説明

p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法

【課題】結晶シリコン基板を用いた太陽電池セルの製造工程において、シリコン基板中の内部応力、基板の反りの発生を抑制しつつ、短時間でp型拡散層を形成するp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法の提供。
【解決手段】本発明のp型拡散層形成組成物は、アクセプタ元素を含むガラス粉末と、分散媒と、を含有する。p型拡散層形成組成物のガラス粉末の含有比率は、1質量%以上90質量%以下の範囲である。このp型拡散層形成組成物を塗布し熱拡散処理を施すことで、p型拡散層、及びp型拡散層を有する太陽電池セルが製造される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池セルのp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法に関するものであり、更に詳しくは、半導体基板である結晶シリコンの内部応力を低減し、結晶粒界のダメージ抑制、結晶欠陥増長抑制及び反り抑制可能なp型拡散層形成技術に関するものである。
【背景技術】
【0002】
従来の結晶シリコン太陽電池セルの製造工程について説明する。
まず、光閉じ込め効果を促して高効率化を図るよう、テクスチャー構造を形成したp型シリコン基板を準備し、続いてオキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800〜900℃で数十分の処理を行って、基板に一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、表面のみならず、側面、裏面にもn型拡散層が形成される。それゆえ、側面のn型拡散層を除去するためのサイドエッチングを行っている。また、裏面のn型拡散層はp型拡散層へ変換する必要があり、裏面にアルミペーストを印刷し、これを焼成して、n型層をp型層にするのと同時に、オーミックコンタクトを得ている。
【0003】
しかしながら、アルミペーストは導電率が低く、シート抵抗を下げるためには、通常裏面全面に形成したアルミ層は焼成後において10〜20μmほどの厚みを有していなければならない。さらに、このように厚いアルミ層を形成すると、シリコンとアルミニウムでは熱膨張率が大きく異なることから、焼成および冷却の過程で、シリコン基板中に大きな内部応力を発生させ、結晶粒界のダメージ、結晶欠陥増長及び反りの原因となる場合があった。
【0004】
この問題を解決するために、ペースト組成物の塗布量を減らし、裏面電極層を薄くする方法がある。しかしながら、ペースト組成物の塗布量を減らすと、p型シリコン半導体基板の表面から内部に拡散するアルミニウムの量が不十分となる。その結果、所望のBSF(Back Surface Field)効果(p型層の存在により生成キャリアの収集効率が向上する効果)を達成することができないため、太陽電池の特性が低下するという問題が生じる。
【0005】
そこで、例えば、アルミニウム粉末と、有機質ビヒクルと、熱膨張率がアルミニウムよりも小さく、かつ、溶融温度、軟化温度および分解温度のいずれかがアルミニウムの融点よりも高い無機化合物粉末とを含むペースト組成物が提案されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2003−223813号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1に記載のペースト組成物を用いた場合でも、充分に反りを抑制することができない場合があった。
本発明は、以上の従来の問題点に鑑みなされたものであり、結晶シリコン基板を用いた太陽電池セルの製造工程において、シリコン基板中の内部応力、基板の反りの発生を抑制しつつ、短時間でp型拡散層を形成することが可能なp型拡散層形成組成物、p型拡散の製造方法、及び太陽電池セルの製造方法の提供を課題とする。
【課題を解決するための手段】
【0008】
前記課題を解決する手段は以下の通りである。
<1> アクセプタ元素を含むガラス粉末と、分散媒と、を含み、前記ガラス粉末の含有率が1質量%以上90質量%以下の範囲であるp型拡散層形成組成物。
【0009】
<2> 前記アクセプタ元素が、B(ほう素)、Al(アルミニウム)及びGa(ガリウム)から選択される少なくとも1種である前記<1>に記載のp型拡散層形成組成物。
【0010】
<3> 前記アクセプタ元素を含むガラス粉末が、B、Al及びGaから選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する前記<1>又は<2>に記載のp型拡散層形成組成物。
【0011】
<4> 前記<1>〜<3>のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、
熱拡散処理を施す工程と、
を有するp型拡散層の製造方法。
【0012】
<5> 半導体基板上に、前記<1>〜<3>のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、
熱拡散処理を施して、p型拡散層を形成する工程と、
を有する太陽電池セルの製造方法。
【発明の効果】
【0013】
本発明によれば、結晶シリコン基板を用いた太陽電池セルの製造工程において、シリコン基板中の内部応力、基板の反りを抑制しつつ、短時間でp型拡散層を形成することが可能となる。
【発明を実施するための形態】
【0014】
まず、本発明のp型拡散層形成組成物について説明し、次にp型拡散層形成組成物を用いるp型拡散層及び太陽電池セルの製造方法について説明する。
尚、本明細書において「〜」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。
【0015】
本発明のp型拡散層形成組成物は、少なくともアクセプタ元素を含むガラス粉末(以下、単に「ガラス粉末」と称する場合がある)と、分散媒と、を含有し、更に塗布性などを考慮してその他の添加剤を必要に応じて含有してもよい。
ここで、p型拡散層形成組成物とはアクセプタ元素を含有し、例えば、シリコン基板に塗布した後に熱拡散処理(焼成)することでこのアクセプタ元素を熱拡散させてp型拡散層を形成することが可能な材料をいう。本発明のp型拡散層形成組成物を用いることで、p型拡散層形成工程とオーミックコンタクト形成工程とを分離でき、オーミックコンタクト形成のための電極材の選択肢が広がるとともに、電極の構造の選択肢も広がる。例えば銀等の低抵抗材を電極に用いれば薄い膜厚で低抵抗が達成できる。また、電極も全面に形成する必要はなく、櫛型等の形状のように部分的に形成してもよい。以上のように薄膜あるいは櫛型形状等の部分的形状にすることで、シリコン基板中の内部応力、基板の反りの発生を抑えながらp型拡散層を形成することが可能となる。
【0016】
したがって、本発明のp型拡散層形成組成物を適用すれば、従来広く採用されている方法、つまりアルミペーストを印刷し、これを焼成してn型層をp型層にするのと同時にオーミックコンタクトを得る方法では発生してしまう基板中の内部応力及び基板の反りの発生が抑制される。
【0017】
また、p型拡散層形成組成物に含有されるガラス粉末の含有率が1質量%以上90質量%以下の場合では、ガラス粉末の焼成により形成されるp型拡散層の上のガラス層を短時間でエッチング除去できる。また、アクセプタ元素の拡散によりp型拡散層の形成が十分に行われる。
なお、本発明における「p型拡散層を形成する」ために要する時間とは、p型拡散層を形成し且つp型拡散層の上に形成されるガラス層を除去するために要する総時間をいう。よって、p型拡散層の上に形成されるガラス層が短時間で除去されることにより、p型拡散層を形成するための時間が短縮される。
【0018】
本発明に係るアクセプタ元素を含むガラス粉末について、詳細に説明する。
アクセプタ元素とは、シリコン基板中にドーピングさせることによってp型拡散層を形成することが可能な元素である。アクセプタ元素としては第13族の元素が使用でき、例えばB(ほう素)、Al(アルミニウム)及びGa(ガリウム)等が挙げられる。
【0019】
アクセプタ元素をガラス粉末に導入するために用いるアクセプタ元素含有物質としては、B、Al、及びGaが挙げられ、B、Al及びGaから選択される少なくとも1種を用いることが好ましい。
【0020】
また、ガラス粉末は、必要に応じて成分比率を調整することによって、溶融温度、軟化点、ガラス転移点、化学的耐久性等を制御することが可能である。更に以下に記す成分を含むことが好ましい。
ガラス成分物質としては、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、MoO、La、Nb、Ta、Y、TiO、GeO、TeO及びLu等が挙げられ、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種を用いることが、好ましい。
【0021】
アクセプタ元素を含むガラス粉末の具体例としては、B−SiO系、B−ZnO系、B−PbO系、Al−SiO系、B−Al系、Ga−SiO系、Ga−B系、B単独系などのガラスが挙げられる。
上記では1成分ガラスあるいは2成分を含む複合ガラスを例示したが、B−SiO−NaO等必要に応じて3種類以上の複合ガラスでもよい。
【0022】
ガラス粉末中のガラス成分物質の含有比率は、溶融温度、軟化点、ガラス転移点、化学的耐久性を考慮して適宜設定することが望ましく、一般には、0.1質量%以上95質量%以下であることが好ましく、0.5質量%以上90質量%以下であることがより好ましい。
【0023】
ガラス粉末の軟化点は、拡散処理時の拡散性、液だれの観点から、200℃〜1000℃であることが好ましく、300℃〜900℃であることがより好ましい。
【0024】
ガラス粉末の粒径は、50μm以下であることが望ましい。50μm以下の粒径を有するガラス粉末を用いた場合には、平滑な塗膜が得られやすい。更に、ガラス粉末の粒径は10μm以下であることがより望ましい。
【0025】
アクセプタ元素を含むガラス粉末は、以下の手順で作製される。
最初に原料を秤量し、るつぼに充填する。るつぼの材質としては白金、白金−ロジウム、イリジウム、アルミナ、石英、炭素等が挙げられるが、溶融温度、雰囲気、溶融物質との反応性等を考慮して適宜選ばれる。
次に、電気炉でガラス組成に応じた温度で加熱し均一な融液とする。このとき融液が均一となるよう攪拌することが望ましい。
続いて均一になった融液をジルコニア基板やカーボン基板等の上に流し出して融液をガラス化する。
最後にガラスを粉砕し粉末状とする。粉砕にはジェットミル、ビーズミル、ボールミル等公知の方法が適用できる。
【0026】
p型拡散層形成組成物中の前記ガラス粉末の含有比率は、塗布性、アクセプタ元素の拡散性、不要なガラスのエッチング性等の観点から、1質量%以上90質量%以下であり、5質量%以上70%質量%以下が望ましく、更に十分に低い表面抵抗を示すこととエッチング処理において基板へ損傷を与えない浸漬時間の観点から10質量%以上30質量%以下がより望ましい。ガラス含有比率が90質量%以上では不要なガラス成分のエッチング処理が困難となる。ガラス粉末の含有比率が1質量%未満では、アクセプタ元素の基板への拡散性や塗布性が低下する。
【0027】
また、アクセプタ元素の基板への拡散性を考慮すると、p型拡散層形成組成物中のアクセプタ元素含有物質の含有率は、1質量%以上であることが好ましく、2質量%以上であることがより好ましい。なお、p型拡散層形成組成物にアクセプタ元素を一定量以上添加しても、形成したp型拡散層を有する表面のシート抵抗は一定値以上には低下しなくなる。
【0028】
次に、分散媒について説明する。
分散媒とは、組成物中において上記ガラス粉末を分散させる媒体である。具体的に分散媒としては、バインダーや溶剤などが採用される。
【0029】
バインダーとしては、例えば、ジメチルアミノエチル(メタ)アクリレートポリマー、ポリビニルアルコール、ポリアクリルアミド類、ポリビニルアミド類、ポリビニルピロリドン、ポリ(メタ)アクリル酸類、ポリエチレンオキサイド類、ポリスルホン酸、アクリルアミドアルキルスルホン酸、セルロースエーテル類、セルロース誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ゼラチン、澱粉及び澱粉誘導体、アルギン酸ナトリウム類、キサンタン、グア及びグア誘導体、スクレログルカン及びスクレログルカン誘導体、トラガカント及びトラガカント誘導体、デキストリン及びデキストリン誘導体、アクリル酸樹脂、アクリル酸エステル樹脂、ブタジエン樹脂、スチレン樹脂、及びこれらの共重合体、並びに二酸化珪素などを適宜選択し得る。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
【0030】
バインダーの分子量は特に制限されず、組成物としての所望の粘度を鑑みて適宜調整することが望ましい。
【0031】
溶剤としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−iso−プロピルケトン、メチル−n−ブチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、γ−ブチロラクトン、γ−バレロラクトン等のケトン系溶剤、ジエチルエーテル、メチルエチルエーテル、メチル−n−ジ−n−プロピルエーテル、ジ−iso−プロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチルモノ−n−プロピルエーテル、ジエチレングリコールメチルモノ−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチルモノ−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチルモノ−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチルモノ−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラジエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチルモノ−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチルモノ−n−ヘキシルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチルモノ−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチルモノ−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチルモノ−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチルモノ−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラジプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチルモノ−n−ブチルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチルモノ−n−ヘキシルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル等のエーテル系溶剤、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル等のエステル系溶媒、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコール−n−ブチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールエチルエーテルアセテート等のエーテルアセテート系溶剤、アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶媒、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤、水等が挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
【0032】
p型拡散層形成組成物中の分散媒の含有比率は、塗布性、アクセプタ濃度を考慮し決定される。
p型拡散層形成組成物の粘度は、塗布性を考慮して、10mPa・S以上1000000mPa・S以下であることが好ましく、50mPa・S以上500000mPa・S以下であることがより好ましい。
【0033】
次に、本発明のp型拡散層及び太陽電池セルの製造方法について説明する。
【0034】
まず、p型半導体基板である結晶シリコンにアルカリ溶液を付与してダメージ層を除去し、テクスチャー構造をエッチングにて得る。
詳細には、インゴットからスライスした際に発生するシリコン表面のダメージ層を20質量%苛性ソーダで除去する。次いで1質量%苛性ソーダと10質量%イソプロピルアルコールの混合液によりエッチングを行い、テクスチャー構造を形成する。太陽電池セルは、受光面(表面)側にテクスチャー構造を形成することにより、光閉じ込め効果が促され、高効率化が図られる。
【0035】
次に、オキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800〜900℃で数十分の処理を行って一様にn型拡散層を形成する。このとき、オキシ塩化リン雰囲気を用いた方法では、リンの拡散は側面及び裏面にも及び、n型拡散層は表面のみならず、側面、裏面にも形成される。そのために、側面のn型拡散層を除去するために、サイドエッチが施される。
【0036】
そして、p型半導体基板の裏面すなわち受光面ではない面のn型拡散層の上に、上記p型拡散層形成組成物を塗布する。本発明では、塗布方法には制限がないが、例えば、印刷法、スピン法、刷毛塗り、スプレー法、ドクターブレード法、ロールコーター法、インクジェット法などがある。
上記p型拡散層形成組成物の塗布量としては特に制限は無いが、例えば、0.05g/m〜1.05g/mとすることができ、0.065g/m〜0.02g/mであることが好ましい。
【0037】
なお、p型拡散層形成組成物の組成によっては、塗布後に、組成物中に含まれる溶剤を揮発させるための乾燥工程が必要な場合がある。この場合には、80〜300℃程度の温度で、ホットプレートを使用する場合は1〜10分、乾燥機などを用いる場合は10〜30分程度で乾燥させる。この乾燥条件は、n型拡散層形成組成物の溶剤組成に依存しており、本発明では特に上記条件に限定されない。
【0038】
上記p型拡散層形成組成物を塗布した半導体基板を、600〜1200℃で熱処理する。この熱処理により、半導体基板中へアクセプタ元素が拡散し、p型拡散層が形成される。熱処理には公知の連続炉、バッチ炉等が適用できる。また、熱拡散処理時の炉内雰囲気は、空気、酸素、窒素等に適宜調整することもできる。
熱拡散処理時間は、p型拡散層形成組成物に含まれるアクセプタ元素の含有率などに応じて適宜選択することができる。例えば、1〜60分間とすることができ、2〜30分間であることがより好ましい。
【0039】
型拡散層の表面には、ガラス層が形成されているため、このガラスをエッチングにより除去する。エッチングとしては、ふっ酸等の酸に浸漬する方法、苛性ソーダ等のアルカリに浸漬する方法など公知の方法が適用できる。
ここで、ガラス粉末の含有率が1質量%以上90質量%以下である本発明のp型拡散層形成組成物を用いると、p型拡散層の上に形成されるガラス層が短時間で除去される。
【0040】
また、従来の製造方法では、裏面にアルミペーストを印刷し、これを焼成してn型拡散層をp型拡散層にするのと同時に、オーミックコンタクトを得ている。しかしながら、アルミペーストの導電率が低く、シート抵抗を下げるために、通常裏面全面に形成したアルミ層は焼成後において10〜20μmほどの厚みを有していなければならない。さらに、このように厚いアルミ層を形成すると、シリコンとアルミでは熱膨張率が大きく異なることから、焼成および冷却の過程で、シリコン基板中に大きな内部応力を発生させ、反りの原因となる。
この内部応力は、結晶の結晶粒界に損傷を与え、電力損失が大きくなるという課題があった。また、反りは、モジュール工程における太陽電池セルの搬送や、タブ線と呼ばれる銅線との接続において、セルを破損させ易くしていた。近年では、スライス加工技術の向上から、結晶シリコン基板の厚みが薄型化されつつあり、更にセルが割れ易い傾向にある。
【0041】
しかし本発明の製造方法によれば、上記本発明のp型拡散層形成組成物によってn型拡散層をp型拡散層に変換した後、別途このp型拡散層の上に電極を設ける。そのため裏面の電極に用いる材料はアルミニウムに限定されず、例えばAg(銀)やCu(銅)などを適用することができ、裏面の電極の厚さも従来のものよりも薄く形成することが可能となり、さらに全面に形成する必要もなくなる。そのため焼成および冷却の過程で発生するシリコン基板中の内部応力及び反りを低減できる。
【0042】
上記形成したn型拡散層の上に反射防止膜を形成する。反射防止膜は公知の技術を適用して形成される。例えば、反射防止膜がシリコン窒化膜の場合には、SiHとNHの混合ガスを原料とするプラズマCVD法により形成する。このとき、水素が結晶中に拡散し、シリコン原子の結合に寄与しない軌道、即ちダングリングボンドと水素が結合し、欠陥を不活性化(水素パッシベーション)する。
より具体的には、上記混合ガス流量比NH/SiHが0.05〜1.0、反応室の圧力が0.1〜2Torr、成膜時の温度が300〜550℃、プラズマの放電のための周波数が100kHz以上の条件下で形成される。
【0043】
表面(受光面)の反射防止膜上に、表面電極用金属ペーストをスクリーン印刷法で印刷塗布乾燥させ、表面電極を形成する。表面電極用金属ペーストは、金属粒子とガラス粒子とを必須成分とし、必要に応じて樹脂バインダー、その他の添加剤などを含む。
【0044】
次いで、上記裏面のp型拡散層上にも裏面電極を形成する。前述のように、本発明では裏面電極の材質や形成方法は特に限定されない。例えば、アルミニウム、銀、又は銅などの金属を含む裏面電極用ペーストを塗布し、乾燥させて、裏面電極を形成してもよい。このとき、裏面にも、モジュール工程におけるセル間の接続のために、一部に銀電極形成用銀ペーストを設けてもよい。
【0045】
上記電極を焼成して、太陽電池セルを完成させる。600〜900℃の範囲で数秒〜数分間焼成すると、表面側では電極用金属ペーストに含まれるガラス粒子によって絶縁膜である反射防止膜が溶融し、更にシリコン表面も一部溶融して、ペースト中の金属粒子(例えば銀粒子)がシリコン基板10と接触部を形成し凝固する。これにより、形成した表面電極とシリコン基板とが導通される。これはファイアースルーと称されている。
【0046】
表面電極の形状について説明する。表面電極は、バスバー電極、及び該バスバー電極と交差しているフィンガー電極で構成される。
このような表面電極は、例えば、上述の金属ペーストのスクリーン印刷、又は電極材料のメッキ、高真空中における電子ビーム加熱による電極材料の蒸着などの手段により形成することができる。バスバー電極とフィンガー電極とからなる表面電極は受光面側の電極として一般的に用いられていて周知であり、受光面側のバスバー電極及びフィンガー電極の公知の形成手段を適用することができる。
【0047】
なお上述のp型拡散層及び太陽電池セルの製造方法では、p型半導体基板である結晶シリコンにn型拡散層を形成するのに、オキシ塩化リン(POCl)、窒素および酸素の混合ガスを用いているが、n型拡散層形成組成物を用いてn型拡散層を形成してもよい。n型拡散層形成組成物にはP(リン)やSb(アンチモン)などの第15族の元素がドナー元素として含有される。
n型拡散層の形成にn型拡散層形成組成物を用いる方法では、まず、p型半導体基板の表面である受光面にn型拡散層形成組成物を塗布し、裏面に本発明のp型拡散層形成組成物を塗布し、600〜1200℃で熱拡散処理する。この熱拡散処理により、表面ではp型半導体基板中へドナー元素が拡散してn型拡散層が形成され、裏面ではアクセプタ元素が拡散してp型拡散層が形成される。この工程以外は上記方法と同様の工程により、太陽電池セルが作製される。
【実施例】
【0048】
以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に制限するものではない。なお、特に記述が無い限り、薬品は全て試薬を使用した。また「%」は断りがない限り「質量%」を意味する。
【0049】
[実施例1]
−SiO−RO(R:Na,K,Li)系ガラス粉末(商品名:TMX−603C、東罐マテリアル・テクノロジー(株)社製)20gとエチルセルロース0.08g、酢酸2−(2−ブトキシエトキシ)エチル2.14gを混合してペースト化し、ガラス粉末の含有率90%のp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって、塗布量が0.065g/mとなるように、表面にn型層が形成されたp型シリコン基板の表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板を2.5%ふっ酸に90分間浸漬し、流水洗浄、乾燥を行った。
【0050】
p型拡散層形成組成物を塗布した側の表面のシート抵抗は30Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。また、基板の反りは発生していなかった。
【0051】
[実施例2]
−SiO−RO(R:Na,K,Li)系ガラス粉末(商品名:TMX−603C、東罐マテリアル・テクノロジー(株)社製)8gとエチルセルロース0.17g、酢酸2−(2−ブトキシエトキシ)エチル4.27gを混合してペースト化し、ガラス粉末の含有率65%のp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって、表面にn型層が形成されたp型シリコン基板の表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板を2.5%ふっ酸に40分間浸漬し、流水洗浄、乾燥を行った。
【0052】
p型拡散層形成組成物を塗布した側の表面のシート抵抗は48Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。また、基板の反りは発生していなかった。
【0053】
[実施例3]
−SiO−RO(R:Na,K,Li)系ガラス粉末(商品名:TMX−603C、東罐マテリアル・テクノロジー(株)社製)6gとエチルセルロース0.91g、酢酸2−(2−ブトキシエトキシ)エチル23.1gを混合してペースト化し、ガラス粉末の含有率20%のp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって、表面にn型層が形成されたp型シリコン基板の表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板を2.5%ふっ酸に30分間浸漬し、流水洗浄、乾燥を行った。
【0054】
p型拡散層形成組成物を塗布した側の表面のシート抵抗は75Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。また、基板の反りは発生していなかった。
【0055】
[実施例4]
−SiO−RO(R:Na,K,Li)系ガラス粉末(商品名:TMX−603C、東罐マテリアル・テクノロジー(株)社製)3gとエチルセルロース1.02g、酢酸2−(2−ブトキシエトキシ)エチル26.0gを混合してペースト化し、ガラス粉末の含有率10%のp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって、表面にn型層が形成されたp型シリコン基板の表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板を2.5%ふっ酸に30分間浸漬し、流水洗浄、乾燥を行った。
【0056】
p型拡散層形成組成物を塗布した側の表面のシート抵抗は83Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。また、基板の反りは発生していなかった。
【0057】
[実施例5]
−SiO−RO(R:Na,K,Li)系ガラス粉末(商品名:TMX−603C、東罐マテリアル・テクノロジー(株)社製)0.5gとエチルセルロース0.36g、酢酸2−(2−ブトキシエトキシ)エチル9.14gを混合してペースト化し、ガラス粉末の含有率5%のp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって、表面にn型層が形成されたp型シリコン基板の表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板を2.5%ふっ酸に30分間浸漬し、流水洗浄、乾燥を行った。
【0058】
p型拡散層形成組成物を塗布した側の表面のシート抵抗は110Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。また、基板の反りは発生していなかった。
【0059】
[実施例6]
−SiO−RO(R:Na,K,Li)系ガラス粉末(商品名:TMX−603C、東罐マテリアル・テクノロジー(株)社製)0.3gとエチルセルロース0.56g、酢酸2−(2−ブトキシエトキシ)エチル14.1gを混合してペースト化し、ガラス粉末の含有率2%のp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって、表面にn型層が形成されたp型シリコン基板の表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板を2.5%ふっ酸に30分間浸漬し、流水洗浄、乾燥を行った。
【0060】
p型拡散層形成組成物を塗布した側の表面のシート抵抗は160Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。また、基板の反りは発生していなかった。
【0061】
[比較例1]
−SiO−RO(R:Na,K,Li)系ガラス粉末(商品名:TMX−603C、東罐マテリアル・テクノロジー(株)社製)30gとエチルセルロース0.06g、酢酸2−(2−ブトキシエトキシ)エチル1.52gを混合してペースト化し、ガラス粉末の含有率95%のp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって、表面にn型層が形成されたp型シリコン基板の表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板を2.5%ふっ酸に90分間浸漬したが、ガラス残渣は完全に除去できなかった。その後、流水洗浄し、乾燥を行った。
【0062】
p型拡散層形成組成物を塗布した側の表面のシート抵抗は42Ω/□であり、B(ほう素)は拡散していた。
【0063】
[比較例2]
−SiO−RO(R:Na,K,Li)系ガラス粉末(商品名:TMX−603C、東罐マテリアル・テクノロジー(株)社製)0.05gとエチルセルロース0.38g、酢酸2−(2−ブトキシエトキシ)エチル9.57gを混合してペースト化し、ガラス粉末の含有率0.5%のp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって、表面にn型層が形成されたp型シリコン基板表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板を2.5%ふっ酸に90分間浸漬し、流水洗浄、乾燥を行った。
次に、調製したペーストをスクリーン印刷によって、表面にn型層が形成されたp型シリコン基板の表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板を2.5%ふっ酸に30分間浸漬し、流水洗浄、乾燥を行った。
【0064】
p型拡散層形成組成物を塗布した側の表面のシート抵抗は320Ω/□であり、B(ほう素)が充分に拡散していなかった。

【特許請求の範囲】
【請求項1】
アクセプタ元素を含むガラス粉末と、分散媒と、を含有し、前記ガラス粉末の含有比率が1質量%以上90質量%以下であるp型拡散層形成組成物。
【請求項2】
前記アクセプタ元素が、B(ほう素)、Al(アルミニウム)及びGa(ガリウム)から選択される少なくとも1種である請求項1に記載のp型拡散層形成組成物。
【請求項3】
前記アクセプタ元素を含むガラス粉末が、B、Al及びGaから選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する請求項1又は請求項2に記載のp型拡散層形成組成物。
【請求項4】
請求項1〜請求項3のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、熱拡散処理を施す工程と、を有するp型拡散層の製造方法。
【請求項5】
半導体基板上に、請求項1〜請求項3のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、
熱拡散処理を施して、p型拡散層を形成する工程と、
を有する太陽電池セルの製造方法。