説明

Fターム[4G077TC19]の内容

結晶、結晶のための後処理 (61,211) | 製造工程 (1,363) | 半導体素子に関するもの(例;P−N接合) (116)

Fターム[4G077TC19]に分類される特許

101 - 116 / 116


半極性窒化物薄膜の欠陥低減に関する横方向成長方法を開示する。工程ステップは半極性窒化物の面および組成を選択するステップと、半極性窒化物の面および組成の成長に適した基板を選択するステップと、半極性窒化物が基板のある領域上では核生成し、基板の他の領域上では核生成しない選択成長工程を適用するステップとを含み、選択成長工程は横方向エピタキシャル・オーバーグロス (LEO)法、側壁利用の横方向エピタキシャル・オーバーグロス (SLEO)法、カンチレバー・エピタキシー法あるいはナノマスキング法による窒化物材料の横方向成長を含むことを特徴とする。
(もっと読む)


【課題】結晶欠陥密度が低く、しかも、ピエゾ自発分極が生じ難いGaN系化合物半導体層の形成方法を提供する。
【解決手段】GaN系化合物半導体層の形成方法は、(A)サファイア基板10のR面上に、GaN系化合物半導体から成り、離間したシード層11を複数形成した後、(B)頂面が、A面であり、且つ、サファイア基板10のR面に対して略平行な状態にあるGaN系化合物半導体層12,14を、各シード層11から横方向エピタキシャル成長させ、次いで、(C)GaN系化合物半導体層12,14の頂面14Aを研磨して、サファイア基板10のR面に対して傾斜した状態とする工程を具備する。 (もっと読む)


【課題】
Pを含有する半導体層とAsを含有する半導体層とのヘテロ接合を有する化合物半導体エピタキシャル基板であって、特性のばらつきの少ない化合物半導体素子を与える化合物半導体エピタキシャル基板およびその製造方法を提供する。
【解決手段】
V族原子としてPを含む半導体層および、該半導体層の直上に接合され、かつV族原子としてAsを含む半導体層を有する化合物半導体エピタキシャル基板において、77Kフォトルミネッセンス測定におけるスペクトルのうち、設計上のいずれの層のバンドギャップにも対応せず、かつピーク位置が波長830nm以上1000nm以下であるピークの強度が、基板に由来するピークの強度の2倍以下であることを特徴とする化合物半導体エピタキシャル基板。 (もっと読む)


少なくとも一つの半導体装置を製作する方法であって、リチウムアルミネートを有する犠牲成長基板を提供するステップと、前記犠牲成長基板に隣接して、III族の窒化物を有する少なくとも一層の半導体層を形成するステップと、前記犠牲成長基板とは反対の側に、前記少なくとも一層の半導体層と隣接して取付基板を設置するステップと、前記犠牲成長基板を除去するステップと、を有する方法を示した。さらに当該方法は、前記取付基板とは反対の側の、前記少なくとも一層の半導体層の表面に、少なくとも一つの接続部を設置するステップ、あるいは、前記取付基板および少なくとも一層の半導体層を、複数の個々の半導体装置に分離するステップを有しても良い。当該方法は、さらに個々の半導体装置を含む前記取付基板を、放熱器に接合するステップを有しても良い。前記除去するステップは、前記犠牲成長基板を湿式エッチングするステップを有しても良い。
(もっと読む)


【課題】 p型伝導層をC添加のInGaAsを主成分とする化合物半導体層で構成したエピタキシャル結晶であって、p型伝導層の結晶性及びpn接合の急峻性に優れ、HBT等の電子デバイス用基体として有用なエピタキシャル結晶を提供する。
【解決手段】 化合物半導体基板上に、p型不純物として炭素が添加されたInGaAsを主成分とするp型伝導層を含む複数のエピタキシャル層が積層された化合物半導体エピタキシャル結晶において、前記p型伝導層がアンチモンを0.5〜10モル%含有するようにした。 (もっと読む)


【課題】炉内に原料ガスを流して、より短時間にて炉内を高純度化し得る気相成長装置を提供すること。
【解決手段】加熱した基板3上に、III族およびV族の原料ガスを、ドーピング原料及びキャリアガスと共に供給し、基板3の成長面に沿って層状に原料ガス6を流し、基板3上に化合物半導体結晶を成長する気相成長装置において、前記原料ガス6を流すガス流路4の他に、該ガス流路4内に乱流ガス16を導入して成長炉内のガス流を意図的に乱流にするガス導入機構15(15a、15b)を備えたことを特徴とする。 (もっと読む)


白熱灯および蛍光灯の代用品としての発光ダイオードなどのためにダイヤモンド基板上に窒化ガリウムデバイスを形成する。一つの実施形態として、少なくとも2つの方法でダイヤモンド上に窒化ガリウムダイオード(もしくは他のデバイス)を形成する。第1の方法は、ダイヤモンド上に窒化ガリウムを成長させ、その窒化ガリウム層にデバイスを設けることを含んでいる。第2の方法は、ダイヤモンド上に窒化ガリウム(デバイスもしくはフィルム)を接合し、接合した窒化ガリウム上にデバイスを設けることをともなっている。これらのデバイスは、白熱光や蛍光よりもかなり効率がよく、他の技術よりも光密度もしくはエネルギー密度がかなり高い。同様の方法および同様の構造により他の窒化ガリウム半導体デバイスをつくることができる。 (もっと読む)


【課題】ファセットLEPS法を用いてGaN系結晶を歩留り良く製造する方法を提供すること。
【解決手段】窒化物半導体結晶がc軸配向し得る主面Sを有する異種基板1を用い、該主面にドライエッチングにより凹凸加工を施して、段差0.5μm以下の段差部で区画された凹部底面1aと凸部上面1bとを有する凹凸面とする。次に、前記凹部底面1aおよび凸部上面1bのそれぞれに、斜めファセット2fを側壁面として有する窒化物半導体の結晶単位2を成長させた後、上面が平坦化した結晶層となるように前記結晶単位同士を互いにつなげて成長させ、窒化物半導体結晶層3とし、窒化物半導体結晶を得る。 (もっと読む)


極めて平坦な無極性a面GaN膜をハイドライド気相成長法(HVPE)によって成長させる。得られる膜は、種々の成長技術によって素子を順次再成長させるのに適している。
(もっと読む)


【課題】 本願発明は、Bi酸化物超電導体を用いて高性能な積層型ジョセフソン接合を得るためには、c軸が基板面に対して平行で、a軸(又はb軸)が基板面に対して垂直に配向したBi系酸化物超電導薄膜を作製することを目的とする。
【解決手段】 a軸配向したBi系酸化物超電導薄膜の作製方法は、Bi系酸化物超電導薄膜の(100) 面と格子定数の整合性の良い(110)面のLaSrAlO4単結晶基板又は(110)面のLaSrGaO4単結晶基板を用いてエピタキシャル成長することにある。この方法により、通常得られやすいBi-2212ではなく、Bi系酸化物超電導体でも最も高い超電導転移温度を示すBi-2223のa軸配向膜を選択的に作製することができる。 (もっと読む)


【課題】プレーナドープHEMTのシートキャリア濃度の面内バラツキを抑えることができる気相成長方法を提供すること。
【解決手段】半導体結晶を成長させる基板3をサセプタ1に保持し、該基板3をサセプタ1に対して自転させ、サセプタ1を加熱し、加熱された基板3上に原料ガス及び希釈用ガスを供給して、プレーナドープ層を有するIII−V族化合物半導体結晶を成長する気相成長方法において、成長中断を行い不純物単原子をドーピングするプレーナドープ層の成長時間を、基板3が自転で1回転する時間tの整数倍とする。 (もっと読む)


【課題】表面にステップバンチングがないエピタキシャルSiC膜を提供すること。さらにその膜を用いてリーク電流が低く、MOS界面の移動度が高いデバイスを提供すること。
【解決手段】 六方晶系結晶構造を有するSiC基板のオフカット面上で成長させたエピタキシャルSiC膜であって、前記SiC基板のオフカット面が、(0001)面から0.5°以上10°以下のオフカット角度を有し、前記オフカット面の結晶方向が、前記SiC基板の12種の等価な<21−30>方向([21−30]、[−2−130]、[2−310]、[−23−10]、[12−30]、[−1−230]、[1−320]、[−13−20]、[−3120]、[3−1−20]、[−3210]および[3−2−10]方向)のいずれかの方向から±7.5°以下のうちの1方向を向いていることを特徴とするエピタキシャルSiC膜。 (もっと読む)


本発明は、ダイヤモンド担持半導体デバイス(200)、およびそれを形成するための方法を提供する。1つの局面では、ダイヤモンド層(204)のデバイス表面(210)のために意図された構成に逆に適合するように構成された界面表面(212)を有する型(220)が提供される。次いで、無力なダイヤモンド層(204)が、型(220)のダイヤモンド界面表面(212)の上に堆積され、基材(202)が無力なダイヤモンド層(204)の成長表面(222)に接合される。次いで、型(220)の少なくとも一部が取り除かれ、型のダイヤモンド界面表面の構成に逆に対応する形状を受けた、ダイヤモンドのデバイス表面(210)が露出される。型(220)は、最終のデバイスを製造するために薄くされる適切な半導体材料から形成され得る。必要に応じて、半導体材料が、型(220)の除去のあと、ダイヤモンド層(204)に結合され得る。
(もっと読む)


マイクロエレクトロニック構造を形成する方法が記述される。それらの方法は、基板上にダイヤモンド層を形成し、そこではダイヤモンド層の一部が欠陥を含み、その後、ダイヤモンド層から欠陥を除去することによってダイヤモンド層内に空孔を形成する。 (もっと読む)


半絶縁III族窒化物層および半絶縁III族窒化物層の製造方法は、III族窒化物層を浅い準位のp型ドーパントでドーピングすること、およびIII族窒化物層を、例えば深い準位の遷移金属ドーパントなどの深い準位のドーパントでドーピングすることを有する。このような層および/または方法はまた、III族窒化物層をおよそ1×1017cm−3よりも小さい濃度を有する浅い準位のドーパントでドーピングすること、およびIII族窒化物層を深い準位の遷移金属ドーパントでドーピングすることを有する。深い準位のドーパントの濃度は、浅い準位のp型ドーパントの濃度よりも大きい。
(もっと読む)


基板が堆積チャンバー内に配置される。基板上にケイ素を含む第一の種の単層を化学吸着させるのに有効な条件で、チャンバーにトリメチルシランを流し、チャンバーに第一の不活性ガスを流す。第一の不活性ガスは第一の流量で流す。第一の種の単層を形成した後、酸化剤と化学吸着された第一の種とが反応し、基板上に二酸化ケイ素含有単層を形成するのに有効な条件で、チャンバーに酸化剤を流し、チャンバーに第二の不活性ガスを流す。第二の不活性ガス流は第一の流量未満である第二の流量を有する。基板上に二酸化ケイ素含有層を形成するのに有効となるように(a)トリメチルシラン及び第一の不活性ガス流及び(b)酸化剤及び第二の不活性ガス流を連続的に繰り返す。他の態様や特徴が企図される。 (もっと読む)


101 - 116 / 116