説明

Fターム[3G301PC01]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 検知情報(燃焼状態) (1,717) | 燃焼圧、筒内圧 (795)

Fターム[3G301PC01]の下位に属するFターム

Fターム[3G301PC01]に分類される特許

41 - 60 / 762


【課題】複数回の燃料噴射によって燃焼室内での燃焼が行われる圧縮自着火式の内燃機関における燃焼状態の評価の容易化を図る。
【解決手段】パイロット噴射での燃焼開始からメイン噴射での燃焼終了までの期間における燃料の単位体積当たりの発生熱量の最大値であるトータル燃焼基準熱発生効率と、その期間において実際に燃焼室3内で燃料が燃焼している際の燃料の単位体積当たりの発生熱量であるトータル燃焼実熱発生効率とを比較する。パイロット噴射での燃焼及びメイン噴射での燃焼のそれぞれにおいて、その燃焼期間における燃料の単位体積当たりの発生熱量の最大値である燃焼基準熱発生効率と、その期間において実際に燃焼室3内で燃料が燃焼している際の燃料の単位体積当たりの発生熱量である燃焼実熱発生効率とを比較する。これら比較により、パイロット噴射量の補正及びメイン噴射量の補正を行う。 (もっと読む)


【課題】エンジン制御性の適正化を図り、エンジン性能を好適に制御する。
【解決手段】燃焼目標値算出部52は、性能パラメータの実値を目標値にするための燃焼パラメータの目標値を算出する。燃焼偏差算出部60は、燃焼パラメータの実値と目標値との偏差を算出する。アクチュエータ制御部70は、燃焼パラメータの偏差を解消するべく、燃焼パラメータとの相関が予め定義されている複数の制御パラメータのうちの少なくとも1つを燃焼パラメータの偏差の大小に応じて選択し、該選択した制御パラメータを操作対象として、その偏差に基づいてエンジンの燃焼制御を実施する。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、プレイグの発生を良好に回避可能な内燃機関の制御装置を提供することを目的とする。
【解決手段】図4に示すルーチンでは、先ず、プレイグ抑制噴射の開始時期CAst(k)が設定される(ステップ100)。続いて、インジェクタ14の追加駆動が開始され、筒内圧Pcylと燃圧Pとの差圧ΔPから、噴射流量Qが演算される(ステップ110)。続いて、噴射流量Qの演算値が積算され、実噴射量Qr(k)が算出される(ステップ120)。続いて、算出した実噴射量Qr(k)が目標噴射量Qt(k)よりも大きいか否かが判定される(ステップ130)。実噴射量Qr(k)が目標噴射量Qt(k)よりも大きいと判定された場合には、インジェクタ14の追加駆動が停止される(ステップ140)。 (もっと読む)


【課題】燃焼騒音、HCやCO、スモークを十分低減することができる燃料噴射装置を提供する。
【解決手段】燃料噴射装置は、燃焼室内に燃料を噴射するインジェクタと、燃料を2回に分けて噴射させるようにインジェクタを制御するECUとを備えている。このとき、1回目の燃料噴射は、1回目の燃料噴射直後の予混合時間が最小になる時期よりも遅角側で行うように設定される。2回目の燃料噴射は、1回目の燃料噴射及び着火と2回目の燃料噴射及び着火とにより生じる熱発生率波形を二山形状にする時期に行うように設定される。具体的には、2回目の燃料噴射は、1回目の燃料噴射によって生じる低温酸化反応による熱発生率ピーク以降であり且つ1回目の燃料噴射によって低温酸化反応後に生じる高温酸化反応による熱発生率ピーク以前に行うことが好ましい。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、プレイグの発生を良好に回避可能な内燃機関の制御装置を提供することを目的とする。
【解決手段】図4に示すルーチンでは、プレイグ抑制噴射の終了時期CAed(m)と、プレイグ抑制噴射の終了限界時期CAlmt(m)との差ΔCAが算出され(ステップ120)、このΔCAについて、ΔCA≦0となるか否かが判定される(ステップ130)。ΔCA≦0の場合には、次回のプレイグ抑制噴射の開始時期CAst(m+1)がΔCAだけ遅角側に設定される(ステップ140)。ΔCA>0の場合には、不足分の噴射量ΔQが算出され(ステップ150)、この噴射量ΔQが次回の目標噴射量Qt(m+1)に加算され(ステップ160)、次回のプレイグ抑制噴射の開始時期CAst(m+1)がΔCA×2だけ進角側に設定される(ステップ170)。 (もっと読む)


【課題】性能パラメータの相互干渉による制御性悪化の回避を図るとともに、エンジン性能を好適に制御する。
【解決手段】性能パラメータ算出部31は、複数の性能パラメータの目標値をエンジン運転状態に基づいて設定する。また、目標燃費操作部40は、各性能パラメータの実値が目標値に制御されている状態で、燃費の目標値をエミッション排出量の変化量に基づいて性能良化側に操作する。目標燃費操作部40は、複数の性能パラメータと複数の燃焼パラメータとの相関を定義した相関データを用い、燃焼パラメータの動作可能範囲に基づいて各性能パラメータの変化量を算出する性能パラメータ変化量算出部43と、エミッション排出量の変化量が所定の許容範囲にある場合に、燃費の変化量を燃費操作量として設定する燃費操作量設定部44とを有する。燃焼パラメータ算出部32は、各性能パラメータの目標値に基づいて複数の燃焼パラメータの目標値を算出する。 (もっと読む)


【課題】アルコール濃度を精度良く推定することができる内燃機関燃料のアルコール濃度推定装置を提供する。
【解決手段】演算処理装置40が、等回転で気筒Aの燃料量を所定値a2に、気筒Bの燃料量を所定値b2に変更する処理を実行する。演算処理装置40が、気筒Aの所定値a2に応じた燃焼および気筒Bの所定値b2に応じた燃焼について、発生熱量を把握する処理を実行する。演算処理装置40が、基本条件での発生熱量と所定値a1、a2、b1、b2に基づく平均の発生熱量との差分を求める処理を実行する。演算処理装置40は、燃料量変化分と発生熱量変化分との関係により、エタノール濃度を推定する処理を実行する。 (もっと読む)


【課題】幾何学的圧縮比が比較的高く設定された高圧縮比の火花点火式ガソリンエンジン1において、高負荷域における異常燃焼を回避する。
【解決手段】制御器(PCM10)は、エンジン本体の運転状態が低速域にあるときには、高負荷域では、低負荷域よりも燃料圧力が高くなるように、燃圧可変機構(高圧燃料供給システム62)を駆動し、高負荷域では、低負荷域での燃料の噴射タイミングよりも遅角側のタイミングであって、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、燃料噴射弁(直噴インジェクタ67)を駆動する。制御器10はまた、高負荷域では、リタード期間内における、燃料の噴射後のタイミングで点火するように、点火プラグ25を駆動する。 (もっと読む)


【課題】燃料ガスを適切に分析することができ、燃料ガスを効率よく燃焼することができるガスエンジンを提供することにある。
【解決手段】副室式のエンジン本体と、主室に燃料ガスと希釈ガスを混合した混合ガスを供給し、副室に少なくとも燃料ガスを含む気体を供給する燃料供給手段および燃料ガスを分析する分析計を有するガスエンジン制御ユニットと、を有し、分析計は、第1燃料ガス供給配管の経路中に配置された主管、主管に連結した入射管、主管に連結した出射管、入射管と連結された第1パージガス供給管及び出射管と連結された第2パージガス供給管で構成された計測セルと、希釈ガス供給経路に案内される希釈ガスをパージガスとして計測セルの第1パージガス供給管および第2パージガス供給管に供給するパージガス供給部と、を有することで、上記課題を解決する。 (もっと読む)


【課題】火花点火式ガソリンエンジン1において、触媒活性を目的として燃焼の発生を大きく遅らせた場合であっても、その燃焼の安定化を図る。
【解決手段】制御器(PCM10)は、エンジン本体の運転状態が低速域内の低負荷域であって、触媒(直キャタリスト41、アンダーフットキャタリスト42)が未活性である触媒活性モードのときには、触媒が活性のときよりも燃料圧力が高くなるように、燃圧可変機構(高圧燃料供給システム62)を制御する。制御器はまた、膨張行程で行う燃料噴射を少なくとも含むように筒内噴射弁(直噴インジェクタ67)を駆動し、燃料の噴射後に点火するように、点火プラグ25を駆動する。 (もっと読む)


【課題】圧縮着火燃焼を実行する圧縮着火モードと、火花点火燃焼を実行する火花点火モードとの間でモードの切り替えを行う火花点火式ガソリンエンジンにおいて、モードの遷移期間に生じ得る問題を回避して、モードの移行をスムースにする。
【解決手段】制御器(PCM10)は、低負荷域では圧縮着火モードとし、高負荷域では、燃料圧力を相対的に高くすると共に、圧縮行程後期から膨張行程初期にかけてのリタード期間内の特定タイミングで行う燃料噴射を少なくとも含むように、燃料噴射弁67を駆動しかつ、その噴射後に点火する火花点火モードとする。制御器はまた、負荷の変化に伴い圧縮着火モードと火花点火モードとの間でモードを切り替える際の所定の遷移期間内では、火花点火モードにおける燃料圧力でかつ、特定タイミングよりも遅角したタイミングで燃料を噴射すると共に、その燃料噴射後に点火する切替モードとする。 (もっと読む)


【課題】幾何学的圧縮比が比較的高く設定された高圧縮比の火花点火式ガソリンエンジン1において、高負荷域における異常燃焼を回避する。
【解決手段】制御器(PCM10)は、エンジン本体の運転状態が低速域にあるときには、高負荷域では、低負荷域よりも燃料圧力が高くなるように、燃圧可変機構(高圧燃料供給システム62)を駆動し、高負荷域では、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、筒内噴射弁(直噴インジェクタ67)を駆動する。制御器10はまた、高負荷域では、リタード期間内における、燃料の噴射後のタイミングで点火するように、点火プラグ25を駆動する。制御器10は、エンジン本体の運転状態が高負荷域内の中速域にあるときには、吸気行程中における燃料噴射をさらに実行する、又は、当該吸気行程中における燃料噴射による燃料噴射量を増量する。 (もっと読む)


【課題】燃料噴射制御を精度良く行うことができる内燃機関の制御装置を得ること。
【解決手段】内燃機関1の制御装置は、エンジン本体2に取り付けた歪み測定手段24によって、燃焼室11内における燃料の燃焼によりエンジン本体2に発生する歪みを測定する。そして、エンジン本体2の歪みに基づいて燃焼圧最大時期を検出し、その燃焼圧最大時期に基づいて燃料噴射弁の燃料噴射時期を制御する。これにより、内燃機関の熱効率の向上、及び、排気の改善を図る。 (もっと読む)


【課題】エンジンの圧縮自着火燃焼制御中に急峻燃焼の発生を抑制することができると共に低コスト化の要求を満たすことができるようにする。
【解決手段】エンジン11の運転領域が所定の圧縮自着火燃焼領域のときには、排気バルブ23と吸気バルブ22が両方とも閉弁した状態になるNVO(負のバルブオーバーラップ)期間中に筒内に燃料を噴射した後に吸気行程で燃料噴射を行って圧縮行程の圧縮により混合気を自着火させて燃焼させる圧縮自着火燃焼制御を実行する。この圧縮自着火燃焼制御中に急峻燃焼有りと判定されたときに、NVO期間中の燃料噴射量が所定の下限判定値(例えば燃料噴射弁19の最小噴射量)よりも大きい場合には、NVO期間中の燃料噴射量を低減させて急峻燃焼の発生を抑制し、NVO期間中の燃料噴射量が下限判定値以下の場合には、NVO期間中の筒内の酸素量を低減させて急峻燃焼の発生を抑制する。 (もっと読む)


【課題】圧縮着火燃焼を実行する圧縮着火モードと、火花点火燃焼を実行する火花点火モードとの間でモードの切り替えを行う火花点火式ガソリンエンジン1において、火花点火モードにおける燃焼安定性を高めることによって、吸気充填量の低減が必要となる負荷領域を可及的に縮小する。
【解決手段】制御器(PCM10)は、低負荷域では圧縮着火モードとし、高負荷域では、燃料圧力を高めると共に、圧縮行程後期から膨張行程初期にかけてのリタード期間内で燃料噴射を行う火花点火モードとする。火花点火モードでは、外部EGR制御を実行する。制御器はさらに、火花点火モードにおける所定負荷以下の領域では、EGR率を所定負荷よりも高い領域でのEGR率よりも高く設定すると共に、吸気充填量を圧縮着火モード時よりも低下させる充填量制御を実行する。 (もっと読む)


【課題】圧縮着火燃焼を実行する圧縮着火モードと、火花点火燃焼を実行する火花点火モードとの間で、モードの切り替えを行う火花点火式ガソリンエンジン1において、モードの遷移期間における制御遅れに起因する問題を回避する。
【解決手段】制御器(PCM10)は、所定の低負荷域では圧縮着火モードとし、それよりも負荷の高い高負荷域では、燃料圧力を相対的に高めると共に、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、燃料噴射弁67を駆動すると共に、点火プラグ25を駆動する火花点火モードとする。制御器はまた、圧縮着火モードから火花点火モードへと移行する際のモードの遷移期間内では、火花点火モードにおける特定タイミングよりも遅角したタイミングで燃料を噴射すると共に、その噴射後に点火する。 (もっと読む)


【課題】筒内圧センサによる測定データを用いて精度良く空燃比または/およびEGR率を計算することができる内燃機関の制御装置を提供することを目的とする。
【解決手段】演算処理装置20が、筒内圧センサ5の出力に基づいて、上記列挙した燃焼状態量のうちから、空燃比またはEGR率についての感度が異なる少なくとも2種類の燃焼状態量を算出する。その一方で、算出対象とする少なくとも2種類の燃焼状態量と空燃比およびEGR率との間の関係を、予め実験等を行うことにより特定しておき、この関係を参照できるように演算処理装置20内のメモリに記憶しておく。次いで、演算処理装置20が、予め記憶した燃焼状態量と空燃比およびEGR率との間の関係に基づいて、算出した燃焼状態量の値から、筒内圧センサ5が取り付けられた気筒における空燃比または/およびEGR率を計算する。 (もっと読む)


【課題】副室の空燃比を点火プラグによって副室内の安定燃焼を得る目標空燃比にするために副室内の温度データに基づいて、電磁弁の開時間を気筒毎に制御することにより、運転状態、シリンダ間のばらつきに関係なく安定した主燃焼室の燃焼を図り、エンジン性能の確保と、燃焼ガスの使用量を抑制した運転コストを低減する。
【解決手段】多気筒ガスエンジンの副室1へ副室ガス供給電磁弁52によって個別に燃料ガスを導入し、点火プラグ9で着火する副室式ガスエンジン50の副室ガス供給制御装置5において、副室1内又は該副室1近傍の温度を検出する副室内温度検出手段60と、副室1内温度を所定範囲内に維持すると共に、副室内部の空気過剰率が所定の値になるように、副室ガス供給電磁弁52の開時間を制御する副室ガス供給制御手段66とを備える。 (もっと読む)


【課題】燃焼音の低減と排気エミッションの改善との両立を、これらの評価手法の簡素化を図りながら実現可能とする内燃機関の制御装置を提供する。
【解決手段】パイロット噴射、メイン噴射、アフタ噴射それぞれにおける燃料の燃焼に伴う熱発生率波形の傾きの最大値の和を燃焼音の評価値とし、メイン噴射で噴射された燃料の燃焼に伴う熱発生率波形の傾きの最大値をNOx発生量の評価値とする。これら燃焼音及び排気エミッションの評価指標を共通化したことで、燃料噴射量及び燃料噴射タイミングの適合値を早期に取得することが可能となる。 (もっと読む)


【課題】この発明は、内燃機関の制御装置に関し、過給機を備える内燃機関において、吸気通路側から排気通路側に向けての燃焼室を介したガスの吹き抜けの発生の有無にかかわらず、プレイグニッションを良好に抑制することを目的とする。
【解決手段】吸入空気を過給するコンプレッサ26を有するターボ過給機と、内燃機関10の筒内に燃料を供給する筒内燃料噴射弁34とを備える。プレイグニッションが検出された場合に、内燃機関10のトルク発生のためのメイン噴射に先立って、筒内燃料噴射弁34を用いてプレイグニッションの抑制のための燃料噴射であるプレ噴射を実行する構成において、吸気通路16側から排気通路18側に向けての燃焼室14を介したガスの吹き抜けの発生の有無に応じて、プレ噴射の実行時期を調整する。 (もっと読む)


41 - 60 / 762