説明

Fターム[4G047JA02]の内容

重金属無機化合物 (11,210) | 超電導材料の形状 (539) | 成形体、焼結体 (32)

Fターム[4G047JA02]に分類される特許

21 - 32 / 32


【課題】高いジョセフソンプラズマ周波数と高い臨界電流の双方を有する酸化物超伝導体を提供する。
【解決手段】[R(M)]Cu結晶構造(ただし、R:希土類元素、M:アルカリ土類金属とする)を有する酸化物超伝導体であって、その結晶が針状であることを特徴とし、その製造方法は、下記化学式1で表される原子組成を有する前駆体の粉末の圧粉成形体を熱処理することで針状に結晶成長させることを特徴とする。(化1)R2.85CuTe(R:希土類元素。M:アルカリ土類金属。a、b、c:原子比。x:酸素量) (もっと読む)


【課題】本発明は、強度の向上と、熱はけ性の良好な酸化物超電導バルク体の提供を目的とする。
【解決手段】本発明は、REBaCu7−X(REはYを含む希土類元素(La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの1種または2種以上を示す。)なる組成の酸化物超電導バルク体を製造するに際し、酸化物超電導バルク体を構成する元素の原料粉末を加圧成形して圧密する際、原料混合粉末中に溶融凝固法に伴う加熱温度において溶融しない貴金属の補強体を挿入して圧密し、目的の形状の前駆体を得た後、この前駆体に対し、溶融凝固法を適用して結晶成長させることを特徴とする。 (もっと読む)


【課題】室温超伝導体を開発するための有力な方策は、これまでとは異なる視点から材料
を見つめ、新たな超伝導化合物を見出し、超伝導化合物の系を拡げていくことである。
【解決手段】化学式[Ca24Al2864]4+・2[xO2−+2yA+2{1−(x+2y)
}e] (Aはケージに包接された、OH、O又はOのいずれか1種以上、0≦
x+2y≦0.5)で示されるマイエナイト型結晶構造を有する化合物であることを特徴
とする化合物超伝導体。化学式が[Ca24Al2864]4+・2[xO2−+2yA] (Aは
ケージに包接された、OH、O又はOのいずれか1種以上、0≦x≦1、y=1
−x) で示されるマイエナイト型結晶構造を有する化合物を磁性イオンが含有されない方
法で調製し、該化合物のケージに包接されたO2−及びAの合計(x+2y)の50原子
%以上を電子で置換することにより作成できる。 (もっと読む)


本発明は、酸化物超伝導体チューブと超伝導接合部とを接合する方法を提供する。本方法は部分的前駆超伝導物質を用意する工程を含み、その後、部分的前駆超伝導物質をチューブ状に冷間静水圧し、さらに銀層の積層が成されたチューブの両端に溝を設ける。さらに、接合される一組のチューブの両端の一方を合わせ配置する工程を含む。両チューブに共通の銀軸受に対して両チューブの合わせ配置端面に衝撃を与え、有機調合体における、同じ部分的前駆超伝導物質ペーストで被覆する。接合部を形成するために、この被覆端面同士を近接させて加圧する。この接合部及びチューブ端部は、穿孔銀箔にて被覆され、さらに銀層が積層される。最後に、この接合部及び一組のチューブの組立体を大気中にて100〜150時間、830〜850℃にて加熱処理を行う。この方法により形成された接合部は、高温超伝導チューブの輸送電流のうち80%以上を安定して流す事ができる。 (もっと読む)


【課題】本発明は、短い時間で結晶成長可能とし、捕捉磁場特性の優れた酸化物超電導バルク体を製造する技術の提供を目的とする。
【解決手段】本発明は、種結晶の結晶構造を基に半溶融状態の前駆体を結晶化して酸化物超電導バルク体とする方法であって、前駆体を包晶温度よりも低く、結晶化開始温度よりも低い温度域において、複数段のステップで徐々に温度降下させ、各ステップにおいては等温保持する予備的段階降温等温処理を施し、次いで、前駆体を包晶温度以上の温度に加熱し、結晶成長のための処理として複数段のステップで徐々に温度降下させ、各ステップにおいては等温保持する主体的段階降温等温処理を施して前駆体を結晶化することを特徴とする。 (もっと読む)


【課題】 RE−Ba−Cu−O系バルク超電導材料を製造するための前駆体の支持基材を提供する。
【解決手段】 RE系化合物(REはYを含む希土類元素)、Ba系化合物、Cu系化合物またはこれらの複合化合物からなる混合物を出発物質とし、これを成形して前駆体を作製し、得られた前駆体を部分的に溶融後、冷却して超電導相を成長させるRE−Ba−Cu−O系超電導材料の製造方法において、前駆体を支持する基材の少なくとも前駆体に直接接触する部分が、RE’系化合物(RE’はRE以外の希土類元素)、Ba系化合物、Cu系化合物またはこれらの複合化合物からなる粉末とRE”2BaCuO5(RE”はRE以外の希土類元素)の粒状粒子の混合物から構成されており、かつ、基材の少なくとも前駆体に直接接触する部分から生成する(RE’,RE”)−Ba−Cu−O系超電導相の結晶生成温度が、前駆体から生成するRE−Ba−Cu−O系超電導相の結晶生成温度よりも低い。 (もっと読む)


【課題】 Bを含むブロッキングユニットからなる、新規なPb系銅酸化物超伝導体とその製造方法を提供する。
【解決手段】 (Pb,M)ブロッキングユニット2のMサイトの全てが、B(3+)、BO3 3-、又はその両方で占有された(Pb,B)(1201)構造を有しており、組成比がPb0.5 0.5 となるようにPb原料の一部をB原料で置き換えて混合し、焼成することで(Pb,B)系銅酸化物高温超伝導体を作製する。(Pb,B)系銅酸化物高温超伝導体は、組成式:(Pb0.5 0.5 )(Sr0.5 La0.5 2 CuOz ,z=5+δ(但し、δは1未満の微少量)、又は組成式:(Pb0.5 0.5 )(Sr1-x Bax 2 (Y1-y Cay )Cu2 z ,0<x<1,0<y<1,z=7+δ(但し、δは1未満の微少量)、
で表される。 (もっと読む)


【課題】
バッキングプレートにボンディングすることなくレーザーアブレージョン法に適用可能なターゲットとして使用できるRE系酸化物超電導焼結体、およびその製造方法を提供する。
【解決手段】
各種粉末または溶液を準備し、RE系酸化物超電導体の組成式をRE Bab Cuc Oxと標記した時に、a+b+c=6、0.95<a<1.05、1.505≦c/b<1.6となるように、秤量、混合した後、仮焼、粉砕、焼成、粉砕、成形をおこなって、RE系酸化物超電導焼結体を得、該RE系酸化物超電導焼結体をレーザーアブレージョン用ターゲットとして使用する。 (もっと読む)


【課題】 着磁性能に優れた酸化物超伝導磁石材料及び良好に着磁された酸化物超伝導磁石システムを提供する。
【解決手段】 補強リング100の内周面の突起部101まで超伝導体200をはめ込むことにより固定するとともに、沸騰した冷媒を速やかに超伝導体間の隙間から外へ放出するためには、補強リング100の側面に円形の開口部(穴)102をギャップに対応する位置に多数設ける。 (もっと読む)


【課題】 本発明は、トップシード溶融凝固法においてファセットの成長が失敗した試料を再度処理し、最終的にファセットを成長させた高品質の酸化物超電導バルク体を製造することができる方法の提供を目的とする。
【解決手段】 本発明は、トップシード溶融凝固法によってファセットが生成しないか、ファセットが生成したとしても前駆体中心部で生成停止した状態の未発達ファセット状態の試料に対し、結晶成長のための処理を複数段のステップで徐々に温度降下させるとともに、各ステップにおいては等温保持する段階降温等温処理を施すことを特徴とする。 (もっと読む)


【課題】溶融キャステング技術により得られ、クラックが改良され、曲がりの少ない、臨界電流の均一性が改良され、そして好ましくは臨界電流が増加するBiSrCaCuO系の高温超伝導体を提供する。
【解決手段】溶融キャストBiSrCaCuO−タイプの高温超伝導材料であって、超伝導相内のSr割合の一部がBaで置換されていることを特徴とするBiSrCaCuO−系の高温超伝導材料。 (もっと読む)


【課題】 臨界電流密度を向上することのできる焼結体、焼結体の製造方法、超電導線材、超電導機器、および超電導線材の製造方法を提供する。
【解決手段】 本発明の焼結体の製造方法は、MgとBとを含む焼結体の製造方法であって、Mg粉末3a,3bとB粉末2とを互いに混合せずに配置する配置工程と、配置工程の後、Mg粉末3a,3bおよびB粉末2を熱処理する熱処理工程とを備えている。また、熱処理工程の温度は651℃以上1107℃以下である。 (もっと読む)


21 - 32 / 32