説明

東芝燃料電池システム株式会社により出願された特許

11 - 20 / 358


【課題】冷却水系流路と水処理水系流路との両方の流路に対して空気溜りの発生を防止する。
【解決手段】第1の冷却水タンク41は、燃料電池スタック1のスタック内冷却水流路12からの冷却水を溜め、第2の冷却水タンク42は、イオン交換樹脂5により不純物イオンが取り除かれた冷却水を溜める。冷却水系流路20は、第2の冷却水タンク42から冷却水ポンプ2およびスタック内冷却水流路12を介して第1の冷却水タンク41に通じ、水処理水系流路60は、第1の冷却水タンク41から水処理水ポンプ6およびイオン交換樹脂5を介して第2の冷却水タンク42に通じる。制御部7は、冷却水ポンプ2および水処理水ポンプ6の出力を第1の出力値に維持する第1処理と、冷却水ポンプ2および水処理水ポンプ6の出力を第1の出力値とは異なる第2の出力値に変更する第2処理とを実行するのを制御する。 (もっと読む)


【課題】耐久性に優れ、長期の運転が可能である固体高分子形燃料電池、及び電解質膜の寿命予測方法を提供すること。
【解決手段】電解質膜4と、前記電解質膜4の両面に設けた一対の触媒層7,9と、前記触媒層7,9の外側に設けた一対のガス拡散層8,10と、前記ガス拡散層7,9の外側に設けた、反応ガスを電極に供給するためのガス流路5a,6aを有する一対の流路板5,6を具備する単電池1を複数個積層してなる固体高分子形燃料電池。前記固体高分子形燃料電池から排出される単位時間あたりのフッ素イオンの排出量(g/h)、前記電解質膜4の膜厚(cm)、前記単電池1の反応面積(cm)、前記単電池1の数(枚)、及び燃料電池の設計寿命(h)の間に、下記式の関係が成立する。
{(膜厚)×(反応面積)×(セル数)}÷(単位時間当たりのフッ素イオンの排出量)÷10 ≧(燃料電池の設計寿命) (もっと読む)


【課題】燃料組成が変化しても安定して発電を行なうことができる燃料電池発電システムを提供する。
【解決手段】本実施形態は、温度計によって測定された改質器温度が改質器の設定温度以上であれば燃料流量を燃料流量ベースよりも減らし、設定温度未満であれば燃料流量を燃料流量ベースよりも増やすように燃料供給系を制御する。また、燃料電池本体への必要水素流量から得られる必要蒸気流量を、改質器の設定温度と温度計により測定された改質器の温度との差分に基づいて得られる温度補正値により補正し、この補正された必要蒸気流量から補正後改質水供給流量を求め、この補正後改質水供給流量となるように前記改質水供給系を制御する具備する燃料電池発電システム、である。 (もっと読む)


【課題】燃料電池の劣化を抑制できる燃料電池システムを提供すること。
【解決手段】実施形態の燃料電池システム100は、燃料極1と酸化剤極2とを含む単位セルを積層してなる燃料電池スタック3、燃料極1に水素含有ガスを供給するための水素供給装置4と、酸化剤極2に酸化剤ガスを供給するための酸化剤供給装置5と、燃料電池スタック3から出力された電力を調整するための電力調整機構6と、抵抗7およびスイッチ8を具備し、スイッチ8を閉じた時に、燃料極1と抵抗7と酸化剤極2との間に電流を流すための電流路を形成して、抵抗7で電力を消費するための電力消費機構9と、酸化剤極2に連通する空間を密封するための酸化剤極密封弁10と、酸化剤供給装置5、水素供給装置4、電力調整機構6、スイッチ8および酸化剤極密封弁10の運転を制御するための制御装置11とを具備する。 (もっと読む)


【課題】発電効率の低下やコストの上昇を抑えつつ、停止中にカソード極もしくはアノード極へ空気などが流入することを防止できるようにすること。
【解決手段】実施形態の燃料電池コジェネレーションシステムは、燃料電池本体1のカソード極3に冷却水の一部を供給するための冷却水供給ライン12と、冷却水供給ライン12による冷却水の供給と遮断と開閉動作により切り替えることが可能な第1の弁13と、カソード極3に供給した冷却水を排出するための冷却水排出ライン14と、冷却水排出ライン14による冷却水の排出と遮断とを開閉動作により切り替えることが可能な第2の弁15とを具備し、システムの運転停止の際に、第1の弁13を開くとともに第2の弁15を閉じ、冷却水供給ライン12を通じてカソード極3に冷却水を供給することによりカソード極3を冷却水で満たす。 (もっと読む)


【課題】 熱需要の季節変動及び1日の熱需要に合わせた効率良い運転制御を行う。
【解決手段】 家庭用燃料電池システムであって、燃料と酸素との電気化学反応によって、電気と熱を発生する燃料電池スタック11と、燃料電池スタック11に燃料ガスを供給する機構21と、燃料電池スタック11に空気を供給する機構31,32と、燃料電池スタック11に冷却水を供給する機構51,52,53と、燃料ガス,空気,及び冷却水を各々所定の流量で供給する通常運転と、通常運転時よりも燃料ガス,空気,及び冷却水の少なくとも1つ所定の流量よりも少ない流量で供給する低流量運転と、を熱需要に応じて切り換える制御部41とを備えた。 (もっと読む)


【課題】 一酸化炭素変成器ヒータの投入量を最適化することにより、システム信頼性と省エネ性能を高次元で両立することができる燃料電池発電システムを提供する。
【解決手段】 本実施の形態は、制御装置22が、燃料電池21の累積発電時間に基づいて、一酸化炭素変成器12のヒータ12bの設定温度を算出し、この算出された設定温度となるようにヒータ投入量を算出し、この算出されたヒータ投入量に基づいて、一酸化炭素変成器ヒータを制御する。 (もっと読む)


【課題】 高さ方向の大形化を抑制しつつ軽量化とコストの低減が可能な燃料電池を提供する。
【解決手段】 燃料電池1は、複数の単位電池を積層してなる燃料電池積層体3と、締付け装置21とを具備する。締付け装置21を、燃料電池積層体3の積厚方向両側に夫々配設された一対の締付けアセンブリ22、及びこれらのアセンブリ22を互に近付くように締付けて単位電池の積層状態を保持する締付け保持手段31により形成する。締付けアセンブリ22は、互に交叉して配置された第1の梁23と第2の梁26を備える。第1、第2の梁のうちの少なくとも一方の梁はその長手方向中央部に他方の梁が通された切欠き溝24を有する。第1、第2の梁のうちの少なくとも一方の梁が、単位電池の積厚方向と平行でかつ相対向した側壁部23aと、これら側壁部にわたって一体に設けられた側壁間壁部23bとを有していることを特徴としている。 (もっと読む)


【課題】 保守性を考慮した分割構造を有するパッケージの外郭パネルでありながら、保守性のみならず電磁波ノイズの遮蔽性能向上も両立させる。
【解決手段】 水素と酸素の化学反応により直流出力を発生する燃料電池10と、この燃料電池で得られる直流出力を交流に変換するインバータ13とを内蔵するように、複数枚のパネルを接続して構成される発電装置用パッケージ外殻20であって、複数のパネルの少なくとも一部は、パネル材料の表面及び裏面の少なくとも一方に導電性塗料を塗布した板材で形成され、隣接するパネル間を導電性塗料面の接触により通電できるようにした。 (もっと読む)


【課題】 ガスマニホールドと燃料電池積層体の間のシール材による流路溝の閉塞が発生し難く、組立てが容易な燃料電池を提供する。
【解決手段】 電極複合体とセパレータ2からなる単位電池を複数個積層して構成された燃料電池積層体と、燃料電池積層体を積層方向両端から締め付けて保持する一対のエンドプレートと、燃料電池積層体及びエンドプレートの側面にシール材13を介して固定され、セパレータ2の流路溝2aに連通する単数若しくは複数のマニホールド室9a,9b,10aを有するマニホールド9,10と、を具備した燃料電池であって、セパレータ2は、同一のマニホールド室10aに連通される全ての流路溝2aの幅と、該流路溝2aの間に形成される全てのリブ部の幅とを合わせた流体の流通範囲の全幅を、反応領域に相対する位置よりもマニホールド室10aに近接した位置の方で小さくした。 (もっと読む)


11 - 20 / 358