説明

Fターム[2G059MM04]の内容

光学的手段による材料の調査、分析 (110,381) | 信号処理、検出回路 (9,288) | ピーク検出、最大値、最小値 (347)

Fターム[2G059MM04]に分類される特許

341 - 347 / 347


感知面を具えた表面プラズモン共鳴装置を使った医療的診断方法である。患者の目からの涙サンプルを感知面と接触させる。表面プラズモン共鳴装置は涙サンプルの浸透圧モル濃度を決定する。 (もっと読む)


光学分析系(20)は、光信号の主成分の振幅を決定するように、配置される。その光学分析系(20)は、スペクトルの重み付けの関数によってその光信号を重み付けするための多変量光学素子(5,6)及びその重み付けされた光信号を検出するための検出器(7,8)を含む。その光信号は、その主成分及びそのスペクトルの重み付けの関数を設計するとき占められなかったさらなる成分を含む。従って、その検出された重み付けされた光信号は、その主成分の振幅に関係する部分及びそのさらなる成分のさらなる振幅に関係するさらなる部分を含む。その光学分析系(20)は、その検出された重み付けされた光信号を変調するための変調器素子(13)をさらに含む。その変調された検出された重み付けされた光信号とその検出された重み付けされた光信号との間の差は、その主成分の振幅に関係すると共に、このように、正確な方式でその主成分の振幅を決定することを許容する。血液分析系(40)は、このような光学分析系(20)を含む。主成分の振幅を決定する方法は、その光学分析系(20)を使用する。
(もっと読む)


本発明は血液透析、血液透析濾過、血液濾過または腹膜透析のための装置に関する。この装置は、透析および、または輸液が流れるように意図された少なくとも1つの導管10,14を備えている。この装置は、前記液体中の少なくとも1つの光学的に活性の物質を測定するための測定装置48を備えている。この測定装置48は、液体中の前記物質が前記液体を透過された偏光された光ビームに与える影響を測定することにより前記液体中の物質の濃度を測定するように構成されている。本発明はまた、このような装置を備えたシステムおよび解析および、または輸液中の光学的に活性の物質の濃度の測定を行う方法に関する。 (もっと読む)


人体内の対象領域の少なくとも一つのパラメータの非侵襲的モニタリングに使用される方法とシステムを提示する。当該システムは、測定ユニットと制御ユニットを備える。測定ユニットは、照射アセンブリ(101A)と光検出アセンブリ(101B)とを有し、採集光を示す測定データを生成する光学ユニットと、所定の超音波周波数範囲の音波を発生するように構成された音響ユニット(110)と、を備える。測定ユニットは、所定の周波数範囲の音波が対象領域内で照射領域と重なり対象領域外の領域とは実質的に重ならず、かつ検出アセンブリが対象領域からの散乱光と対象領域外の領域からの散乱光を採集するという動作条件を提供する。測定データは、超音波で標識付けされた光の部分と標識付けされていない光の部分の両方を有する散乱光を示し、対象領域と対象領域外の領域のそれぞれの光応答を識別可能にする。
(もっと読む)


本発明はセンサ1を使用する測定方法に関する測定値に対して、特に「ドリフト」誤差に関する温度依存誤差補償を行う方法および電子配置6に関する。電子回路6は1つ以上のガスおよび/またはガス混合物の存在の確立および/またはガスまたはガス混合物の濃度の演算に適合する。選択した測定サイクルT1の間に発生し確立した最高測定値Mmaxまたは最低測定値Mminはメモリー69’に格納する。選択した期間T1の間に発生し評価した最低アナログ値または最高デジタル測定値を前記メモリー69’に格納し、選択した測定サイクルまたは期間T1の最後に発生し評価した測定値Mmax、Mminと、格納したアナログまたはA/D変換器を介したデジタルの制御値65’を比較し、評価した最低または最高測定値と前記格納した制御値の差を、次の期間T2に発生する測定値の関係および/または対応する測定値の補償K1の基礎として使用することを提案する。 (もっと読む)


マイクロ流体装置の画像を処理する方法である。この方法は、マイクロ流体装置の第1画像を受信する。第1画像は第1状態に関連している。さらに、この方法は、マイクロ流体装置の第2画像を受信する。第2画像は第2状態に関連している。さらに、この方法は、第1画像と第2画像を第3座標空間に変換する。さらに、この方法は、変換された第1画像と変換された第2画像に関連した情報に少なくとも基づいて第3画像を取得し、また、第1状態と第2状態に関連した情報を取得するべく第3画像を処理する。
(もっと読む)


【課題】 検出器に導入する光の光量を増やし、S/N比を改善する。
【解決手段】 原子化部2をX、Y軸方向に移動可能とし、分光器3の入口スリット31の開口31aに対して、グラファイトチューブ21の発光による円環状結像21aの位置を調整できるようにする。実際の分析に先立ち、原子化部2をX、Y軸方向にそれぞれ移動させ、検出器4で得られる受光強度信号が最小になる位置を探すことにより、上記開口31aが円環状結像21aに掛からず、ほぼ内接するように原子化部2の位置を決定する。それにより、測定の妨害となるグラファイトチューブ21の発光光が検出器4に入ることを抑さえつつ、光源1からの光をより多く検出器4に導入することができる。 (もっと読む)


341 - 347 / 347