説明

NUエコ・エンジニアリング株式会社により出願された特許

1 - 10 / 59


【課題】プラズマ発生領域の体積を大きくしたプラズマ発生装置の提供。
【解決手段】大気圧プラズマ発生装置100であって、長手方向に伸び、プラズマを発生する柱状のプラズマ化領域Pを内包する絶縁体から成る筐体10と、プラズマ化領域Pにプラズマ発生ガスを前記長手方向に対して垂直な方向から長手方向に一様に供給するガス導入部12と、プラズマ化領域Pにおいて、前記長手方向に離間して配置された1対の電極2a,2bと、プラズマ化領域Pに接続され、そのプラズマ化領域Pで生成された前記プラズマを排出し、プラズマ化領域Pの長手方向に沿って配列され、前記プラズマ発生ガスの流れる方向に長く伸びた多数の孔から成る排出部24とを有する。 (もっと読む)


【課題】プラズマの状態を乱すことなく、粒子密度を正確に測定できるようにすること。
【解決手段】プラズマ雰囲気の原子又は分子密度を吸光分光により測定する粒子密度測定プローブである。プラズマ雰囲気に設けられる円柱状の導光体20であって、その先端部13に、導光体を伝搬した光を反射する反射板14と、その反射板の手前に、導光体の長手方向に垂直な断面において一部の壁面が欠落した部分が長手方向に所定長だけ形成され、この部分を通過する光とプラズマ雰囲気の原子又は分子とが接触可能にしたプラズマ導入部15を有する。光伝搬体32は、プラズマ導入部15の手前に位置し側壁による全反射により光を軸方向に案内する。 (もっと読む)


【課題】試料の光吸収係数を高感度で測定する装置を実現する。
【解決手段】リングダウン分光装置は、波長可変フェムト秒ソリトンパルス光源1を用いる。パルス光は、第1光伝送路4、光切換スイッチ5を介して、ループ状の光ファイバー6に入力する。リングダウンパルス光は、光切換スイッチ5を介して、ホモダイン検波器40に入力する。一方、第1光伝送路4を伝搬するパルス光は、光方向性結合器8、第1光スイッチ素子12を介して、第2光伝送路20を構成する各光伝送路に分岐入力される。この第2光伝送路20を伝搬するパルス光が参照光として、ホモダイン検波器40に入力して、同期検波される。第2光伝送路20を構成する複数の光伝送路の光路長は、光ファイバー6の長さだけ、順次、異なると共に、それぞれの光伝送路は、光路長を微小変動させることができる。 (もっと読む)


【課題】高密度なラジカルを生成することが可能なラジカル源を実現すること。
【解決手段】ラジカル源は、SUSからなる供給管10と、供給管10に接続する熱分解窒化ホウ素(PBN)からなる円筒状のプラズマ生成管11を有している。プラズマ生成管11の外側には、円筒形のCCP電極13が配置されていて、CCP電極13よりも下流側には、プラズマ生成管11の外周に沿って巻かれたコイル12を有している。供給管10とプラズマ生成管11との接続部における供給管10の開口には、セラミックからなる寄生プラズマ防止管15が挿入されている。 (もっと読む)


【課題】ラジカル源によるラジカルの照射によって成膜するMBE装置において、成膜速度を向上させること。
【解決手段】MBE装置は、真空容器1と、真空容器1の内部に設けられ、基板3を保持し、基板3の回転、加熱が可能な基板ステージ2と、基板3表面に分子線(原子線)を照射する分子線セル4A〜Cと、基板3表面に窒素ラジカルを供給するラジカル源5と、を備えている。ラジカル源5は、SUSからなる供給管10と、供給管10に接続するプラズマ生成管11を有している。プラズマ生成管11の外側には、円筒形のCCP電極13が配置されていて、CCP電極13よりも下流側には、プラズマ生成管11の外周に沿って巻かれたコイル12を有している。供給管10とプラズマ生成管11との接続部における供給管10の開口には、セラミックからなる寄生プラズマ防止管15が挿入されている。 (もっと読む)


【課題】カーボンナノウォールの結晶性を容易に制御すること。
【解決手段】まず、ラジカル注入型プラズマCVD法によって基板上にカーボンナノウォールを形成した。そして、形成後のカーボンナノウォールに酸素ラジカルを照射した。酸素ラジカルの照射により、カーボンナノウォール中のアモルファスカーボンなど結晶性の低い部分が選択的にエッチングされる。そのため、ラジカルの照射時間によってエッチング量を制御することによって、カーボンナノウォールの結晶性を制御することができる。 (もっと読む)


【課題】アトマイゼーションの高効率化を図ること。
【解決手段】アトマイザーは、棒状電極10と、棒状電極10の先端部から一定距離隔てて配置された試料電極11を有している。棒状電極10の先端部は、軸方向を一致させてセラミックス管14内に納められている。セラミックス管14の内壁と棒状電極10との間には隙間が設けられていて、放電ガスがこの隙間を棒状電極10の先端側軸方向に流される。試料電極11は、セラミックス管15によって覆われていて、セラミックス管15の先端は外径が拡張されており、すり鉢状の凹部16を有している。凹部16底面には、試料電極11が露出している。この凹部に試料を保持する。棒状電極10、試料電極11は高圧パルス電源18に接続されている。高圧パルス電源18は、図2のように、正負が交互に反転する矩形パルス電圧を出力する。 (もっと読む)


【目的】電極とワークとの間で放電が起き難くする。
【解決手段】放電空間42Bとプラズマ出力口16との間に設けられたプラズマ流出通路の構成要素である個別通路81Bに関して、X部分81BX、Z部分81BZのX部分81BXXの接続部Mより放電空間側の部分81BZO、X部分81BXX、拡散器82B、スリット86等により主通路が構成され、Z方向部分81BZの接続部Mより放電空間とは反対側の部分81BZPにより分岐通路が構成される。アース板90は、分岐通路81BZPを塞ぐ状態で設けられる。分岐通路81BZPと主通路の部分81BZOとは同一直線上に位置するため、アース板90との間で放電が起き、ワークWとの間では起き難くすることができる。 (もっと読む)


【課題】原子吸光分析装置において、アトマイザーと光源との同期を簡易な構成によって実現すること。
【解決手段】原子吸光分析装置は、アトマイザー1と、光源2と、分析装置3と、電源装置4とによって構成されている。電源装置4は、図3に示すように、交流電源5と、半波整流回路6とによって構成されている。交流電源5は、商用の60HzのAC電源を昇圧した電源であり、アトマイザー1と交流電源5は直接接続され、光源2は半波整流回路6を介して交流電源5に接続されている。アトマイザー1には、交流電源5からの60Hzの交流電圧がそのまま印加される。半波整流回路6は、たとえばダイオードなどを用いた回路であり、60Hzの交流電圧を半波整流して出力する。そして、その半波整流された電圧が光源2に印加される。 (もっと読む)


【課題】自己吸収を利用した新規な原子吸光分析装置の実現。
【解決手段】原子吸光分析装置は、アトマイザー1と、ミラー2と、分光測定器3とで構成されている。アトマイザー1は、原子化した試料を含むプラズマ(アトマイズプラズマ5)を発生させる。ミラー2のない状態でアトマイズプラズマ5の発光強度を測定し、目的元素の共鳴線スペクトルの発光強度Ir1と、Arの励起線スペクトルの発光強度Iu1を測定する。また、ミラー2を配置し、ミラー2による光の反射によって、アトマイズプラズマ5のゴースト(ゴーストプラズマ6)を発生させた状態で発光強度を測定し、目的元素の共鳴線スペクトルの発光強度Irと、Arの励起線スペクトルの発光強度Iuを測定する。これらIr1、Iu1、Ir、Iuから、目的元素の自己吸収による吸収率を算出することができる。 (もっと読む)


1 - 10 / 59