説明

Fターム[2G001KA06]の内容

放射線を利用した材料分析 (46,695) | 分析の目的、用途、応用、志向 (3,508) | 危険物関連 (134)

Fターム[2G001KA06]に分類される特許

121 - 134 / 134


【課題】 砲弾のX線透視画像からその特徴量(特徴情報)を精度良く求めて砲弾の種別を精度良く識別することのできる物体識別方法および装置を提供する。
【解決手段】 砲弾における損壊し易い部品部分の画像成分をX線透視画像から除去した後、前記X線透視画像の輝度ヒストグラムに従って前記砲弾の外形や構造を検出する為の閾値を決定し、この閾値に基づいてX線透視画像から抽出された画像成分から前記砲弾の特徴量を検出してその種別を判定する。特に肉厚の砲弾底部を基準として砲弾の特徴量を検出する。 (もっと読む)


開示されているのは、標的内の平均原子番号及び/又は質量の空間分布を求めるために前記標的から散乱する光子のエネルギースペクトルを用いる、潜在的な脅威を探して標的を走査するための方法及びシステムである。代表的な一方法は、光子ビームで標的の複数ボクセルそれぞれを照光する段階と、各ボクセルへの入射束を求める段階と、前記ボクセルから散乱した光子のエネルギースペクトルを測定する段階と、前記エネルギースペクトルを用いて前記ボクセル内の平均原子番号を求める段階と、前記入射束と、前記ボクセル内の物質の前記平均原子番号と、前記エネルギースペクトルと、前記ボクセルに対応する散乱核とを用いて前記ボクセル内の質量を求める段階とを含む。代表的な一システムは脅威検出ヒューリスティックスを用いて、前記ボクセルの前記平均原子番号及び/又は質量に基づいて更なる動作を開始させるか否かを決定してもよい。

(もっと読む)


パッケージ、荷物又は衣類内の爆発物又は化学兵器のような禁制品を検出するためのシステムが、1つ又は複数のテラヘルツ・モジュールを含む。それぞれのモジュールは、テラヘルツ放射の発生又は受信、或いは発生および受信の両方を行う。テラヘルツ放射の一部は物品から反射され、テラヘルツ放射の残りは物品を透過する。処理装置は、物品の特性を決定するために、反射及び透過テラヘルツ放射を解析する。
(もっと読む)


既知の干渉性散乱CTスキャナは扇ビームを使用する。しかしながら、これは、追加のコリメート手段を要し、これは検出器に加えられる光子束を減少させる。これにより、より長い測定時間が必要とされうる。更に、幾何学的配置が既知の円錐ビームCTスキャナと互換性がない。本発明の模範的実施例によると、円錐ビームCSCTスキャナは、検出器上に配置されたコリメータを持つエネルギ分解検出器を使用して提供され、散乱関数の空間分解再構成を可能にする。有利には、これは、手荷物検査又は医療応用において向上された走査速度を可能にすることができる。
(もっと読む)


複数の透過性放射線の供給源を用いて、物体を検査するための、検査および方法。上記供給源による、検査される物体の照射は、検出される散乱放射線の供給源が明白であるように、時間的に順序付けられる。こうして、ビームが、実質的に同一平面上にあるような、コンパクトな幾何学においてさえ、検査される物体の複数の視野が得られ得、そして、画像の品質が、向上され得る。本発明の検査システムは、物体の動きの方向に関して実質的に横断方向の第1ビーム方向に方向付けられた、特定の断面の透過性放射線の第1ビームを提供するための、第1の供給源を有する。この検査システムは、第2ビームの方向の透過性放射線の第2ビームを提供するための第2の供給源も有し、そして、この検査システムは、さらなるビームのさらなる供給源もまた有し得る。
(もっと読む)


サンプリング周波数が、ナイキストレートを下回る場合、高周波信号は、サンプリングされたデータから適切に再構築されることができない。エッジのような高周波信号を有する領域に交差する軌跡に沿って2、3の追加的なサンプル点を選択することにより、本発明は、この問題を解決する。中間レンダリングデータが、その追加的なサンプリング点を決定するのに使用される。従って、本発明の例示的な実施形態によれば、ピクセルあたり4つの適合的に選択されるサンプル点が、16倍のスーパーサンプリングに匹敵する視覚品質を、非常に低い計算コストで提供することができる。
(もっと読む)


CSCTでは、多色性一次放射線に対して、各ボクセルの散乱機能の正確な再構築を行う方法は、知られていない。本発明の一実施例では、再構築の前に、ビーム硬化補正が行われ、等価水厚さから得られた一次放射線平均減衰データに基づいて、見かけ上正確な再構築を実施することが可能となる。等価水厚さから、エネルギーシフトが算定され、これを用いて、散乱放射線の初期の平均エネルギーが補正される。また、CT再構築は、CSCT再構築の前に実施され、ビーム硬化補正が可能となる。これにより、改良された画質を得ることができ、散乱機能の分解能が向上するという利点が得られる。
(もっと読む)


医療画像化モダリティが、より一層増加的に、非常に大きな3次元データセットを生成する。本発明の例示的な実施形態によれば、注目対象の3次元データセットが、画像における変化するサンプリングレートで対話的に視覚化される。有利には、レンダリングの間に、フォーカス領域が、ユーザにより対話的に動かされることができ、そこでは、その画像における特定の部分のサンプリングレートがフォーカス領域に対する相対的な位置によって規定される。有利には、これは、全体のレンダリング性能の改良を可能にすることができる。
(もっと読む)


注目対象の画像の再構築が、吸収値の高いグラジエントの線に沿ってアーチファクトをもたらす場合がある。本発明の例示的な実施形態によれば、こうしたアーチファクトは、その画像の再構築の間の統計的な重み付けにより効率的に除去されることができる。有利には、本発明の側面によれば、画像の再構築は、反復的に行われ、そこでは、更新が、測定された光子数の固有の統計的誤差で重み付けられる。これは、効率的なアーチファクトの除去をもたらすことができる。
(もっと読む)


一実施形態で、物体の中身を調査する方法は、物体を第1および第2の放射線エネルギーで走査し、第1および第2のエネルギーの放射線を検出し、対応するピクセルについて第1および第2のエネルギーで検出された放射線の第1の関数を計算することを含む。ピクセルは、物体を通過した放射線の検出器への投影である。複数のピクセルの第1の関数はグループ分けされ、物体が所定の原子番号よりも大きな原子番号を有する物質を少なくとも可能性として含むかどうかを決定するために、そのグループの第2の関数が解析される。第2の関数は第3の関数と比較することができ、この第3の関数は、所定の原子番号を有する物質に少なくとも部分的に基づいた値を有する閾値であってもよい。物質が核物質であるかどうかを決定するために、遅発中性子を検出することができる。また、システムも開示される。
(もっと読む)


核共鳴蛍光を用いて適応走査することにより試料内の核種を検出するための方法は、前記標的試料を光子源からの光子で照らす段階と、1つのエネルギーチャンネルで信号を検出する段階と、前記検出した信号を用いて走査評価パラメータを決定する段階と、前記走査評価パラメータが検出効率基準を満たすか否かを判断する段階と、前記走査評価パラメータが前記検出効率基準を満たすように、1つ又は複数のシステムパラメータを調節する段階と、1つのエネルギーチャンネルにおける前記信号を所定の核種検出判定基準と比較して核種検出イベントを識別する段階とを含むことができる。別の実施形態では、1つのエネルギーチャンネルで信号を検出する前記段階は、前記標的試料から散乱する光子を検出する段階を更に含むことができる。別の実施形態では、1つのエネルギーチャンネルで信号を検出する前記段階は、前記標的試料を透過すると共に少なくとも1つの基準散乱体から散乱する光子を検出する段階を更に含むことができる。
(もっと読む)


手荷物検査のための検査装置は、通常、大きい体積を必要とし、精密な運動を必要とする機械的構成要素を有する。本発明に従って、対象の被検体の検査は、対象の被検体(11)のスキャン中、放射線源(1)を移動し、放射線の送信ビーム(4)と、検出器アレイ(5,6)を移動させずに、特定の所定の散乱角において、対象の被検体により散乱される散乱放射線(3)とを検出することによりなされる。有利であることに、所定の散乱角において散乱される散乱放射線を検出することにより、対象の被検体及びその被検体の構成要素における散乱中心の位置の鉛直方向の座標が容易に導き出される。
(もっと読む)


コヒーレント散乱X線からの既知の再構成法は非厳密再構成法を使用する。本発明によると、散乱X線光子の波数ベクトル移動量qの比較的幅広いスペクトルが収集される。投影データは、x−y−q空間における線積分として解析され、投影データは、いかなる線源軌道に沿った収集にも対応するように再ソートされる。これにより、厳密螺旋形再構成アルゴリズムが適用され、冗長データがより良い画質を得るために使用されることができる。
(もっと読む)


本発明によると、放射線検出器がスキャナの扇ビーム面に対して非対称に構成される非対称収集システムが使用される。有利には、これは、回転軸の方向における所定の検出器高さに対して散乱角度範囲を増大することを可能にすることができる。更に、これは、結合された体積吸収分布再構成及び後のコヒーレント散乱CT再構成に対して最適なデータフローを可能にすることができる。
(もっと読む)


121 - 134 / 134