説明

Fターム[3G301MA19]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 制御量(燃料噴射) (15,919) | 燃料噴射時期 (2,831) | 行程を基準とするもの(例;吸気行程) (1,090)

Fターム[3G301MA19]に分類される特許

141 - 160 / 1,090


【課題】HCCI燃焼の実行可能な火花点火式エンジン1において、エンジン1の暖機を早期に完了させて、HCCI燃焼の実行を早期に可能にする。
【解決手段】制御手段(PCM)50は、エンジン1の暖機が完了する前の未暖機状態においては、燃料噴射弁(直噴インジェクタ)18によって点火プラグ16周りに燃料を噴射するプリ燃料噴射を実行しかつ、吸気弁閉弁後の圧縮行程前半に点火プラグ16により火花点火を行うことで火花点火燃焼を実行すると共に、前記のプリ燃料噴射とは別のメイン燃料噴射によって気筒2内に形成した予混合気を、火花点火燃焼後の圧縮上死点付近で圧縮着火燃焼させる。 (もっと読む)


【課題】この発明は、アルコール濃度の高低によらずに後燃えを良好に持続させることを目的とする。
【解決手段】内燃機関10の筒内に、ガソリンとエタノールとの混合燃料を直接噴射可能な筒内燃料噴射弁24を備える。燃料中のエタノール濃度を検出するためのエタノール濃度センサ46を備える。内燃機関10のトルク発生のための主噴射の後に、筒内燃料噴射弁24を用いて膨張行程中に燃料を噴射する後燃え用噴射を実行する。エタノール濃度が高い場合には、それが低い場合に比して、後燃え用噴射による燃料噴射量が多くなるように制御する。具体的には、エタノール濃度が高い場合には、それが低い場合に比して、膨張行程における燃料噴射回数が多くなるように制御する。 (もっと読む)


【課題】分割噴射によりタンブル流を強化して混合気の均質性・燃焼性を向上させる。
【解決手段】1回目の分割噴射の噴射開始時期(第1噴射時期)と1回目の噴射量(第1噴射パルス幅)をエンジン運転状態に基づいて設定し、1回目の休止時間(第1休止時間)を休止直前の噴射量(第1噴射パルス幅)に基づいて所定時間以上を確保した上で短くするように設定して2回目の分割噴射の噴射開始時期(第2噴射時期)を設定すると共に、2回目の噴射量(第2噴射パルス幅)を1回目の噴射量(第1噴射パルス幅)よりも多くするように設定する。更に、2回目の休止時間(第2休止時間)を休止直前の噴射量(第2噴射パルス幅)に基づいて所定時間以上を確保した上で短くするように設定し、3回目の分割噴射の噴射開始時期(第3噴射時期)を設定すると共に、3回目の噴射量(第3噴射パルス幅)を1回目の噴射量(第1噴射パルス幅)よりも多くするように設定する。 (もっと読む)


【課題】ディーゼルエンジンが極低温状態にあっても良好な始動特性を得る。
【解決手段】
電子制御ユニット11により、ディーゼルエンジン1の運転状態に基づいて演算算出された燃料噴射動作の制御に用いられる基本制御量が、補正パラメータにより補正されて、燃料噴射動作が制御されるよう燃料噴射制御装置が構成されており、電子制御ユニット11は、ディーゼルエンジン1の筒内温度予測値を補正パラメータとして用い、その筒内温度予測値は、ディーゼルエンジン1の回転数と合計噴射回数に応じて筒内温度変化量マップ21から求められる筒内温度変化量を、直近に算出された筒内温度予測値に加算することを繰り返して順次更新算出されるよう構成されたものとなっている。 (もっと読む)


【課題】インジェクタの搭載個数の増大を抑えてコストを低減可能な内燃機関を提供する。
【解決手段】内燃機関1Aは、吸気開口部3が2つずつ設けられ互いに隣接する一対の気筒2と、気筒2毎の一つの吸気開口部2同士が共通に接続された二股通路14と、気筒2毎の残りの吸気開口部2に一つずつ接続された単通路13と、単通路13に設けられた第1インジェクタ15と、二股通路13に設けられた第2インジェクタ16とを備えている。 (もっと読む)


【課題】点火プラグの近傍に燃料を供給でき、かつスワールを強化できる燃料噴射装置を提供する。
【解決手段】燃料噴射装置10は、内燃機関1の気筒2の中心線方向及び前記吸気ポートを流れる吸気の流れ方向のそれぞれと直交するD−D方向に並べられた第1ポートインジェクタ11及び第2ポートインジェクタ12と、吸気バルブ5を挟むように配置された第1筒内インジェクタ21及び第2筒内インジェクタ22と、を備え、気筒2内に形成されるスワールFswを強化すべき場合、気筒2内に導かれる燃料の分布がD−D方向の一方の側に偏るように、第1ポートインジェクタ11及び第1筒内インジェクタ21から燃料を噴射させる。 (もっと読む)


【課題】エミッション性をできる限り良好に維持しながら、プリイグニッションの発生を抑制する。
【解決手段】エンジンの低回転かつ高負荷域(特定運転領域R)で、検出手段(33,34)の検出値に基づきプリイグニッションが検出された場合に、インジェクタ18からの燃料の噴射量を増大させて筒内の空燃比をリッチ化し(S42)、その制御の後もプリイグニッションが検出されたときに、上記インジェクタ18から噴射すべき燃料のうち、一部の燃料の噴射時期を圧縮行程の中期以降に遅角させる(S44)。 (もっと読む)


【課題】プリイグニッションが発生したときに、燃料噴射時期の遅角化を含む制御によりプリイグニッションを確実に回避しながら、その制御の後は、できるだけ早期にエミッション性を回復させる。
【解決手段】プリイグニッションが検出されると、これを回避すべく、インジェクタ18からの燃料の噴射量を増大させて筒内の空燃比をリッチ化する制御(S22,S31)と、上記インジェクタ18から噴射すべき燃料のうち、一部の燃料の噴射時期を圧縮行程の中期以降に遅角させる制御(S24,S32)とを実行する。そして、これらの制御が両方とも実行されてプリイグニッションが回避された場合には、圧縮行程の中期以降まで遅角された上記一部の燃料の噴射時期を進角側に戻す制御を実行し(S43)、その後もプリイグニッションが検出されなければ、上記リッチ化後の空燃比をリーン側に戻す制御を実行する(S45)。 (もっと読む)


【課題】有効圧縮比を低下させてプリイグニッションの抑制を図る際に、圧縮比の低下幅がばらつくのを防止する。
【解決手段】エンジンの低回転かつ高負荷域(R)でプリイグニッションが検出された場合に、吸気弁11の閉時期の吸気下死点に対する遅角量を増大させることにより、エンジンの有効圧縮比を低下させる制御を実行し、上記遅角量の増大前の吸気弁11の閉時期が吸気下死点に近いほど、そこから吸気弁11の閉時期を遅角させる際の遅角量を大きく設定する。 (もっと読む)


【課題】少なくとも部分負荷域で圧縮自己着火燃焼を行うようにしたガソリンエンジンにおいて、着火性や燃費性能を十分に確保しながら、排ガス温度を上昇させる。
【解決手段】圧縮自己着火燃焼による運転中に排ガス温度の上昇を要求する特定条件が成立すると、インジェクタ21から噴射すべき燃料を、圧縮上死点よりも所定期間以上前に開始される主噴射X1と、主噴射X1により噴射された燃料と空気との混合気が自着火による燃焼を開始した後で、かつその燃焼に基づく熱発生率RHの予定ピーク時期Pk’よりも前に開始される副噴射X2と、予定ピーク時期Pk’よりも後で、かつ上記主噴射X1および副噴射X2に基づく燃焼が終了する前に開始される後噴射X3とに分割して噴射する。 (もっと読む)


【課題】内燃機関の運転状態を左右する各種条件が標準状態から乖離している状況であっても、予混合燃焼の着火遅れを抑制し、適正な予混合燃焼を実現することが可能な内燃機関の燃焼制御装置を提供する。
【解決手段】
燃焼室内で予混合燃焼と拡散燃焼とが行われるエンジンに対し、エンジン負荷が低くなっていくに従い、総燃料噴射量に対する予混合燃焼用燃料噴射の噴射量の比率を高く、且つ拡散燃焼用燃料噴射の噴射量の比率を低く設定していく。これにより、予混合燃焼と拡散燃焼とが併存する燃焼期間中における全熱発生量に対する拡散燃焼の熱発生量の比率(拡散燃焼実行率)を次第に小さくしていく。また、環境条件が標準状態から乖離する状況では、拡散燃焼実行率を調整することで予混合燃焼の着火遅れを抑制する。 (もっと読む)


【課題】高圧ポンプから吐出される高圧の燃料を燃料噴射弁に供給するシステムにおいて、高圧ポンプの燃料吐出時の燃圧変化による燃料噴射弁の噴射量ばらつきを低減する。
【解決手段】燃料噴射弁31の噴射期間を避けて燃料を吐出するように高圧ポンプ14を制御する非噴射時吐出制御を実行する。その際、吸気行程で燃料を噴射する吸気行程噴射モードの場合には、圧縮行程で燃料を吐出する間欠吐出モードに切り換えることで非噴射時吐出制御を行う。また、圧縮行程で燃料を噴射する圧縮行程噴射モードの場合には、吸気行程で燃料を吐出する間欠吐出モードに切り換えることで非噴射時吐出制御を行う。更に、吸気行程と圧縮行程で燃料を噴射する吸気・圧縮行程分割噴射モードの場合には、吸気行程と圧縮行程で燃料を吐出する連続吐出モードに切り換えて各吐出期間がそれぞれ噴射期間に重ならないように燃圧制御弁23を制御することで非噴射時吐出制御を行う。 (もっと読む)


【課題】ディーゼルエンジンの排気量に関わらず、燃料噴霧の付着を抑えつつ、所望のトルクが得られる燃料噴射量の精度が確保される燃料噴射制御装置を提供する。
【解決手段】ECU16は、機関本体11が圧縮行程にあるとき、パイロット噴射に先立つ予備噴射を実行する。圧縮行程では、燃焼室22に吸入された空気は圧縮されるため、燃焼室22の密度は吸入行程に比較して高くなる。そのため、インジェクタ40から噴射された燃料は、ピストン19やシリンダ21に付着することなく、燃焼室22の空気と混合される。予備噴射は、噴射初期における燃料噴射率の勾配がメイン噴射またはパイロット噴射の少なくともいずれかよりも大きく設定されている。そのため、予備噴射では、微粒化が促進されるので予備噴射を分割する必要がなく、インジェクタ40からの燃料噴射量の精度が確保しやすくなる。したがって、排気量に関わらず、機関本体11において所望のトルクが得られる。 (もっと読む)


【課題】燃焼モードがSI燃焼モードからHCCI燃焼モードに切り換わった場合でも、安定した燃焼状態を確保することができ、それにより、商品性を向上させることができる内燃機関の制御装置を提供する。
【解決手段】燃焼モードをHCCI燃焼モードとSI燃焼モードとに切り換えて運転可能なエンジン3の制御装置は、ECU2を備える。ECU2は、排気バルブタイミングを、SI燃焼モードのときにSI用タイミングに、HCCI燃焼モードのときにHCCI用タイミングにそれぞれ制御し(ステップ31〜35)、燃焼モードがHCCI燃焼モードに切り換わった以降、排気バルブタイミングがHCCI用タイミングに実際に切り換わったか否かを判定し(ステップ36)、排気バルブタイミングがHCCI用タイミングに実際に切り換わった切換時点から所定時間が経過するまでの間、第1燃料噴射量GFOUTPを減少側に補正する(ステップ63,64,68)。 (もっと読む)



【課題】アイドルストップからの再始動時に、均一な混合気を形成できる燃料噴射制御装置を提供する。
【解決手段】吸気弁の傘部の略全域を指向し、噴霧粒径が比較的小さい第2燃料噴射弁を吸気通路に配置すると共に、この第2燃料噴射弁よりも噴霧粒径が大きく、吸気弁の傘部のシリンダボアに近い側の一部を指向する第1燃料噴射弁を、第2燃料噴射弁よりも下流側の吸気通路に配置する。そして、アイドルストップからの再始動時に、吸気行程で停止していた気筒に対し、第2燃料噴射弁で燃料を噴射し、この初回噴射以降は、第2燃料噴射弁による燃料噴射を排気行程で行わせる。また、ノッキング発生領域になった場合には、燃料噴射量の少なくとも一部を、第1燃料噴射弁により吸気行程で噴射し、第1燃料噴射弁が噴射した燃料をシリンダ内で気化させて圧縮温度の低下を図る。 (もっと読む)


【課題】エンジンの燃焼形態を予混合圧縮着火燃焼から火花点火燃焼に切り換える際における排気の浄化性能の低下を防止できる車両の制御装置を提供すること。
【解決手段】ハイブリッド車両は、運転領域に応じて燃焼形態を予混合圧縮着火燃焼と火花点火燃焼とで切り換えるエンジンと、排気を浄化する三元触媒を内蔵した触媒コンバータと、を備える。このハイブリッド車両の制御装置は、三元触媒の酸素吸蔵量を取得し、エンジンの燃焼形態を予混合圧縮着火燃焼から火花点火燃焼へ切り換える切換期間内における排気空燃比の目標排気空燃比を、理論空燃比よりもリッチ側の上記取得した酸素吸蔵量に応じた値に設定する。そして、上記設定した目標排気空燃比になるように排気空燃比、点火時期、およびモータを制御する。 (もっと読む)


【課題】低負荷時から高負荷時までスモークを低減することを課題とする。
【解決手段】燃料噴射制御装置が備えるECUは、燃料噴射弁が装備される内燃機関の負荷情報を取得する。そして、この負荷情報に基づいて、スワールによって流されるパイロット噴射の噴霧ガスを避けるタイミングでメイン噴射を行う低負荷時制御と、スワールによって流されるパイロット噴射の噴霧ガスに干渉するタイミングでメイン噴射を行う高負荷時制御とを切り替える。低負荷時制御では、着火前にパイロット噴射の噴霧ガスを拡散させてスモークの低減を図る。高負荷時制御では、OHラジカルを含むパイロット噴射の噴霧ガスにメイン噴射を干渉させてスモークの低減を図る。 (もっと読む)


【課題】エンジンの低負荷運転時に、各気筒の燃料噴射弁の噴射量ばらつきを精度良く補正して、各気筒の燃料噴射弁の噴射量ばらつきを十分に小さくできるようにする。
【解決手段】エンジン11の各気筒の燃料噴射弁21の要求噴射量が低負荷運転時(例えばアイドル運転時)よりも多くなる高負荷運転時に、各気筒の燃料噴射弁21で要求噴射量分の燃料を複数回に分割して噴射する分割噴射を実行して、燃料噴射弁21の噴射量ばらつきを低負荷運転時の噴射量ばらつき相当にする。この分割噴射の実行中に空燃比センサ24の出力に基づいて算出した各気筒の実空燃比と基準空燃比(例えば要求空燃比)とを用いて、低負荷運転時における各気筒の燃料噴射弁21の噴射量ばらつき情報を気筒別に算出し、これらの噴射量ばらつき情報に基づいて低負荷運転時における各気筒の燃料噴射弁21の噴射量ばらつきを補正するための噴射量補正値を算出して学習する。 (もっと読む)


【課題】形状複雑化及びコスト増大を招くことなく、機関低温時に適した燃料噴射が可能なインジェクタを提供する。
【解決手段】ニードル14のリフト量を制御室21の圧力変化により制御するインジェクタ10において、燃料低温時に燃料噴射量が段階的に所定燃料噴射量まで増加するブーツ噴射が行われると共に、燃料高温時には燃料噴射量が略一定の加速度で上記所定燃料噴射量まで増加する通常噴射が行われるように、アーマチャ38のリフト量L、入口オリフィス34の有効面積Ain及び出口オリフィス35の有効面積Aoutを設定した。 (もっと読む)


141 - 160 / 1,090