説明

Fターム[4F071FA01]の内容

高分子成形体の製造 (85,574) | イオン交換樹脂成形体の製造(化学構造) (850) | ペンダント側鎖を有するもの (129)

Fターム[4F071FA01]の下位に属するFターム

Fターム[4F071FA01]に分類される特許

41 - 60 / 77


本発明は、反応済スルホニルハライド基と未反応スルホニルハライド基との均質混合物を含有するフルオロポリマー有機−液体分散体および膜に関する。分散体は、架橋膜の調製に有用である。 (もっと読む)


【課題】高いイオン伝導率が得られ、高い出力が安定して得られる高分子電解質膜及びその製造方法を提供すること。
【解決手段】常温溶融塩構造を分子構造内に有するポリマーがイオン伝導性ブロックを形成しているブロック共重合体からなる電解質膜であって、該常温溶融塩構造を分子構造内に有するポリマーが形成するシリンダー状ドメインが、電解質膜の厚さ方向と平行に配列してなることを特徴とする高分子電解質膜及びその製造方法。 (もっと読む)


【課題】固体高分子型燃料電池に用いられる電解質用途に好適なプロトン伝導膜に関する。
【解決手段】イオン伝導性ポリマーセグメント(A)および非イオン伝導性ポリマーセグメント(B)を有する共重合体からなる膜であって、該膜は、水中に浸漬して90℃、30分間加温した後、−20℃に冷却した時、−20℃において測定した凍結していない水の重量[g](共重合体1g当たり)と、−20℃において測定された自己拡散係数[×10-102/s]との乗数(掛け合わせた値)が、0.2〜1.5の範囲にあることを特徴とするプロトン伝導膜。−20℃において凍結していない水の自己拡散係数が、0.40×10-102/s以上である。 (もっと読む)


【課題】固体高分子型燃料電池用途にて高温(120℃以上)低湿(50%以下)状態において出力特性に優れる膜/電極接合体を提供する。
【解決手段】少なくとも、一対の電極と、該電極の間に設けられたイオン交換膜とを有する膜/電極接合体であって、前記イオン交換膜は、式(I)で表される繰り返し単位を含み、かつ、該膜/電極接合体の80℃における内部抵抗の最小値が100mΩ・cm2以下であり、120℃における内部抵抗の最小値が600mΩ・cm2以下である、膜/電極接合体。 (もっと読む)


【課題】 燃料のクロスオーバー性能が高く、優れた機械的強度と良好なプロトン導電性とを両立させる固体高分子電解質膜を得るのに用いられる新規化合物を提供する。また、それらを用いた固体高分子電解質膜、電解質膜−電極接合体および固体高分子型燃料電池を提供する。
【解決手段】 ウレタン結合を主鎖に有し、側鎖にスルホン酸基、リン酸基、アルキルスルホン酸基もしくはアルキルリン酸基が付加されたベンゼン環を有する不飽和化合物。上記物質を重合した化合物からなる固体高分子電解質膜、およびその電解質膜の両面に接合された拡散層よりなる電解質膜−電極接合体。上記の電解質膜−電極接合体を用いた固体高分子型燃料電池。 (もっと読む)


【課題】燃料クロスオーバーが低く、イオン伝導度の湿度依存性が小さな電解質膜を提供し、さらには、燃料枯渇状態から燃料を供給して発電するまで立ち上がりがよく、また高温低加湿状態でも高出力が達成できる膜電極複合体および燃料電池を提供する。
【解決手段】電解質膜3は、PKa値が−17.0以上5.0以下の酸性基AHを含み、PKb値が−6.0以上4.0以下の水代替基Bを含有する。該電解質膜の製造方法は、酸性基AHおよび/または水代替基Bを含む電解質膜に、水代替基Bを含む物質および/または水代替基B前駆体を含む物質および/または酸性基AHを含む物質および/または酸性基AH前駆体を含む物質を、含浸または充填する工程を有する。 (もっと読む)


【課題】プロトン伝導度の値が高いイオン伝導性膜及びその製造方法を提供すること。
【解決手段】共有結合により結合したモノマー単位からなる高分子主鎖から構成される樹脂薄膜と、該高分子主鎖に結合し、エチレングリコールジメタクリレート、エチレングリコールジビニルエーテル及び1,6−ヘキサンジオールジビニルエーテルからなる群から選択される1以上の架橋剤と、スチレンとの反応物からなり、該スチレン由来のベンゼン環がスルホン化されている側鎖基とを有することを特徴とする。 (もっと読む)


【課題】よりメタノール透過性が低く、イオン伝導性の高い高分子電解質膜の調製に用いられる重合体、高分子電解質膜およびその調製に用いられる高分子電解質ならびにそれらの用途を提供すること。
【解決手段】イオン交換性基を有する重合体であって、下式に基づき求められる分岐度Bnが10以上であり、イオン交換容量が1meq/g以上である重合体。該重合体からなる高分子電解質、該高分子電解質を用いてなる高分子電解質膜、該高分子電解質を用いて溶液キャスト法にて得られる高分子電解質膜、該高分子電解質と多孔質基材とを用いてなる高分子電解質複合膜、該高分子電解質および触媒を含有する触媒組成物、並びに、該高分子電解質を用いてなる高分子電解質型燃料電池。


(式中、IV(M)は該重合体の分子量Mにおける極限粘度であり、IVL(M)は分子量Mに
おける直鎖状重合体の極限粘度である。) (もっと読む)


【課題】高分子電解質膜にイオン伝導性を付与することができ、高分子電解質膜から容易に離脱しないオリゴマー固体酸及びそれを含む高分子電解質膜を提供する。
【解決手段】(i)末端にイオン伝導性末端基を有するオリゴマー固体酸巨大分子、及び(ii)イオン伝導性末端基をイオン伝導に必要な最小限に保有してスウェリングを抑制し、オリゴマー固体酸を均一に分布させることによって、イオン伝導度を補完した高分子電解質膜である。該高分子電解質膜は、イオン伝導性末端基の数を最少化してスウェリングを抑制した高分子マトリックスを使用することによって、メタノールクロスオーバーを最小化できる。また、表面にイオン伝導性末端基を有し、体積が大きくて、よく流出されないオリゴマー固体酸巨大分子を均一に分布させてイオン伝導度を著しく向上させることによって、無加湿条件下でも優れたイオン伝導度を持続的に表す。 (もっと読む)


【課題】燃料電池用膜−電極接合体で膜と電極との間の接着性を向上させて、セル稼動中に触媒層高分子が溶出することを防止し、高分子電解質膜に対する親和性が優れていて界面特性を向上させ、水素イオンの伝達率が優れており、特に触媒被毒現象を防止することのできる燃料電池用バインダを提供する。
【解決手段】本発明は、燃料電池用バインダ、これを含む触媒層形成用組成物、及びこれを利用した燃料電池用膜−電極接合体とその製造方法に関するものであり、前記膜−電極接合体は、互いに対向して位置するアノード電極とカソード電極、及び前記アノード電極とカソード電極との間に位置する高分子電解質膜を含み、前記アノード電極とカソード電極のうちの少なくともいずれか一つは、電極基材、及びこの電極基材に形成され、架橋された構造の水素イオン伝導性基を有するバインダを含む触媒層からなる。 (もっと読む)


【課題】副反応が生じにくく短時間でスルホン化が行え、しかも均一にスルホン酸基を導入できるため、同じイオン交換容量でも高いプロトン伝導性を得ることができるプロトン伝導性膜の製造方法、並びにそれを用いて得られる燃料電池用電解質膜を提供する。
【解決手段】フッ素系高分子の基材の内部までビニル系モノマーがグラフト重合されたグラフト鎖が存在するグラフトフィルムを、アルキルベンゼンスルホン酸によりスルホン化して、プロトン伝導性基を導入するプロトン伝導性膜の製造方法。 (もっと読む)


【課題】
本発明は、スルホン酸基を有する高分子膜状物を架橋することによって、プロトン伝導性を実質的に低下させることなく、耐熱性、耐久性、機械的強度及び透液性当の諸性能の改善を行うことを目的とする。
【解決手段】
本発明は、スルホン酸基を有する高分子物質におけるスルホン酸基と、分子中に水素原子を結合した電子密度の高い炭素原子を有する物質とを五酸化リン/メタンスルホン酸等の脱水剤により脱水し、結合させることを特徴とする架橋陽イオン交換樹脂膜の製造方法を提供する。 (もっと読む)


【課題】 固体高分子型燃料電池に適するスルホン化された高分子電解質膜の製造方法であって、地球環境への負荷が低減された方法を提供すること。
【解決手段】 本発明のスルホン化された高分子電解質膜の製造方法は、スルホン化剤と亜臨界流体又は超臨界流体との混合物を用いて高分子膜をスルホン化することを特徴とする。前記スルホン化剤は、クロロスルホン酸であることが好ましい。また、前記亜臨界流体又は超臨界流体は、二酸化炭素であることが好ましい。更に、前記高分子膜は、ビニル系モノマーをグラフト重合することにより、高分子基材にグラフト鎖が導入されたグラフト膜であることが好ましく、この場合において、前記ビニル系モノマーはスチレン系モノマーであり、前記高分子基材はフッ素系高分子基材であることが好ましい。 (もっと読む)


【課題】膨潤性はそのままで、物理耐久性と電極触媒層との接合性が改良されたイオン交換膜および、それに用いることができる新規スルホン酸基含有ポリマー、および該イオン交換膜および/または該スルホン酸基含有ポリマーを用いた膜/電極接合体と燃料電池、該スルホン酸基含有ポリマー組成物の提供。
【解決手段】下記化学式1で表される繰り返し構造からなるスルホン酸基含有ポリマー。
(もっと読む)


【課題】 産業機器や医療機器の分野において小型でかつ軽量で柔軟性に富む、高分子アクチュエータを提供する。
【解決手段】 スルホン酸基を有する芳香環が電子吸引性連結基で連なる構造の側鎖を有する高分子スルホン酸からなる高分子電解質を高分子アクチュエータのイオン交換樹脂として用いる。該側鎖は、分岐側鎖でも非分岐側鎖でもよいが、分岐側鎖が好ましい。電子吸引性連結基は、−CO−、−CONH−、−(CF)p−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO− から選ばれるものである。そして、少なくともスルホン酸基を2個以上導入された側鎖を有する。 (もっと読む)


【課題】固体電解質を含み処方が互いに異なる複数のドープを連続的に流延し、一定品質かつイオン伝導性に優れた固体電解質複層フィルムを製造する。
【解決手段】固体電解質を含む第1〜第3ドープ114〜116を、フィードブロック119が備えられた流延ダイ81から走行する流延バンド82に流延する。3層構造の流延膜112を流延バンド82から固体電解質を含む3層フィルムとして剥がす。これをテンタに送り、両側端部をクリップで把持し、所定の幅となるように延伸しながら乾燥する。次に、フィルムを乾燥室に送り、複数のローラで支持しながら乾燥を進める。この方法によると、連続的に安定して固体電解質フィルムを製造することができ、かつその品質は均一であり不純物を含まず、燃料電池に用いると優れたイオン伝導性を発現する。 (もっと読む)


【課題】乾燥速度を向上させて固体電解質を連続的にフィルム化して、一定品質かつイオン伝導度が高いフィルムを連続的に製造する。
【解決手段】固体電解質を含むドープ24を走行する流延バンド82に流延して流延膜を形成する。流延膜を流延バンド82から剥がしたフィルム62をテンタ64に送り、両側端部をクリップ64aで把持し幅方向に延伸しながら乾燥する。乾燥室69では、複数のローラ68で支持しながらフィルム62を乾燥する。流延室63とテンタ64と乾燥室69とに接続された圧力制御装置210で、各室内の流延膜やフィルム62の近傍を600hPa以下まで減圧する。流延膜やフィルム62の乾燥速度を向上させて乾燥することができるので、製造時間の短縮を図りながら、一定品質の固体電解質フィルムを連続して製造することができる。この固体電解質フィルムは不純物を含まず、燃料電池に用いると高いイオン伝導度を発現する。 (もっと読む)


【課題】固体電解質を溶媒に溶解したドープを連続的にフィルム化して、一定品質かつイオン伝導性に優れた固体電解質フィルムを製造する。
【解決手段】乾燥装置55で予め乾燥された固体電解質と、精製装置で予め精製されて水及び他の不純物を除去された溶媒とを混合して混合液16とする。そして固体電解質を溶解して溶液としてからろ過し、ドープ24とする。このドープ24を流延ダイ81から走行する流延バンド82に流延する。流延膜を流延バンド82から固体電解質を含むフィルム62として剥がす。これをテンタ66と乾燥室69とにより乾燥する。この方法によると、連続的に安定して固体電解質フィルムを製造することができ、かつその品質は均一であり不純物を含まず、燃料電池に用いると優れたイオン伝導性を発現する。 (もっと読む)


【課題】無加湿発電運転する燃料電池に適した高分子電解質膜、並びに該高分子電解質膜を用いた電解質膜/電極接合体及び燃料電池、及び該燃料電池を用いた燃料電池の無加湿運転方法の提供。
【解決手段】高分子電解質膜であって、該高分子電解質膜を用いた固体高分子形燃料電池に無加湿の水素と酸素を用いて発電を行ったときの、MRIによるスピンエコー法を用いて測定した高分子電解質膜内の水の信号強度が、数式1を満たすことを特徴とする高分子電解質膜。
【数1】


(数式1において、Iは、電流密度が0A/cmにおける水の信号強度を、I0.3は、電流密度が0.3A/cmにおける水の信号強度を、それぞれ表す。) (もっと読む)


【課題】固体電解質を連続的にフィルム化して、一定品質かつイオン伝導性や平面性に優れたフィルムを連続的に製造する。
【解決手段】固体電解質と有機溶媒とを含むドープ24を流延バンド82上に流延して流延膜24aを形成した後、流延膜24aを流延バンド82からフィルム62として剥ぎ取る。フィルム62をテンタ64に送り、その両側端部をクリップ64aで把持し幅方向に延伸しながら乾燥した後、乾燥室69に送り、複数のローラ68で支持しながら乾燥する。温度制御ローラ200aを配した温度調整室200と水蒸気により調湿する加湿室205とにフィルム62を連続的に送る。加熱及び加湿によりフィルム62を軟化させて形状変形を矯正する。平面性や平滑性に優れ、一定品質であり、燃料電池に用いると優れたイオン伝導性を示す固体電解質フィルムを連続して大量に製造することができる。 (もっと読む)


41 - 60 / 77