説明

Fターム[3D043EF21]の内容

動力伝達装置の配置〜駆動 (10,444) | 4WDにおける制御、制御対象 (1,466) | 原動機の制御 (66)

Fターム[3D043EF21]に分類される特許

1 - 20 / 66


【課題】2個の油圧ポンプとその差圧に応じて動作する油圧クラッチからなる動力伝達機構を備えるものにおいてトルク変動に起因する振動や異音を抑制するようにした四輪駆動車両の制御装置を提供する。
【解決手段】車両の前輪に接続される入力軸に連結されて作動油を前輪の回転数に応じた圧力に加圧して吐出する第1油圧ポンプと後輪に接続される出力軸に連結されて後輪の回転数に応じた圧力に加圧して吐出する第2油圧ポンプの吐出圧の差に応じた圧力の作動油を供給されて入力軸と出力軸を連結して駆動源の駆動力を配分する油圧クラッチのクラッチ差回転を算出し(S10,S12)、算出されたクラッチ差回転に基づいてクラッチトルクを算出し(S14)、算出されたクラッチトルクの変動が所定値以上の状態が所定時間以上継続するとき、駆動源の駆動力を減少させる(S16からS22)。 (もっと読む)


【課題】所定の状態において限られた間だけハンプさせて副駆動輪への駆動力伝達効率を上げると共に、コストの上昇や粘性継手の大型化を招くことがないようにした四輪駆動車両の制御装置を提供する。
【解決手段】粘性継手(ビスカスカップリング)の前記主駆動輪(前輪)に接続される入力側回転数と副駆動輪(後輪)に接続される出力側回転数の差回転(クラッチ差回転)を算出し(S12)、少なくとも算出された差回転に基づいて粘性継手の内圧を算出し(S14)、算出された差回転が所定範囲にあるとき、算出された粘性継手の内圧が所定値あるいはその近傍の値となる圧力条件が成立したか否か判定し(S10からS16)、圧力条件が成立したと判定されるとき、粘性継手の内圧が所定値あるいはその近傍の値に維持されるように駆動源の駆動力を制御する(S18からS20)。 (もっと読む)


【課題】車両の安定性を向上可能な制御装置を提供すること。
【解決手段】車両の前輪駆動力及び後輪駆動力を制御する制御装置は、主駆動輪駆動力及び副駆動輪駆動力を制御する第1の制御手段であって、前記主駆動輪駆動力は、前記前輪駆動力及び前記後輪駆動力の一方であり、前記副駆動輪駆動力は、前記前輪駆動力及び前記後輪駆動力の他方である、第1の制御手段と、前記車両の走行状態が不安定である場合、前記副駆動輪駆動力を制限する副駆動輪制限駆動力を前記第1の制御手段に要求する第2の制御手段と、前記主駆動輪駆動力及び前記副駆動輪駆動力の元である原動機駆動力を制御する第3の制御手段と、を備える。前記第3の制御手段は、前記副駆動輪制限駆動力に基づき前記原動機駆動力を減少させる。 (もっと読む)


【課題】異なる車軸に作用する複数の駆動システムを備えた車両における切替の快適性を向上させる。
【解決手段】少なくとも2つの駆動車軸を有する車両のトランスミッションの切替過程中に牽引力に影響を与えるための装置及び方法に関する。第1の車軸の駆動システムが、トランスミッションの切替過程時に第2の車軸で生じる牽引力の中断を少なくとも部分的に補償するように制御され、第2の駆動車軸における有効トルクの変更が、できるだけ牽引力の下降及び上昇なしに、特にこれに伴い感じられる衝撃なしに行われることを保証するために、切替の希望に応じてクラッチの制御を遅らせる。 (もっと読む)


【課題】トルク伝達手段を備えた四輪駆動車両において車両部品やトルク伝達手段の劣化を可能な限り未然に防止するようにした四輪駆動車両の劣化防止装置を提供する。
【解決手段】VC(トルク伝達手段)の入力側回転数と出力側回転数の差回転数を検出し(S10からS14)、少なくとも検出された差回転数に基づいてVCについてのパラメータ(VCトルク)を算出し(S16)、それが所定値以上のとき、VCと車両の部品の少なくともいずれかに対する負荷許容時間(VCなどが所期の機能を果たせない劣化に至る前の、即ち、それらに対して負荷がまだ許容される時間)を算出すると共に、時間計測を開始し(S18からS24)、計測された時間が負荷許容時間以上となったとき、原動機の駆動力を低下させる(S26からS30)。 (もっと読む)


【課題】エンジンが停止している時に四輪駆動状態から二輪駆動状態に切換え可能にして、後輪の整備時における車輪に対する負荷を無くして、整備性を向上させる作業車両を提供する。
【解決手段】前輪2を後輪3の駆動速度と略等しい速度で駆動する標準油圧クラッチSと、前輪2を後輪3の駆動速度より大なる速度で駆動する増速油圧クラッチBを設けると共に、標準油圧クラッチSに付勢部材33を設けて、エンジンが停止して油圧クラッチS,Bに圧油が供給されていない時に、当該付勢部材33によって標準油圧クラッチSを入りとして四輪駆動状態となす一方、エンジンが停止している際に、四輪駆動状態から二輪駆動状態に切換える二駆・四駆切換機構Aを設ける。 (もっと読む)


【課題】エンジンの自動始動時に好適なトルク伝達状態を実現する前後輪駆動車両の制御装置を提供する。
【解決手段】予め定められた第1の条件が成立した場合にエンジン12を自動停止すると共に、予め定められた第2の条件が成立した場合にバッテリ38の電力を用いてエンジン12を自動始動するエンジン制御手段80と、そのエンジン制御手段80によりエンジン12が自動始動させられる前にバッテリ38の電力を用いて電磁クラッチ26に所定の予備トルクTecmを付与するプレトルク制御を行う伝達トルク制御手段84とを、備えたものであることから、エンジン12の自動始動と同時に電磁クラッチ26の伝達トルク増加制御が行われる場合であっても、バッテリ電圧の低下を抑制して速やかに所望の伝達トルクを実現することができる。 (もっと読む)


【課題】手動クラッチを備えた車両において、発進時におけるエンジンストールの発生を防止することができる車両の制御装置を提供する。
【解決手段】総合ECUは、クラッチ機構13が非係合状態から係合状態に移行を開始したと判断し(ステップS2でYES)、車速Vが所定値Vth1以下であると判断した場合には(ステップS3でYES)、実エンジン回転数Nerealおよびアクセルペダル61の踏み込み量Apedalを表す信号を取得し(ステップS3、S4)、目標エンジン回転数Nerefを算出する(ステップS5)。そして、総合ECU70は、実エンジン回転数Nerealおよび目標エンジン回転数Nerefを用いてフィードバック値FBを算出し、フィードバック値FBに対応するトルク量Tmを取得する。そして、総合ECU70は、モータ30がトルク量Tmを出力するようモータ30を制御する(ステップS6)。 (もっと読む)


【課題】多板クラッチ機構を備えたトランスファと車軸に介装された切換機構とが搭載された2駆・4駆切換可能な車両に適用される駆動状態制御装置において、2輪駆動状態にて走行中において回転同期装置なしで切換機構の接続作動を円滑に達成すること。
【解決手段】2輪駆動状態にて車両走行中において、2駆→4駆切換条件が成立した場合(t3)、多板クラッチは、「分断状態」から「接合状態」へと直ちに切り換えられる(t3〜t4)。一方、切換機構Mの接続作動は、左右後輪の加速スリップ(前後輪の回転速度差)が発生していない状態、且つ、切換機構の両側の第1、第2軸の回転速度Nfr1,Nfr2が略一致している状態が得られた時点で開始される(時刻t5)。加えて、2駆→4駆切換条件成立後、左右後輪において加速スリップが発生している場合(時刻t3以降)、E/G出力低減制御が実行される。 (もっと読む)


【課題】駆動源により直接駆動される方の車輪、即ち、主駆動輪の伝達駆動トルクの効率化を図ることで走破性を向上させるようにした四輪駆動車両の制御装置を提供する。
【解決手段】互いに連結された前後軸の一方が駆動源により直接駆動されると共に、他方が入力回転数と出力回転数の差回転に応じてトルクを伝達するトルク伝達手段(ビスカスカップリング)を介して駆動される四輪駆動車両10において、トルク伝達手段の入力回転数と出力回転数の差回転を検出し(B1)、駆動源により直接駆動される一方の側の車輪の車輪速目標値VFRLIMITを算出し(B1)、検出された差回転が規定値以上のとき、算出された車輪速目標値に基づいて駆動源の出力を低下させる(B2からB9)。 (もっと読む)


【課題】前後軸間の差動制限を行う際、車両振動や駆動力変化を抑制するハイブリッド自動車の差動制限制御装置を提供する。
【解決手段】前後軸間の実回転数差及び目標回転数差を演算し、実回転数差を目標回転数差に追従させる副駆動軸補正トルクを演算し、副駆動軸補正トルクの最大値を制限する最大差動制限トルクを演算し、副駆動軸補正トルクの絶対値の上限値を最大差動制限トルクで制限したリミット出力を演算し、総駆動トルクから配分された副駆動軸駆動トルクをリミッタ出力で補正し、補正した副駆動軸駆動トルクとなるように、電動モータを制御して、差動制限を行う。 (もっと読む)


エンジン、第2のインバーターに結合された第1のインバーター、エンジン及び第1のインバーターに結合された第1の電気的機器、第2のインバーター及び車両の車軸に結合された第2の電気的機器、第1のインバーター及び第2のインバーターの双方に結合された高圧電池、及び第1の電気的機器と第2の電気的機器との間に配置されたスイッチボックスを含んだハイブリッド車両である。スイッチボックスは、スイッチの開放と、前記第1の電気的機器と前記第2の電気的機器との間を直接に電気的に接続させる閉鎖とに適応したスイッチを含む。 (もっと読む)


【課題】電動モータを効率が相対的に良好な領域で運転させることにより、車両全体としての燃費を向上することの可能な動力伝達機構を提供する。
【解決手段】電動モータ4とタイヤ5との間の動力伝達経路を接続および遮断することのできる、インホイールモータの動力伝達機構において、動力伝達経路には、動力を伝達または遮断する第1クラッチが設けられた第1経路7と、動力を伝達または遮断する第2クラッチが設けられた第2経路8とが並列に配置されており、第1クラッチ9は、タイヤ5が所定速度未満で回転するときに動力を伝達する第1遠心クラッチであり、第2クラッチは、電動モータ4が所定速度以上で回転するときに動力を伝達する第2遠心クラッチ13と、タイヤ5のトルクを電動モータ4に伝達する一方向クラッチ16とを含むことを特徴とする。 (もっと読む)


【課題】4輪駆動機構におけるビスカスカップリングによる引き摺り抵抗をハードウエアの変更に依存することなく、解消するようにした車両の制御装置を提供する。
【解決手段】エンジン(内燃機関)の出力をCVT(変速機)で変速して前後輪をそれぞれ駆動すると共に、VC(ビスカスカップリング)をプロペラシャフトに介挿した車両において、VCの前後の回転差を算出し(S12)、算出された回転差からNN(モデル)を用いてVCが発生すると推定されるトルクを算出し(S14)、算出されたトルクを打ち消すためにエンジンに要求される要求トルクを算出し、算出された要求トルクを出力するようにエンジンの運転を制御する(S16)。 (もっと読む)


【課題】前後輪の駆動力の配分量を理想的な駆動力の配分量に一致させつつ、モータ内の作動油の温度を上昇させて燃費の悪化を改善する。
【解決手段】ECUは、アクセルペダルの踏み込み量がゼロである場合に(S100にてYES)、実モータ温度と理想モータ温度との偏差を算出するステップ(S102)と、モータの必要発熱量を推定するステップ(S104)と、モータ発熱を要する場合に(S106にてYES)、モータの出力電力あるいは回生電力を算出するステップ(S108)と、オルタネータにおける発電電力あるいは吸収電力を算出するステップ(S110)と、モータおよびオルタネータを制御するステップ(S112)と、駆動力の配分量の目標値との偏差を算出するステップ(S114)と、制動装置を制御するステップ(S116)と、エンジンを制御するステップ(S118)とを含む、プログラムを実行する。 (もっと読む)


【課題】4WDモード時におけるアクセルペダル操作のフィーリングを向上可能な四輪駆動車およびその制御方法を提供する。
【解決手段】四輪駆動車は、2WDモードと4WDモードとを切替えて走行可能である。2WDモード時はエンジンにより前輪が駆動され、4WDモード時はモータによりさらに後輪が駆動される。4WDモード時は、エンジンの出力を用いてオルタネータにより発電し、モータへ電力が供給される。そして、エンジンECUは、4WDモード時、2WDモード時よりも同一のアクセルペダル操作量に対するエンジンのスロットル開度が小さくなるように、2WDモード時に対してアクセルペダル操作量とスロットル開度との関係を変更する。 (もっと読む)


【課題】回生制動の回生エネルギーの減少を抑制することが可能な、車両の四輪駆動制御装置及び四輪駆動制御方法を提供する。
【解決手段】4WD回生エネルギー演算手段34が、クラッチ8を締結状態とし、且つモータ6の回生制動を伴う旋回時に前輪1と後輪2との間で発生するフリクショントルクに基づいて、4WD回生エネルギーを演算し、クラッチ制御手段42が、回生エネルギー判定手段38が2WD回生エネルギーよりも4WD回生エネルギーが大きいと判定すると、クラッチ8を締結状態として、前輪1とモータ6との間の駆動力伝達経路を接続し、回生エネルギー判定手段38が4WD回生エネルギーよりも2WD回生エネルギーが大きいと判定すると、クラッチ8を解放状態として、前輪1とモータ6との間の駆動力伝達経路を遮断する。 (もっと読む)


【課題】路面摩擦係数が最大となるような態様で必要モータトルクを発生させることができる、電動モータ式四輪駆動車両のエンジン制御技術を提案する。
【解決手段】S11で、必要モータトルクを発生させるのに要求される必要最小限の必要モータトルク発生用前輪速を演算する(S11)。S12では、路面摩擦係数μが最大となる(前輪グリップ力が最大となる)前輪の理想スリップ率を実現するのに必要な目標前輪スリップ量ΔVwを演算し、このΔVwを現在の車体速VSPに加算して路面摩擦係数最大用前輪速を求める。S13では、必要モータトルク発生用前輪速および路面摩擦係数最大用前輪速のうち、大きい方を目標前輪速とする。S14では、前輪の実車輪速がこの目標前輪速に追従するようエンジンを出力制御する。 (もっと読む)


【課題】航続可能距離を伸ばすと共に車体における前面衝突時のための補強の増加を抑制する。
【解決手段】駆動システム10では、発電機22の回転子36が走行中常時回転されるプロペラシャフト16に一体回転可能に固定されている。従って、電気自動車の走行時には、発電機22にて電力が発生されてバッテリユニット24が充電されるので航続可能距離を伸ばすことができる。また、プロペラシャフト16は、バッテリユニット24を貫通している。従って、電気自動車に前面衝突が生じ、プロペラシャフト16が車両上下方向下側へ折れたときには、このプロペラシャフト16がバッテリユニット24と干渉されることで、バッテリユニット24を車体から落下させることができる。これにより、車室に作用する慣性マスとしてのバッテリユニット24を車体から切り離すことができるので、車体における前面衝突時のための補強の増加を抑制できる。 (もっと読む)


【課題】 制御ハンチングの抑制と主駆動輪のグリップ力の維持とを両立できる四輪駆動車の電動機トルク制御装置および方法を提供する。
【解決手段】 4WDコントローラ8は、目標モータトルクTm*を前輪1L,1Rと後輪3L,3Rとの車輪速差ΔVと車速VSPとに基づいて設定し、車速VSPに応じた目標モータトルクを、車速VSPが高いほど増加させ、目標モータトルクTm*に応じてモータ4の出力トルクを制御する。 (もっと読む)


1 - 20 / 66