称に配置されるように筒状部材51の外周面51Aおよび底面51Bに固定される。その結果、筒状部材51および固定部材52,53によって囲まれた領域には、空間部54が形成される。
【0069】
配管200は、略円形の断面形状を有し、筒状部材51の内部に配置される。この場合、配管200の底面200Aは、筒状部材51の底面51Bに対向するように配置される。そして、配管200の底面200Aには、複数の空孔201が形成される。配管200内へ供給された窒素ガスは、複数の空孔201を介して筒状部材51の底面51Bに吹き付けられる。
【0070】
熱電対210は、一方端210Aが筒状部材51の底面51Bに接するように筒状部材51の内部に配置される(図4の(a)参照)。
【0071】
そして、種結晶5は、空間部54に嵌合する形状を有し、空間部54に嵌合することにより支持装置50によって支持される。この場合、種結晶5は、筒状部材51の底面51Bに接する(図4の(b)参照)。本実施の形態においては、種結晶自体が図4の(b)に示す種結晶5の形状であるが、支持装置50と接する構造であれば、図4の(b)に示す種結晶5の形状を有するアダプターを介して六角柱状の種結晶が保持されていてもよい。
【0072】
したがって、種結晶5と筒状部材51との間の熱伝導率が高くなる。その結果、熱電対210によって種結晶5の温度を検出できるとともに、配管200から筒状部材51の底面51Bに吹き付けられた窒素ガスによって種結晶5を容易に冷却できる。
【0073】
図5は、図1に示す上下機構220の構成を示す概略図である。図5を参照して、上下機構220は、凹凸部材221と、歯車222と、軸部材223と、モータ224と、制御部225とを含む。
【0074】
凹凸部材221は、略三角形状の断面形状からなり、筒状部材51の外周面51Aに固定される。歯車222は、軸部材223の一方端に固定され、凹凸部材221と噛み合う。軸部材223は、その一方端が歯車222に連結され、他方端がモータ224のシャフト(図示せず)に連結される。
【0075】
モータ224は、制御部225からの制御に従って歯車222を矢印226または227の方向へ回転させる。制御部225は、振動検出装置240からの振動検出信号BDSに基づいて、歯車222を矢印226または227の方向へ回転させるようにモータ224を制御する。
【0076】
歯車222が矢印226の方向へ回転すれば、支持装置50は、重力方向DR1において上方向へ移動し、歯車222が矢印227の方向へ回転すれば、支持装置50は、重力方向DR1において下方向へ移動する。
【0077】
したがって、歯車222を矢印226または227の方向へ回転させることは、支持装置50を重力方向DR1において上下させることに相当する。
【0078】
図6は、振動検出信号BDSのタイミングチャートである。図6を参照して、振動検出装置240によって検出される振動検出信号BDSは、種結晶5が混合融液290に接していないとき、信号成分SS1からなり、種結晶5が混合融液290に接しているとき、信号成分SS2からなり、種結晶5が混合融液290中に浸漬されているとき、信号成分SS3からなる。
【0079】
種結晶5が混合融液290に接していないとき、種結晶5は、振動印加装置230により印加された振動によって大きく振動するので、振動検出信号BDSは、振幅が相対的に大きい信号成分SS1からなる。一方、種結晶5が混合融液290に接しているとき、種結晶5は、振動印加装置230から振動が印加されても、混合融液290の粘性によって大きく振動できないので、振動検出信号BDSは、振幅が相対的に小さい信号成分SS2からなる。また、種結晶5が混合融液290中に浸漬されているとき、種結晶5は、混合融液290の粘性によってさらに振動し難くなるので、振動検出信号BDSは、振幅が信号成分SS2よりも小さい信号成分SS3になる。
【0080】
再び、図5を参照して、制御部225は、振動検出装置240から振動検出信号BDSを受けると、振動検出信号BDSの信号成分を検出する。そして、制御部225は、その検出した信号成分が信号成分SS1からなるとき、振動検出信号BDSの信号成分が信号成分SS2になるまで、支持装置50を重力方向DR1において降下させるようにモータ224を制御する。
【0081】
より具体的には、制御部225は、歯車222を矢印227の方向へ回転させるようにモータ224を制御し、モータ224は、制御部225からの制御に従って歯車222を軸部材223を介して矢印227の方向へ回転させる。これによって、支持装置50は、重力方向DR1において下方向へ移動する。
【0082】
そして、制御部225は、振動検出装置240から受ける振動検出信号BDSの信号成分が信号成分SS1から信号成分SS2へ切換わると、歯車222の回転を停止するようにモータ224を制御し、モータ224は、制御部225からの制御に従って歯車222の回転を停止させる。これによって、支持装置50は、移動を停止し、種結晶5を気液界面3に保持する。
【0083】
一方、制御部225は、信号成分SS2からなる振動検出信号BDSを振動検出装置240から受けたとき、支持装置50の移動を停止するようにモータ224を制御する。この場合は、種結晶5が混合融液290に既に接触しているからである。
【0084】
このように、上下機構220は、振動検出装置240が検出する振動検出信号BDSに基づいて、種結晶5が混合融液290に接するように支持装置50を重力方向DR1に移動させる。
【0085】
図7は、反応容器10および外部反応容器20の温度のタイミングチャートである。また、図8は、図7に示す2つのタイミングt1,t2間における反応容器10および外部反応容器20内の状態を示す模式図である。さらに、図9は、種結晶5の温度と窒素ガスの流量との関係を示す図である。
【0086】
なお、図7において、直線k1は、反応容器10および外部反応容器20の温度を示し、曲線k2および直線k3は、種結晶5の温度を示す。
【0087】
図7を参照して、加熱装置70,80は、直線k1に従って800℃まで昇温され、かつ、800℃に保持されるように反応容器10および外部反応容器20を加熱する。この場合、反応容器10および外部反応容器20は、1.01〜5.05MPaの窒素ガスで充填されている。加熱装置70,80が反応容器10および外部反応容器20を加熱し始めると、反応容器10および外部反応容器20の温度は、上昇し始め、タイミングt1において98℃に達し、タイミングt2で800℃に達する。
【0088】
そうすると、反応容器10と外部反応容器20との間に保持された金属Naは溶け、金属融液190(=金属Na融液)になる。また、反応容器10内に保持された金属Naおよび金属Gaも溶け、混合融液290になる。
【0089】
そして、空間23内の窒素ガス4は、金属融液190(=金属Na融液)および抑制/導入栓60を介して配管30内の空間31へ拡散することができず、空間23内に閉じ込められる。また、反応容器10および外部反応容器20の温度が800℃に近づくに従って金属融液190および混合融液290から空間23へ蒸発するNaの量が増加する。そして、蒸発したNaは、金属Na蒸気7として空間23に閉じ込められる。したがって、タイミングt1以降、窒素ガス4および金属Na蒸気7が空間23に混在する(図8参照)。
【0090】
また、反応容器10および外部反応容器20の温度が800℃に達するタイミングt2で、上下機構220は、振動検出装置240からの振動検出信号BDSに基づいて、上述した方法によって支持装置50を上下し、種結晶5を混合融液290に接触させる。
【0091】
そして、反応容器10および外部反応容器20の温度が800℃程度の高温状態では、空間23内の窒素ガス4は、金属Naを媒介として混合融液290中に取り込まれる。この場合、混合融液290中の窒素濃度またはGaxNy(x,yは実数)の濃度は、空間23と混合融液290との気液界面3付近において最も高いため、GaN結晶が気液界面3に接している種結晶5から成長し始める。
【0092】
なお、以下においては、GaxNy(x,yは実数)を「III族窒化物」と言い、GaxNy(x,yは実数)の濃度を「III族窒化物濃度」と言う。
【0093】
窒素ガスを配管200内へ供給しない場合、種結晶5の温度T3は、混合融液290の温度と同じ800℃であるが、この発明においては、種結晶5付近の混合融液290中の窒素またはIII族窒化物の過飽和度を上げるために、配管200内へ窒素ガスを供給して種結晶5を冷却し、種結晶5の温度T3を混合融液290の温度よりも低くする。
【0094】
より具体的には、種結晶5の温度T3は、タイミングt2以降、曲線k2に従って800℃よりも低い温度Ts1に設定される。この温度Ts1は、例えば、790℃である。種結晶5の温度T3を温度Ts1に設定する方法について説明する。
【0095】
加熱装置70のヒーターの温度T1および加熱装置80のヒーターの温度T2は、反応容器10および外部反応容器20の温度と所定の温度差を有する。そして、反応容器10および外部反応容器20の温度が800℃であるとき、加熱装置70,80のヒーターの温度T1,T2は、800+α℃に設定される。
【0096】
したがって、温度制御装置280は、温度センサー71,81からそれぞれ受けた温度T1,T2が800+α℃に達すると、種結晶5の温度T3を温度Ts1に設定する流量からなる窒素ガスを流すための制御信号CTL3を生成して流量計260へ出力する。
【0097】
そうすると、流量計260は、制御信号CTL3に応じて、温度T3を温度Ts1に設定する流量からなる窒素ガスをガスボンベ270からガス供給管250を介して配管200内へ流す。種結晶5の温度は、窒素ガスの流量に略比例して800℃から低下し、窒素ガスの流量が流量fr1(sccm)になると、種結晶5の温度T3は、温度Ts1に設定される(図9参照)。
【0098】
したがって、流量計260は、流量fr1からなる窒素ガスを配管200内へ流す。そして、配管200内へ供給された窒素ガスは、配管200の複数の空孔201から筒状部材51の底面51Bに吹き付けられる。
【0099】
これによって、種結晶5は、筒状部材51の底面51Bを介して冷却され、種結晶5の温度T3は、タイミングt3で温度Ts1に低下し、その後、タイミングt4まで温度Ts1に保持される。
【0100】
上述したように、加熱装置70,80のヒーターの温度T1,T2は、混合融液290の温度と所定の温度差を有するため、温度制御装置280は、種結晶5の温度T3が800℃から低下し始めると、温度センサー71,81からそれぞれ受けた温度T1,T2が800+α℃に設定されるように制御信号CTL1,2によってそれぞれ加熱装置70,80を制御する。
【0101】
なお、この発明においては、好ましくは、種結晶5の温度T3は、タイミングt2以降、直線k3に従って低下するように制御される。すなわち、種結晶5の温度T3は、タイミングt2からタイミングt4までの間で800℃から温度Ts2(<Ts1)まで低下される。この場合、流量計260は、温度制御装置280からの制御信号CTL3に基づいて、直線k4に従って配管200内へ流す窒素ガスの流量を0から流量fr2まで増加する。窒素ガスの流量が流量fr2になると、種結晶5の温度T3は、温度Ts1よりも低い温度Ts2に設定される。そして、温度Ts2は、たとえば、750℃である。
【0102】
このように、混合融液290の温度(=800℃)と種結晶5の温度T3との差を徐々に大きくするのは、次の2つの理由による。
【0103】
1つ目の理由は、GaN結晶の結晶成長の進行とともに、種結晶5には、GaN結晶が付着するので、種結晶5の温度を徐々に低下させないと、種結晶5から結晶成長したGaN結晶の温度を混合融液290の温度よりも低い温度に設定し難くなるからである。
【0104】
2つ目の理由は、GaN結晶の結晶成長の進行とともに、混合融液290中のGaが消費され、γ=Na/(Na+Ga)が大きくなり、混合融液290中の窒素濃度またはIII族窒化物濃度の過飽和度が小さくなるので、種結晶5の温度を徐々に低下させないと、混合融液290中の窒素濃度またはIII族窒化物濃度を過飽和に保持し難くなるからである。
【0105】
また、GaN結晶の結晶成長の進行とともに、種結晶5の温度を徐々に低下させることによって、種結晶5付近の混合融液290中の窒素またはIII族窒化物の過飽和度が徐々に大きくなり、GaN結晶の成長速度が結晶成長の進行に伴って速くなる。その結果、GaN結晶のサイズをより速く拡大できる。
【0106】
結晶成長装置100においてGaN結晶を結晶成長させる場合、種結晶5は、結晶成長装置100において種結晶5を用いずに結晶成長させたGaN結晶からなる。図10は、GaN結晶を成長させる場合の窒素ガス圧と結晶成長温度との関係を示す図である。図10において、横軸は、結晶成長温度を表し、縦軸は、窒素ガス圧を表す。図10において、領域REGは、反応容器10の混合融液290に接する底面および側面においてc軸(<0001>)方向に成長した柱状形状のGaN結晶が製造される領域である。
【0107】
したがって、種結晶5を作製する場合、領域REG内における窒素ガス圧および結晶成長温度を用いてGaN結晶を成長させる。この場合、反応容器10内の底面および側壁に多くの核が発生し、c軸方向に成長した柱状形状のGaN結晶が製造される。
【0108】
そして、結晶成長させた多くのGaN結晶の中から図4に示す形状のGaN結晶を切り出して種結晶5を作製する。したがって、種結晶5の突出部5A(図4の(b)参照)は、c軸(<0001>)方向に成長したGaN結晶からなる。
【0109】
作製した種結晶5は、上述した方法によって支持装置50の空間部54に嵌合されて支持装置50に固定される。
【0110】
図11は、金属Naおよび金属Gaを反応容器10および外部反応容器20に仕込む方法を説明するための図である。図11を参照して、グローブボックス300は、ヒーター310を内部に含む。そして、グローブボックス300の内部空間301は、Arガスが充填されている。
【0111】
ガス純化装置320は、パイプ330,340によってグローブボックス300と連結される。また、ガス純化装置320は、Arガスが充填されたガスボンベ(図示せず)と連結されている。
【0112】
ガス純化装置320は、ガスボンベからArガスを受け、その受けたArガスを純化する。そして、ガス純化装置320は、その純化したArガスをパイプ330を介してグローブボックス300の内部空間301へ供給する。
【0113】
また、ガス純化装置320は、グローブボックス300の内部空間301からパイプ340を介してArガスを吸引し、その吸引したArガスを純化してグローブボックス300の内部空間301へ供給する。すなわち、ガス純化装置320は、矢印302,303によって示すように、グローブボックス300の内部空間301との間でArガスを循環する。
【0114】
ガス純化装置320は、Arガス中の酸素濃度および水分濃度を10ppm以下に低減することによってArガスを純化する。そして、ガス純化装置320は、好ましくは、Arガス中の酸素濃度および水分濃度を0.1〜10ppmの範囲に低減することによってArガスを純化し、さらに、好ましくは、Arガス中の酸素濃度および水分濃度を0.1ppm未満に低減することによってArガスを純化する。
【0115】
また、ガス純化装置320は、Arガス中の酸素濃度を10ppbレベルまで低減し、かつ、水分濃度を10ppm以下に低減することによってArガスを純化する。そして、ガス純化装置320は、好ましくは、Arガス中の酸素濃度を10ppbレベルまで低減し、かつ、水分濃度を0.1〜10ppmの範囲に低減することによってArガスを純化し、さらに、好ましくは、Arガス中の酸素濃度を10ppbレベルまで低減し、かつ、水分濃度を0.1ppm未満に低減することによってArガスを純化する。
【0116】
さらに、ガス純化装置320は、Arガス中の水分濃度を10ppbレベルまで低減し、かつ、酸素濃度を10ppm以下に低減することによってArガスを純化する。そして、ガス純化装置320は、好ましくは、Arガス中の水分濃度を10ppbレベルまで低減し、かつ、酸素濃度を0.1〜10ppmの範囲に低減することによってArガスを純化し、さらに、好ましくは、Arガス中の水分濃度を10ppbレベルまで低減し、かつ、酸素濃度を0.1ppm未満に低減することによってArガスを純化する。
【0117】
10ppbレベルの酸素濃度または水分濃度は、10ppmレベルの水分濃度または酸素濃度に対して3桁も低いので、10ppmレベルの水分濃度または酸素濃度に対して無視できる。
【0118】
したがって、ガス純化装置320は、Arガスに対して次の8種類の純化を行なう。
【0119】
(A)酸素濃度および水分濃度を0.1〜10ppmの範囲に低減する。
【0120】
(B)酸素濃度を0.1ppm未満に低減し、かつ、水分濃度を0.1〜10ppmの範囲に低減する。
【0121】
(C)酸素濃度を0.1〜10ppmの範囲に低減し、かつ、水分濃度を0.1ppm未満に低減する。
【0122】
(D)水分濃度を0.1〜10ppmの範囲に低減する。
【0123】
(E)酸素濃度および水分濃度を0.1ppm未満に低減する。
【0124】
(F)水分濃度を0.1ppm未満に低減する。
【0125】
(G)酸素濃度を0.1〜10ppmの範囲に低減する。
【0126】
(H)酸素濃度を0.1ppm未満に低減する。
【0127】
(D),(F)に示す純化は、酸素濃度を10ppbレベルまで低減することを表すため、水分濃度のみを所定の濃度に低減することにした。同様に、(G),(H)に示す純化は、水分濃度を10ppbレベルまで低減することを表すため、酸素濃度のみを所定の濃度に低減することにした。
【0128】
そうすると、ガス純化装置320は、上述した8種類の純化(A)〜(H)のうちの1つを選択してArガスを純化し、その純化したArガスをグローブボックス300の内部空間301へ供給する。
【0129】
純化(A)〜(H)が行なわれる場合、ガス純化装置320は、それぞれ、フィルタF1〜F8が装着される。フィルタF1は、Arガス中の酸素濃度および水分濃度の両方を0.1〜10ppmの範囲に低減するフィルタF1であり、フィルタF2は、酸素濃度を0.1ppm未満に低減し、かつ、水分濃度を0.1〜10ppmの範囲に低減するフィルタである。
【0130】
また、フィルタF3は、酸素濃度を0.1〜10ppmの範囲に低減し、かつ、水分濃度を0.1ppm未満に低減するフィルタであり、フィルタF4は、酸素濃度を10ppbレベルに低減し、かつ、水分濃度を0.1〜10ppmの範囲に低減するフィルタである。
【0131】
さらに、フィルタF5は、酸素濃度および水分濃度の両方を0.1ppm未満に低減するフィルタであり、フィルタF6は、酸素濃度を10ppbレベルに低減し、かつ、水分濃度を0.1ppm未満に低減するフィルタである。
【0132】
さらに、フィルタF7は、水分濃度を10ppbレベルに低減し、かつ、酸素濃度を0.1〜10ppmの範囲に低減するフィルタであり、フィルタF8は、水分濃度を10ppbレベルに低減し、かつ、酸素濃度を0.1ppm未満に低減するフィルタである。
【0133】
したがって、ガス純化装置320は、上述したフィルタF1〜F8のいずれかが選択され、かつ、装着される。そして、ガス純化装置320は、その装着されたフィルタによってArガス中の酸素濃度および水分濃度を所定の範囲に低減してグローブボックス300の内部空間301へ供給する。
【0134】
結晶成長装置100におけるGaN結晶の結晶成長が終了すると、外部反応容器20が結晶成長装置100から取り外され、グローブボックス300のヒーター310上に設置される。
【0135】
その後、ヒーター310をオンして反応容器10Aおよび外部反応容器20を100℃以上に加熱する。そうすると、反応容器10Aと外部反応容器20との間で固化した金属Naは、溶けて金属融液350になる。反応容器10Aと外部反応容器20との間で金属融液350が生成されると、反応容器10Aは取り外し可能になるので、反応容器10Aを新しい反応容器10Bと交換する。
【0136】
その後、金属Naを溶かしながら新しい反応容器10Bに入れ、ヒーター310をオフする。そうすると、金属融液350および溶かしながら反応容器10B内に入れられた金属Naは固化する。その後、金属Gaを反応容器10Bに入れる。このように、金属Naが固化した後に金属Gaを反応容器10Bに入れると、金属Naと金属Gaとの反応を防止して金属Naおよび金属Gaを反応容器10Bに入れることができる。
【0137】
金属Naおよび金属Gaを反応容器10Bに入れた後、必要に応じて金属Naを反応容器10Bと外部反応容器20との間に補充し、種結晶5を支持装置50に装着し、さらに、外部反応容器20の本体部21を蓋部22(図示せず)によって塞ぎ、本体部21と蓋部22との間をメタルシールでシールする。
【0138】
そうすると、外部反応容器20をグローブボックス300から取り出し、結晶成長装置100に設定する。
【0139】
上述したように、酸素および/または水分の量を10ppm以下に低減したArガス雰囲気中で金属Naおよび金属Gaを反応容器10および外部反応容器20に仕込み、外部反応容器20を結晶成長装置100に設定する。
【0140】
図12は、GaN結晶の製造方法を説明するためのフローチャートである。図12を参照して、一連の動作が開始されると、所定量の不純物原料を含むArガスが充填されたグローブボックス300内へ反応容器10および外部反応容器20を入れる。なお、所定量の不純物原料とは、10ppm以下の酸素および/または10ppm以下の水分を言う(以下、同じ)。
【0141】
そして、所定量の不純物原料を含むArガス雰囲気中で金属Naおよび金属Gaを反応容器10に入れる(ステップS1)。この場合、金属Naおよび金属Gaを5:5のモル比率で反応容器10に入れる。
【0142】
その後、所定量の不純物原料を含むArガス雰囲気中で金属Naを反応容器10と外部反応容器20との間に入れる(ステップS2)。そして、所定量の不純物原料を含むArガス雰囲気中で種結晶5を反応容器10内の金属Naおよび金属Gaの上側に設定する(ステップS3)。より具体的には、種結晶5を支持装置50の一方端511側に形成された空間54へ嵌合することによって(図4の(b)参照)、種結晶5を反応容器10内の金属Naおよび金属Gaの上側に設定する。
【0143】
引続いて、グローブボックス300から反応容器10と外部反応容器20とを取り出し、反応容器10および外部反応容器20内にArガスを充填した状態で反応容器10および外部反応容器20を結晶成長装置100に設定する。
【0144】
そして、バルブ160を開け、真空ポンプ170によって反応容器10および外部反応容器20内に充填されたArガスを排気する。真空ポンプ170によって反応容器10および外部反応容器20内を所定の圧力(0.133Pa以下)まで真空引きした後、バルブ160を閉じ、バルブ120,121を開けて窒素ガスをガスボンベ140からガス供給管90,110を介して反応容器10および外部反応容器20内へ充填する。この場合、圧力調整器130によって反応容器10および外部反応容器20内の圧力が約0.1MPaになるように反応容器10および外部反応容器20内へ窒素ガスを供給する。
【0145】
そして、圧力センサー180によって検出した外部反応容器20内の圧力が0.1MPa程度になると、バルブ120,121を閉じ、バルブ160を開けて真空ポンプ170によって反応容器10および外部反応容器20内に充填された窒素ガスを排気する。この場合も、真空ポンプ170によって反応容器10および外部反応容器20内を所定の圧力(0.133Pa以下)まで真空引きする。
【0146】
そして、この反応容器10および外部反応容器20内の真空引きと反応容器10および外部反応容器20への窒素ガスの充填とを数回繰り返し行なう。
【0147】
その後、真空ポンプ170によって反応容器10および外部反応容器20内を所定の圧力まで真空引きした後、バルブ160を閉じ、バルブ120,121を開けて圧力調整器130によって反応容器10および外部反応容器20内の圧力が1.01〜5.05MPaの範囲になるように反応容器10および外部反応容器20内へ窒素ガスを充填する(ステップS4)。
【0148】
この場合、反応容器10と外部反応容器20との間の金属Naは、固体であるので、窒素ガスは、抑制/導入栓60を介して配管30の空間31から外部反応容器20内の空間23へ供給される。そして、圧力センサー180によって検出した空間23内の圧力が1.01〜5.05MPaになった時点でバルブ120が閉じられる。
【0149】
その後、加熱装置70,80によって反応容器10および外部反応容器20を800℃に加熱する(ステップS5)。この場合、反応容器10と外部反応容器20との間に保持された金属Naは、融点が約98℃であるので、反応容器10および外部反応容器20が800℃に加熱される過程で溶融され、金属融液190になる。そして、2つの気液界面1,2が発生する(図1参照)。気液界面1は、金属融液190と外部反応容器20内の空間23との界面に位置し、気液界面2は、金属融液190と抑制/導入栓60との界面に位置する。
【0150】
また、反応容器10および外部反応容器20の温度が800℃に昇温された時点で、抑制/導入栓60の温度は、150℃である。従って、気液界面2における金属融液190(=金属Na融液)の蒸気圧は、7.6×10−4Paであり、金属融液190(=金属Na融液)は、抑制/導入栓60の空隙63を介して殆ど蒸発しない。その結果、金属融液190(=金属Na融液)は、殆ど減少しない。
【0151】
抑制/導入栓60の温度が300℃または400℃に昇温されても、金属融液190(=金属Na融液)の蒸気圧は、それぞれ、1.8Paおよび47.5Paであり、この程度の蒸気圧では、金属融液190(=金属Na融液)の減少を殆ど無視できる。
【0152】
このように、結晶成長装置100においては、抑制/導入栓60の温度は、金属融液190(=金属Na融液)が蒸発によって実質的に減少しない温度に設定される。
【0153】
さらに、反応容器10および外部反応容器20が800℃に加熱される過程で、反応容器10内の金属Naおよび金属Gaも液体になり、金属Naと金属Gaとの混合融液290が反応容器10内に発生する。そして、上下機構220は、上述した方法によって、種結晶5を混合融液290に接触させる(ステップS6)。
【0154】
さらに、反応容器10および外部反応容器20の温度が800℃に昇温されると、空間23内の窒素ガスが金属Naを媒介として混合融液290中へ取り込まれ、種結晶5からGaN結晶が成長し始める。
【0155】
その後、反応容器10および外部反応容器20の温度が、所定の時間(数十時間〜数百時間)、800℃に保持され(ステップS7)、種結晶5の温度T3が上述した方法によって混合融液290の温度(=800℃)よりも低い温度Ts1(または温度Ts2)に設定される(ステップS8)。
【0156】
そして、GaN結晶の成長が進行すると、空間23内の窒素ガスが消費され、空間23内の窒素ガスが減少する。そうすると、空間23内の圧力P1が配管30内の空間31の圧力P2よりも低くなり(P1<P2)、空間23内と空間31内との間に差圧が発生し、空間31の窒素ガスは、抑制/導入栓60および金属融液190(=金属Na融液)を介して空間23内へ順次供給される(ステップS9)。
【0157】
その後、種結晶5が混合融液290に接触するように、上述した方法によって種結晶5を降下させる(ステップS10)。これによって、大きなサイズのGaN結晶が成長する。
【0158】
そして、所定の時間が経過した後、反応容器10および外部反応容器20の温度が降温されて(ステップS11)、GaN結晶の製造が終了する。
【0159】
図13は、図12に示すステップS9における反応容器10および外部反応容器20内の状態を示す模式図である。図13を参照して、タイミングt2からタイミングt4までの間、反応容器10および外部反応容器20の温度は、800℃に保持され、混合融液290中でGaN結晶の成長が進行する。このとき、金属融液190および混合融液290中から金属Naが蒸発し、空間23内には、窒素ガス4および金属Na蒸気7が混在する。
【0160】
そして、窒素ガス4の消費によって、空間23内の圧力P1が配管30内の空間31の圧力P2よりも低下する。そうすると、金属融液190は、空間23側へ移動し、金属融液190の気液界面1,2は、上昇する。
【0161】
このような状態において、窒素ガスは、配管30の空間31から抑制/導入栓60を介して金属融液190に供給され、金属融液190中を泡191となって移動し、気液界面1から空間23へ供給される。そして、空間23内の圧力P1が空間31内の圧力P2とほぼ同じになると、金属融液190が元の位置まで降下し、配管30の空間31から抑制/導入栓60および金属融液190を介した窒素ガスの反応容器10および外部反応容器20への供給が停止される。
【0162】
このように、抑制/導入栓60は、金属融液190(=金属Na融液)を金属融液190の表面張力によって反応容器10と外部反応容器20との間および配管30内に保持するとともに、窒素ガスを空間31から反応容器10および外部反応容器20内へ供給する。従って、抑制/導入栓60は、金属融液190の通過を阻止する構造からなる。
【0163】
図14は、図12に示すステップS10における反応容器10および外部反応容器20内の状態を示す模式図である。GaN結晶の結晶成長が進行し、混合融液290が減少すると、気液界面3が下がり、種結晶5から成長したGaN結晶6が混合融液290から離れる。
【0164】
そうすると、振動検出信号BDSは、成分SS1(図6参照)からなるため、上下機構220は、振動検出信号BDSに基づいて、上述した方法によって、GaN結晶6が混合融液290に接触するように支持装置50を降下させる。これによって、GaN結晶6は、再び、混合融液290に接触し、GaN結晶6が優先的に成長する。
【0165】
このように、この発明においては、GaN結晶の結晶成長中、種結晶5または種結晶5から結晶成長したGaN結晶6を常に混合融液290に接触させる。これによって、大きなサイズのGaN結晶を成長できる。
【0166】
図15は、図12に示すフローチャートに従ってGaN結晶の製造が終了した時点における反応容器10および外部反応容器20の状態を示す模式図である。図15を参照して、GaN結晶6の結晶成長が進行し、混合融液290中の金属Gaが全て消費されると、混合融液290は、金属Naのみからなり、気液界面3は、低下しない。この時点では、種結晶5から結晶成長したGaN結晶6は、サイズがさらに大きくなり、GaN結晶61に成長している。
【0167】
図12に示すフローチャートに従って製造したGaN結晶61に含まれる不純物量と、Arガスの純化(A)〜(H)との関係を表1に示す。
【0168】
【表1】

【0169】
なお、表1における酸素量および水素量は、SIMS(Secondary Ion
Mass Spectroscopy)によって測定された。
【0170】
表1において、サンプルSpl1〜Spl8は、それぞれ、純化(A)〜(H)によってArガスを純化した場合のGaN結晶61中の酸素量および水素量を示す。
【0171】
このように、グローブボックス300の内部空間301に充填されるArガス中の酸素濃度および水分濃度を制御することによって、結晶成長装置100を用いて結晶成長したGaN結晶61中の酸素濃度および水素濃度を制御できる。
【0172】
サンプルSpl1,Spl2は、1018〜1020cm−3の酸素量と、1019〜1020cm−3の水素量とを含むGaN結晶である。また、サンプルSpl4は、1018〜1019cm−3の酸素量と、1019〜1020cm−3の水素量とを含むGaN結晶である。
【0173】
このように、サンプルSpl1,Spl2,Spl4は、1019〜1020cm−3の水素量を含むGaN結晶である。そして、1019〜1020cm−3の水素量を含むGaN結晶は、絶縁体に近づく。したがって、純化(A),(B),(D)は、絶縁体に近いGaN結晶を製造する場合に適している。
【0174】
また、サンプルSpl3は、1018〜1020cm−3の酸素量と、1019cm−3未満水素量とを含むGaN結晶であり、サンプルSpl7は、1018〜1020cm−3の酸素量と、検出限界以下の水素量とを含むGaN結晶である。
【0175】
このように、サンプルSpl3,Spl7は、1018〜1020cm−3の酸素量を含む。そして、1018〜1020cm−3の酸素は、GaN結晶中でn型のドーパントとして作用するため、サンプルSpl3,Spl7は、低抵抗なGaN結晶からなる。したがって、サンプルSpl3,Spl7のGaN結晶は、半導体レーザ等の光デバイスを作製するときの基板に適している。
【0176】
このように、光デバイス用の基板として用いるGaN結晶を製造できると、GaN結晶の上に半導体レーザを作製し、レーザ発振のための電流を半導体レーザの活性層に注入する電極を厚さ方向に形成できるので、電流注入のための電極を横方向に形成する場合よりも効率よく電流を活性層に注入でき、レーザ発振のためのしきい値電流を低減した半導体レーザを作製できる。
【0177】
なお、水素は、GaN結晶中でドーパントを不活性化するために機能するため、サンプルSpl7のGaN結晶は、サンプルSpl3のGaN結晶よりも抵抗率が低い。このように、1019cm−3未満の水素は、GaN結晶の抵抗率を制御することができる。
【0178】
さらに、サンプルSpl5,Spl6は、1018cm−3未満の酸素量と、1019cm−3未満の水素量とを含むGaN結晶であり、サンプルSpl8は、1018cm−3未満の酸素量と、検出限界以下の水素量とを含むGaN結晶である。
【0179】
このように、サンプルSpl5,Spl6,Spl8は、1018cm−3未満の酸素量を含む。そして、1018cm−3未満の酸素は、GaN結晶中ではn型のドーパントとしては作用しない。したがって、サンプルSpl5,Spl6,Spl8は、高抵抗なGaN結晶からなり、電界効果トランジスタ等の電子デバイスを作製するのに適している。
【0180】
上述したサンプルSpl1〜Spl8におけるGaN結晶は、全て、10cm−2以下の転位密度を有し、金属Na(アルカリ金属)を含む場合もあれば、金属Na(アルカリ金属)を含まない場合もある。
【0181】
このように、グローブボックス300に充填されるArガスの酸素濃度および水分濃度を制御することにより、10cm−2以下の転位密度と1020cm−3以下の酸素量とを含むGaN結晶(サンプルSpl7,Spl8)、または10cm−2以下の転位密度と1020cm−3以下の酸素量と1020cm−3以下の水素量とを含むGaN結晶(サンプルSpl1〜Spl6)を製造できる。
【0182】
したがって、グローブボックス300中のArガスの酸素濃度および水素濃度を制御することによって、絶縁体、低抵抗なGaN半導体および高抵抗なGaN半導体を製造でき、光デバイスまたは電子デバイスに用いるGaN結晶を製造できる。
【0183】
上記においては、金属Gaと金属Naとを相互の反応を防止して反応容器10へ入れ、GaN結晶を製造すると説明したが、この発明においては、これに限らず、金属Gaと金属Naとの金属間化合物を反応容器10に入れてGaN結晶を製造するようにしてもよい。
【0184】
グローブボックス内で金属Gaと金属Naとを反応容器10へ入れ、温度を100℃以上に加熱することにより金属間化合物が生成される。このとき、NaとGaとの比を5:8に設定することにより、Na5Ga8の金属間化合物が生成される。この金属間化合物は、粉末状である。
【0185】
その作製した粉末状の金属間化合物をグローブボックス300中で新しい反応容器10に入れ、反応容器10および外部反応容器20を結晶成長装置100に設定してGaN結晶を製造してもよい。
【0186】
なお、図12に示すフローチャートにおいては、反応容器10および外部反応容器20が800℃に加熱されると、種結晶5を金属Naおよび金属Gaとの混合融液290に接触させると説明したが(ステップS5,S6参照)、この発明においては、これに限らず、反応容器10および外部反応容器20が800℃に加熱されると(ステップS5参照)、ステップS6において、種結晶5を金属Naおよび金属Gaとの混合融液290中に保持するようにしてもよい。つまり、反応容器10および外部反応容器20が800℃に加熱されると、種結晶5を混合融液290に浸漬して種結晶5からGaN結晶を結晶成長させるようにしてもよい。
【0187】
そして、種結晶5を混合融液290に接触させる動作は、振動印加装置230によって支持装置50に振動を印加し、支持装置50の振動を示す振動検出信号BDSを検出するステップAと、検出された振動検出信号BDSが、種結晶5が混合融液290に接したときの振動検出信号(振動検出信号BDSの成分SS2)になるように支持装置50を上下機構220によって移動させるステップBとからなる。
【0188】
また、種結晶5を混合融液290中に保持する動作は、振動印加装置230によって支持装置50に振動を印加し、支持装置50の振動を示す振動検出信号BDSを検出するステップAと、検出された振動検出信号BDSが、種結晶5が混合融液290中に浸漬されたときの振動検出信号(振動検出信号BDSの成分SS3)になるように支持装置50を上下機構220によって移動させるステップCとからなる。
【0189】
ステップBおよびステップCにおいて、支持装置50を上下機構220によって移動させるとしているのは、反応容器10の容積と、反応容器10に入れられた金属Naおよび金属Gaの全体量との関係によって、反応容器10内で生成された混合融液290の液面(=界面3)の位置が変動し、反応容器10内で混合融液290が生成された時点で、種結晶5が混合融液290に浸漬されていることもあれば、種結晶5が空間23に保持されていることもあるので、種結晶5を混合融液290に接触または種結晶5を混合融液290に浸漬するには、種結晶5を重力方向DR1において上下動させる必要があるからである。
【0190】
また、図12に示すフローチャートのステップS10においては、種結晶5が混合融液290に接触するように種結晶5を降下させると説明したが、この発明においては、図12に示すフローチャートのステップS10は、一般的には、GaN結晶の結晶成長中、種結晶5から結晶成長したGaN結晶が混合融液290に接するように支持装置50を上下機構220によって移動させるステップDからなる。
【0191】
GaN結晶の結晶成長とともに、混合融液290中のGaが消費されて混合融液290の液面(=界面3)が低下するが、この液面(=界面3)が低下する速度と、GaN結晶の結晶成長速度との関係によって種結晶5から結晶成長したGaN結晶を上方向へ移動させる場合もあれば、種結晶5から結晶成長したGaN結晶を下方向へ移動させる場合もあるからである。
【0192】
すなわち、液面(=界面3)の低下速度がGaN結晶の結晶成長速度よりも速い場合、種結晶5から結晶成長したGaN結晶を下方向へ移動させてGaN結晶を混合融液290の液面(=界面3)に接触させる。一方、液面(=界面3)の低下速度がGaN結晶の結晶成長速度よりも遅い場合、種結晶5から結晶成長したGaN結晶を上方向へ移動させてGaN結晶を混合融液290の液面(=界面3)に接触させる。
【0193】
このように、液面(=界面3)の低下速度とGaN結晶の結晶成長速度との関係によって、種結晶5から結晶成長したGaN結晶を重力方向DR1において上下動させる必要があるので、ステップDにおいては、「上下機構220によって支持装置50を移動させる」としたものである。
【0194】
そして、ステップDにおいて、種結晶5から結晶成長したGaN結晶を混合融液290に接触させる動作は、上述したステップAおよびステップBからなる。
【0195】
上述したように、この発明においては、金属Naおよび金属Gaを反応容器10へ仕込むときのグローブボックス300中のArガスの酸素濃度および/または水分濃度を制御することにより、酸素量および/または水素量を変えたGaN結晶を製造することを特徴とする。この特徴によって、光デバイスまたは電子デバイスに用いるGaN結晶を製造できる。
【0196】
また、結晶成長装置100においては、金属Na蒸気7を空間23内へ閉じ込めた状態でGaN結晶を成長させることを特徴とする。この特徴によって、混合融液290中からの金属Naの蒸発が抑制され、混合融液290中における金属Naと金属Gaとのモル比率をほぼ一定に保持でき、大きく、かつ、高品質なGaN結晶を成長させることができる。
【0197】
さらに、結晶成長装置100においては、種結晶5の温度T3を反応容器10および外部反応容器20の温度(=加熱装置70,80のヒーターの温度)よりも低い温度に設定してGaN結晶を成長させることを特徴とする。
【0198】
この特徴によって、種結晶5付近の混合融液290中の窒素またはIII族窒化物の過飽和度を高くしてGaN結晶が種結晶5から成長するように制御できる。つまり、種結晶5以外に核が発生するのを抑制して種結晶5のみからGaN結晶が成長するように制御できる。その結果、大きなサイズのGaN結晶を製造できる。そして、GaN結晶の成長とともに、種結晶5が混合融液290に接触するように上下機構220によって種結晶5を降下させるので、GaN結晶が種結晶5から優先的に成長する状態を保持できる。その結果、大きなサイズのGaN結晶を成長できる。
【0199】
さらに、結晶成長装置100においては、外部反応容器20内の空間23と金属融液190との気液界面1または気液界面1付近における温度T4は、空間23と混合融液290との気液界面3または気液界面3付近における温度T5に略一致するように、加熱装置70は、反応容器10および外部反応容器20を加熱する。
【0200】
このように、気液界面1または気液界面1付近における温度T4を気液界面3または気液界面3付近における温度T5に略一致させることによって、金属融液190から蒸発した金属Na蒸気と混合融液290から蒸発した金属Na蒸気とが空間23内で平衡状態になり、気液界面3付近の金属Na蒸気が気液界面1の方向へ拡散するのを抑制できる。その結果、混合融液290からの金属Naの蒸発を確実に抑制して混合融液290中における金属Naと金属Gaとのモル比率を安定でき、大きなサイズを有するGaN結晶を安定して製造できる。
【0201】
さらに、結晶成長装置100においては、温度T4が温度T5よりも高くなるように反応容器10および外部反応容器20を加熱してもよい。この場合、反応容器10と外部反応容器20との間に加熱装置をさらに設置し、その設置した加熱装置によって反応容器10を加熱して気液界面3または気液界面3付近を温度T5に加熱し、加熱装置70によって気液界面1または気液界面1付近を温度T4に加熱する。
【0202】
このように、温度T4を温度T5よりも高い温度に設定することによって、気液界面1における金属Naの蒸気圧が気液界面3における金属Naの蒸気圧よりも高くなり、金属Na蒸気が気液界面1付近から気液界面3付近へ拡散する。そうすると、気液界面3付近において金属Na蒸気の濃度が高くなり、混合融液290からの金属Naの蒸発をさらに抑制できる。その結果、混合融液290中における金属Naと金属Gaとのモル比率を確実に安定化でき、大きさサイズを有するGaN結晶を安定して製造できる。
【0203】
したがって、結晶成長装置100においては、温度T4が温度T5以上に設定されてGaN結晶の製造が行なわれる。
【0204】
上記においては、支持装置50に振動を与え、支持装置50の振動を検出して種結晶5またはGaN結晶6が混合融液290に接触するように制御したが、この発明においては、これに限らず、気液界面3の位置を検出して種結晶5またはGaN結晶6が混合融液290に接触するようにしてもよい。この場合、導線の一方端を外部から外部反応容器20に接続し、他方端を混合融液290中に浸漬させた状態で導線に電流を流し、電流がオフからオンに切換わるときの外部反応容器20内に入れられた導線の長さによって気液界面3の位置を検出する。
【0205】
導線の他方端が混合融液290に浸漬されていれば、混合融液290、反応容器10、金属融液190および外部反応容器20を介して導線に電流が流れ、導線の他方端が混合融液290に浸漬されていなければ、導線に電流が流れない。
【0206】
したがって、電流がオフからオンに切換わるときの外部反応容器20内に入れられた導線の長さによって気液界面3の位置を検出できる。そして、気液界面3の位置を検出すると、上下機構220によって、検出した気液界面3の位置まで種結晶5またはGaN結晶6を降下させる。
【0207】
また、音波を気液界面3に向けて発し、音波が気液界面3との間で往復する時間を測定して気液界面3の位置を検出するようにしてもよい。
【0208】
さらに、熱電対を外部反応容器20から反応容器10内に挿入し、熱電対によって検出した温度が変化するときの外部反応容器20内に挿入された熱電対の長さから気液界面3の位置を検出するようにしてもよい。
【0209】
また、上記においては、種結晶5を冷却することによって種結晶5の温度を混合融液290の温度よりも低くしたが、この発明においては、これに限らず、配管200内にヒーターを設置し、このヒーターによって種結晶5の温度を制御するようにしてもよい。加熱装置70,80によって反応容器10および外部反応容器20を加熱した場合、種結晶5の温度が混合融液290の温度と同じように上昇しないこともある。このような場合、配管200内に設置したヒーターによって種結晶5を加熱し、種結晶5の温度が図7に示す曲線k2または直線k3に従って変化するように制御する。
【0210】
したがって、この発明においては、混合融液290の温度と種結晶5の温度との差が図7に示す直線k1と曲線k2との温度差または直線k1と直線k3との温度差になるように、加熱装置70,80および配管200内のヒーターを制御するようにしてもよい。
【0211】
さらに、上記においては、抑制/導入栓60の凸部62の高さHおよび複数の凸部62の間隔dは、数十μmであると説明したが、凸部62の高さHおよび複数の凸部62の間隔dは、抑制/導入栓60の温度に応じて決定されるようにしてもよい。この場合、抑制/導入栓60の温度が相対的に高い場合、凸部62の高さHは相対的に高くされ、かつ、複数の凸部62の間隔dは、相対的に小さくされる。また、抑制/導入栓60の温度が相対的に低い場合、凸部62の高さHは相対的に低くされ、かつ、複数の凸部62の間隔dは、相対的に大きくされる。つまり、抑制/導入栓60の温度が相対的に高い場合、抑制/導入栓60と配管30との間の空隙63のサイズが相対的に小さくされ、抑制/導入栓60の温度が相対的に低い場合、抑制/導入栓60と配管30との間の空隙63のサイズが相対的に大きくされる。
【0212】
凸部62の高さHおよび複数の凸部62の間隔dによって空隙63の大きさが決定され、表面張力により金属融液190を保持可能な空隙63の大きさが抑制/導入栓60の温度によって変化する。したがって、凸部62の高さHおよび複数の凸部62の間隔dを抑制/導入栓60の温度に応じて変化させ、表面張力によって金属融液190を確実に保持できるようにしたものである。
【0213】
そして、抑制/導入栓60の温度制御は、加熱装置80によって行われる。すなわち、抑制/導入栓60の温度を150℃よりも高い温度に昇温する場合には、加熱装置80によって抑制/導入栓60を加熱する。
【0214】
図16は、この発明による抑制/導入栓の他の斜視図である。また、図17は、図16に示す抑制/導入栓400の固定方法を説明するための断面図である。図16を参照して、抑制/導入栓400は、栓401と、複数の凸部402とからなる。栓401は、長さ方向DR3へ直径が変化する円柱形状からなる。複数の凸部402の各々は、略半球形状を有し、直径が数十μmである。そして、複数の凸部402は、栓401の外周面401Aにランダムに形成される。ただし、隣接する2つの凸部402の間隔は、数十μmに設定される。
【0215】
図17を参照して、抑制/導入栓400は、支持部材403,404によって外部反応容器20と配管30との連結部に固定される。より具体的には、抑制/導入栓400は、一方端が外部反応容器20に固定された支持部材403と、一方端が配管30の内壁に固定された支持部材404とによって挟まれることによって固定される。
【0216】
この場合、抑制/導入栓400の凸部402は、外部反応容器20および配管30に接していてもよく、接していなくてもよい。凸部402が外部反応容器20および配管30に接しないように抑制/導入栓400が固定される場合、凸部402と外部反応容器20および配管30との間隔を表面張力によって金属融液190を保持可能な間隔に設定して抑制/導入栓400を支持部材403,404によって固定する。
【0217】
反応容器10と外部反応容器20との間に保持された金属Naは、反応容器10および外部反応容器20の加熱が開始される前、固体であるので、ガスボンベ140から供給された窒素ガスは、外部反応容器20内の空間23と配管30内の空間31との間を抑制/導入栓400を介して拡散可能である。
【0218】
そして、反応容器10および外部反応容器20の加熱が開始され、反応容器10および外部反応容器20の温度が98℃以上に昇温されると、反応容器10と外部反応容器20との間に保持された金属Naは、溶けて金属融液190になり、窒素ガスを空間23に閉じ込める。
【0219】
また、抑制/導入栓400は、金属融液190が外部反応容器20の内部から配管30の空間31へ流出しないように金属融液190の表面張力によって金属融液190を保持する。
【0220】
さらに、金属融液190および抑制/導入栓400は、GaN結晶の成長が進行すると、窒素ガスと、金属融液190および混合融液290から蒸発した金属Na蒸気とを空間23に閉じ込める。その結果、混合融液290からの金属Naの蒸発を抑制でき、混合融液290中における金属Naと金属Gaとのモル比率を安定させることができる。そして、GaN結晶の成長が進行するに伴って、空間23内の窒素ガスが減少すると、空間23内の圧力P1は、配管30の空間31の圧力P2よりも低くなり、抑制/導入栓400は、空間31の窒素ガスを外部反応容器20の方向へ通過させ、金属融液190を介して空間23へ供給する。
【0221】
このように、抑制/導入栓400は、上述した抑制/導入栓60と同じように作用する。したがって、抑制/導入栓400は、抑制/導入栓60に代えて結晶成長装置100に用いられる。
【0222】
上記においては、抑制/導入栓400は、凸部402を有すると説明したが、抑制/導入栓400は、凸部402を有していなくてもよい。この場合、栓401と外部反応容器20および配管30との間隔が数十μmになるように、抑制/導入栓400は、支持部材によって固定される。
【0223】
そして、抑制/導入栓400(凸部402を有する場合と凸部402を有さない場合とを含む。以下、同じ)と外部反応容器20および配管30との間隔は、抑制/導入栓400の温度に応じて決定されるようにしてもよい。この場合、抑制/導入栓400の温度が相対的に高い場合、抑制/導入栓400と外部反応容器20および配管30との間隔は、相対的に小さく設定される。また、抑制/導入栓400の温度が相対的に低い場合、抑制/導入栓400と外部反応容器20および配管30との間隔は、相対的に大きく設定される。
【0224】
表面張力により金属融液190を保持可能な抑制/導入栓400と外部反応容器20および配管30との間隔は、抑制/導入栓400の温度によって変化する。したがって、抑制/導入栓400と外部反応容器20および配管30との間隔を抑制/導入栓400の温度に応じて変化させ、表面張力によって金属融液190を確実に保持できるようにしたものである。
【0225】
そして、抑制/導入栓400の温度制御は、加熱装置80によって行われる。すなわち、抑制/導入栓400の温度を150℃よりも高い温度に昇温する場合には、加熱装置80によって抑制/導入栓400を加熱する。
【0226】
図18は、この発明による抑制/導入栓のさらに他の斜視図である。図18を参照して、抑制/導入栓410は、複数の貫通孔412が形成された栓411からなる。複数の貫通孔412は、栓411の長さ方向DR2に沿って形成される。そして、複数の貫通孔412の各々は、数十μmの直径を有する(図18の(a)参照)。
【0227】
なお、抑制/導入栓410においては、貫通孔412は、少なくとも1個形成されていればよい。
【0228】
また、抑制/導入栓420は、複数の貫通孔422が形成された栓421からなる。複数の貫通孔422は、栓421の長さ方向DR2に沿って形成される。そして、複数の貫通孔422の各々は、長さ方向DR2へ複数段に変化された直径r1,r2,r3を有する。直径r1,r2,r3の各々は、金属融液190を表面張力により保持可能な範囲で決定され、たとえば、数μm〜数十μmの範囲で決定される(図18の(b)参照)。
【0229】
なお、抑制/導入栓420においては、貫通孔422は、少なくとも1個形成されていればよい。また、貫通孔422の直径は、少なくとも2個に変化されればよい。さらに、貫通孔422の直径は、長さ方向DR2へ連続的に変えられてもよい。
【0230】
抑制/導入栓410または420は、結晶成長装置100の抑制/導入栓60に代えて用いられる。
【0231】
特に、抑制/導入栓420が抑制/導入栓60に代えて用いられた場合、結晶成長装置100において、抑制/導入栓420の温度制御を精密に行なわなくても、複数段に変えられた直径のいずれかによって金属融液190を金属融液190の表面張力により保持できるので、抑制/導入栓420の温度制御を精密に行なわなくても、大きさサイズを有するGaN結晶を製造できる。
【0232】
さらに、この発明においては、抑制/導入栓60に代えてポーラスプラグまたは逆流防止弁を用いてもよい。ポーラスプラグは、ステンレスの粉末を焼結した焼結体からなり、数十μmの空孔が多数形成された構造を有する。したがって、ポーラスプラグは、上述した抑制/導入栓60と同じように金属融液190の表面張力によって金属融液190を保持可能である。
【0233】
また、この発明における逆流防止弁は、低温部分に用いられるバネ式の逆流防止弁と、高温部分に用いられるピストン式の逆流防止弁との両方を含む。このピストン式の逆流防止弁とは、空間31内の圧力P2が空間23内の圧力P1よりも高いとき、圧力P2と圧力P1との差圧によってピストンが1対のガイドに沿って上方向へ移動して空間31の窒素ガスを金属融液190を介して空間23へ供給し、P1≧P2であるとき、自重によってピストンが外部反応容器20と配管30との連結部を塞ぐ形式の逆流防止弁である。したがって、この逆流防止弁は、高温部分においても使用できる。
【0234】
上記においては、結晶成長温度は、800℃であると説明したが、この発明においては、これに限らず、結晶成長温度は、600℃以上であればよい。また、窒素ガス圧力も0.4MPa以上の加圧状態の本結晶成長方法で成長可能な圧力であればよい。すなわち、上限も本実施の形態の5.05MPaに限定されるものではなく、5.05MPa以上の圧力であってもよい。
【0235】
また、上記においては、所定量の不純物を含むArガス雰囲気中で金属Naおよび金属Gaを反応容器10に入れ、所定量の不純物を含むArガス雰囲気中で金属Naを反応容器10および外部反応容器20間に入れると説明したが、この発明においては、これに限らず、所定量の不純物を含むHe、NeおよびKr等のArガス以外のガスまたは所定量の不純物を含む窒素ガス雰囲気中で金属Naおよび金属Gaを反応容器10に入れ、金属Naを反応容器10および外部反応容器20間に入れてもよく、一般的には、所定量の不純物を含む不活性ガスまたは所定量の不純物を含む窒素ガス雰囲気中で金属Naおよび金属Gaを反応容器10に入れ、金属Naを反応容器10および外部反応容器20間に入れればよい。
【0236】
さらに、金属Gaと混合する金属は、Naであると説明したが、この発明においては、これに限らず、リチウム(Li)およびカリウム(K)等のアルカリ金属、またはマグネシウム(Mg)、カルシウム(Ca)およびストロンチウム(Sr)等のアルカリ土類金属を金属Gaと混合して混合融液290を生成してもよい。そして、これらのアルカリ金属が溶けたものは、アルカリ金属融液を構成し、これらのアルカリ土類金属が溶けたものは、アルカリ土類金属融液を構成する。
【0237】
さらに、窒素ガスに代えて、アジ化ナトリウムおよびアンモニア等の窒素を構成元素に含む化合物を用いてもよい。そして、これらの化合物は、窒素原料ガスを構成する。
【0238】
さらに、Gaに代えて、ボロン(B)、アルミニウム(Al)およびインジウム(In)等のIII族金属を用いてもよい。
【0239】
したがって、この発明による結晶成長装置または製造方法は、一般的には、アルカリ金属またはアルカリ土類金属とIII族金属(ボロンを含む)との混合融液を用いてIII族窒化物結晶を製造するものであればよい。
【0240】
そして、この発明による結晶成長装置または製造方法を用いて製造したIII族窒化物結晶は、発光ダイオード、半導体レーザ、フォトダイオードおよびトランジスタ等のIII族窒化物半導体デバイスの作製に用いられる。
【0241】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0242】
1〜3 気液界面
4 窒素ガス
5 種結晶
6,61 GaN結晶
7 金属Na蒸気
8 不純物
10,10A,10B 反応容器
20 外部反応容器
20A 外周面
20B 底面
21 本体部
22 蓋部
23 空間
30,200 配管
30A 内壁
40 ベローズ
50 支持装置
51 筒状部材
54 空間部
60,400,410,420 抑制/導入栓
61,401,411,421 栓
62,402 凸部
63 空隙
70,80 加熱装置
71,81 温度センサー
90,110,250 ガス供給管
100 結晶成長装置
120,121,160 バルブ
130 圧力調整器
140,270 ガスボンベ
150 排気管
170 真空ポンプ
180 圧力センサー
190 金属融液
191 泡
201 空孔
210 熱電対
220 上下機構
221 凹凸部材
222 歯車
223 軸部材
224 モータ
225 制御部
230 振動印加装置
240 振動検出装置
280 温度制御装置
290 混合融液
300 グローブボックス
301 内部空間
302,303 矢印
310 ヒーター
320 ガス純化装置
330,340 パイプ
【先行技術文献】
【特許文献】
【0243】
【特許文献1】米国特許第5868837号明細書
【特許文献2】特開2001−58900号公報

【特許請求の範囲】
【請求項1】
III族金属元素と、
窒素元素と、
10cm−2以下の転位密度と、
1020cm−3以下の酸素元素とを含むIII族窒化物結晶。
【請求項2】
前記酸素元素の濃度は、1018〜1020cm−3の範囲である、請求項1に記載のIII族窒化物結晶。
【請求項3】
前記酸素元素の濃度は、1018cm−3よりも低い、請求項1に記載のIII族窒化物結晶。
【請求項4】
1020cm−3以下の水素元素をさらに含む、請求項1から請求項3のいずれか1項に記載のIII族窒化物結晶。
【請求項5】
前記水素元素の濃度は、1019〜1020cm−3の範囲である、請求項4に記載のIII族窒化物結晶。
【請求項6】
前記水素元素の濃度は、1019cm−3よりも低い、請求項4に記載のIII族窒化物結晶。
【請求項7】
アルカリ金属元素をさらに含む、請求項1から請求項6のいずれか1項に記載のIII族窒化物結晶。
【請求項8】
アルカリ金属とIII族金属とを含む混合融液を保持する反応容器を備える結晶成長装置を用いてIII族窒化物結晶を製造する製造方法であって、
所定量の不純物原料を含む不活性ガスまたは窒素ガス雰囲気中で前記アルカリ金属および前記III族金属を前記反応容器内に入れる第1の工程と、
前記反応容器内の容器空間に窒素原料ガスを充填する第2の工程と、
前記反応容器を結晶成長温度に加熱する第3の工程と、
所定の時間、前記反応容器の温度を前記結晶成長温度に保持する第4の工程と、
前記容器空間内の圧力が所定の圧力に保持されるように前記窒素原料ガスを前記反応容器内へ供給する第5の工程とを備える製造方法。
【請求項9】
前記所定量の不純物原料は、10ppm以下の酸素ガスからなる、請求項8に記載の製造方法。
【請求項10】
前記所定量の不純物原料は、0.1〜10ppmの酸素ガスからなる、請求項9に記載の製造方法。
【請求項11】
前記所定量の不純物原料は、0.1ppm未満の酸素ガスからなる、請求項9に記載の製造方法。
【請求項12】
前記所定量の不純物原料は、
10ppm以下の酸素と、
10ppm以下の水分とからなる、請求項8に記載の製造方法。
【請求項13】
前記所定量の不純物原料は、
0.1〜10ppmの酸素と、
0.1〜10ppmの水分とからなる、請求項12に記載の製造方法。
【請求項14】
前記所定量の不純物原料は、
0.1ppm未満の酸素と、
0.1〜10ppmの水分とからなる、請求項12に記載の製造方法。
【請求項15】
前記所定量の不純物原料は、
0.1〜10ppmの酸素と、
0.1ppm未満の水分とからなる、請求項12に記載の製造方法。
【請求項16】
前記所定量の不純物原料は、10ppm以下の水分からなる、請求項8に記載の製造方法。
【請求項17】
前記所定量の不純物原料は、0.1〜10ppmの水分からなる、請求項16に記載の製造方法。
【請求項18】
前記所定量の不純物原料は、0.1ppm未満の水分からなる、請求項16に記載の製造方法。
【請求項19】
前記アルカリ金属と前記III族金属との金属間化合物が入れられた前記反応容器を所定の減圧下において加熱処理する第6の工程をさらに備え、
前記第1の工程は、前記金属間化合物を前記不活性ガスまたは前記窒素ガス雰囲気中で前記反応容器内に入れ、
前記第2から第5の工程は、前記第6の工程の後に実行される、請求項8から請求項18のいずれか1項に記載の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2012−136433(P2012−136433A)
【公開日】平成24年7月19日(2012.7.19)
【国際特許分類】
【出願番号】特願2012−98237(P2012−98237)
【出願日】平成24年4月23日(2012.4.23)
【分割の表示】特願2006−68614(P2006−68614)の分割
【原出願日】平成18年3月14日(2006.3.14)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】