説明

Fターム[4K032AA05]の内容

鋼の加工熱処理 (38,000) | 鋼の合金成分及び不純物 (27,437) | C0.1%以上0.5%未満 (1,020)

Fターム[4K032AA05]に分類される特許

101 - 120 / 1,020


【課題】多層溶接部の低温靭性(CTOD特性)に優れた高張力鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.03〜0.12%、Si:0.01〜0.30%、Mn:0.5〜1.95%、P:0.008%以下、S:0.005%以下、Al:0.015〜0.06%、Nb:0.011〜0.05%、Ti:0.005〜0.02%、N:0.001〜0.006%、Ca:0.0005〜0.003%、必要に応じて、Cr、Mo、V、Cu、Niの1種または2種以上を含有し、Ceq:0.44以下、Ti/N=1.5〜3.5、鋼中の硫化物形態と中心偏析度を制御するため特定元素からなるパラメータ式を満足し、残部がFeおよび不可避的不純物からなる成分組成を有し、更に、鋼板の中心偏析部の硬さを規定した高張力鋼板。 (もっと読む)


【課題】長大脆性き裂伝播停止特性に優れる板厚50mm以上の厚鋼板およびその製造方法ならびに長大脆性き裂伝播停止性能を評価する方法および試験装置を提供する。
【解決手段】長大脆性き裂停止部の先端形状で、板厚中央部の特定の領域が、鋼板表面から板厚の特定領域に対し、少なくとも板厚分の長さだけ長大脆性き裂の進行方向に対し凹陥部を形成し、板厚中央部で特定領域が特定の集合組織を有する厚鋼板。特定成分の鋼を加熱後、鋼板表面温度1000〜850℃で累積圧下率10%以上で圧延後、特定の、表面温度と内部温度の状態で、1パス圧下率7%以上、累積圧下率50%以上で圧延終了時の鋼板表面温度800〜550℃で圧延する。試験片幅2m以上の試験片を用いて、き裂伝播長1m以上の長大脆性き裂に対する伝播停止性能を、試験片長さもしくは試験片を取り付ける試験装置のタブ板先端間距離を試験片幅の2.8倍以上として評価する。 (もっと読む)


【課題】高強度化、強度傾斜化及び製造コストの低減が可能で、良好な被削性も兼ね備えた、高強度かつ強度傾斜を有する鋼製熱間加工品を製造する方法の提供。
【解決手段】特定量のC、Si、Mn、P、S、Al、V、Nを含み、残部はFeと不純物からなる化学組成を有する鋼からなる素材に、次の(1)〜(3)の工程の処理を順に施す。(1)素材全体を750〜950℃に加熱後、熱間加工で粗成形品を得る、(2)得られた粗成形品の体積の50%以下の部分を、平均加熱速度≧5℃/秒で1100〜1300℃に加熱した後、仕上げ成形のための熱間加工を開始し、該熱間加工を加熱終了後15秒以内に終了させ、その後上記熱間加工で仕上げ成形した部分を、平均冷却速度1.5〜30℃/秒で600〜480℃迄冷却して、仕上げ成形品を得る、(3)得られた仕上げ成形品を炉内温度が〔1090−冷却後の温度〕℃〜〔1190−冷却後の温度〕℃の熱処理炉で250〜3600秒保持する。 (もっと読む)


【課題】フィレットの靭性に優れるYP325MPa以上の圧延H形鋼を提供するとともに、その有利な製造方法を提案する。
【解決手段】mass%で、C:0.01〜0.20%、Si:0.01〜1.0%、Mn:0.5〜2.0%、P:0.030%以下、S:0.030%以下、Al:0.003〜0.1%を含有し、Ca:0.0001〜0.01%およびREM:0.001〜0.03%のうちから選ばれる1種または2種を含有する成分組成を有し、炭素当最Ceqが0.36〜0.46mass%である鋼素材を1200〜1350℃の温度で1〜50hr加熱後、(Ar変態点−100)℃以下まで冷却する予備熱処理を施した後、1200〜1350℃に再加熱し、H形鋼に熱間圧延することによって、フィレット部のフェライト平均粒径を30μm以下、Mn偏析度を1.7以下とする。 (もっと読む)


【課題】本発明は、海水飛沫や海水接触環境と乾湿繰り返し環境の期間が交互となる船舶において最も腐食環境として厳しいバラストタンクにおいて、塗装耐食性に優れた船舶用鋼材を提案することを目的とする。
【解決手段】鋼材の化学組成が、質量%で、C:0.01〜0.20%、Si:0.01〜2.5%、Mn:0.1〜2.0%、P:0.03%以下、S:0.01%以下、Al、Nを含有し、さらに、A群;Mo、Wの中から選ばれる1種または2種、B群;Cu、Cr、Niの中から選ばれる1種以上、C群;Sb%、Snの中から選ばれる1種または2種であり、A〜C群の中から選ばれる2種以上の群を組み合わせた元素を一定量含有し、該鋼材表面に水性ジンクプライマーの塗膜が形成され、その該塗膜上にエポキシ系塗膜を有することを特徴とする塗装耐食性に優れた船舶用鋼材。 (もっと読む)


【課題】UT試験における不良率が十分に低い油井管を製造することができる油井管用熱延鋼板およびその製造方法の提供。
【解決手段】少なくとも、
C:0.15質量%以上0.30質量%未満、
Si:0.10〜0.40質量%、
Mn:1.0〜2.0質量%、
Al:0.01〜0.10質量%、
Ca:0.0015〜0.0050質量%、
S:0.005質量%以下、
N:0.0050質量%以下、かつ、
TiをNに対する質量比(Ti/N)が3.2以上を満たすように含有し、
残部が、Feおよび不可避的不純物からなる鋼組成を有し、
板厚が10mm以下である油井管用熱延鋼板。 (もっと読む)


【課題】優れた冷間加工性、被削性および焼入れ性を兼備した、高炭素電縫鋼管およびその製造方法を提供する。
【解決手段】質量%で、C:0.25〜0.60%、Si:0.01〜2.0%、Mn:0.2〜3.0%、Al:0.001〜0.1%、P:0.001〜0.05%、S:0.02%以下、N:0.0010〜0.0100%、B:0.0003〜0.0050%、Ca:0.0001〜0.0050%を含み、残部Feおよび不可避的不純物からなる組成を有する高炭素鋼管を素材鋼管とし、Ac変態点以上に加熱・均熱したのち、圧延終了温度:900℃〜(Ac変態点)、900℃以下の温度域で累積縮径率:30〜70%の縮径圧延を施す。これにより、球状化焼鈍を行うことなく、フェライト相中に、平均粒径d:0.1μm以上0.5μm未満の、セメンタイト粒子が分散した組織とすることができ、とくに被削性が顕著に改善する。 (もっと読む)


【課題】板厚が厚い所での低温圧延をすることなく、かつ、特別な設備を必要とせず、材質ばらつきの小さい、低温靭性に優れた溶接構造用極厚鋼板の製造方法を提供すること。
【解決手段】 鋼片を、1000〜1200℃に加熱し、板厚中心温度950〜1200℃で粗圧延後、板厚中心温度900超〜1020℃で1次仕上圧延を施し、その後、板厚中心温度780〜900℃で2次仕上圧延を施し、続いて、板厚中心温度720℃以上から、1〜10℃/sの板厚中心冷却速度で、550℃以下の温度まで加速冷却を施し、板厚が60〜100mm、降伏応力が315〜460MPaであり、ミクロ組織がフェライト、及びベイナイト、または、フェライト、パーライト、及びベイナイトの混合組織であり、かつ、板厚中心部における平均結晶粒径が5〜20μmの厚鋼板とすることを特徴とする。 (もっと読む)


【課題】母材の強度・靭性に優れると共に、溶接熱影響部の靭性にも優れる高張力鋼板とその有利な製造方法を提案する。
【解決手段】質量%でC:0.005〜0.2%、Si:0.3%以下、Mn:0.5〜5%、Cr:3%以下、Ni:5%以下、Al:0.01〜0.08%、B:0.0003〜0.003%を含有し、Mn+Ni+Cr−12.5×C≧2.6%を満たす鋼素材をAc変態点〜1200℃の温度に加熱後、累積圧下率50%以上の熱間加工し、次いで、そのままAr変態点以上の温度から板厚中心部の温度が350℃以下になるまで急冷し、あるいは、放冷してからAc変態点〜1050℃の温度に再加熱した後に板厚中心部の温度が350℃以下になるまで急冷し、その後、450〜650℃の温度で焼戻処理を施して、溶接熱影響部に形成される島状マルテンサイトの平均面積を3μm以下とする。 (もっと読む)


【課題】母材の強度・靭性に優れると共に、溶接熱影響部の靭性にも優れる高張力鋼板とその有利な製造方法を提案する。
【解決手段】質量%でC:0.005〜0.2%、Si:0.05〜0.3%、Mn:0.5〜5%、Cr:3%以下、Ni:5%以下、Ti:0.005〜0.02%、B:0.0003〜0.003%を含有し、Mn+Ni+Cr−12.5×C≧2.6%を満たす鋼素材をAc変態点〜1200℃の温度に加熱後、累積圧下率50%以上の熱間加工し、次いで、そのままAr変態点以上の温度から板厚中心部の温度が350℃以下になるまで急冷し、あるいは、放冷してからAc変態点〜1050℃の温度に再加熱した後に板厚中心部の温度が350℃以下になるまで急冷し、その後、450〜650℃の温度で焼戻処理を施して、溶接熱影響部に形成される島状マルテンサイトの平均面積を3μm以下とする。 (もっと読む)


【課題】優れた耐HIC性を有する高強度鋼管用鋼板及び高強度鋼管を提供する。
【解決手段】本発明による高強度鋼管は、質量%で、C:0.020〜0.070%、Si:0.05〜0.50%、Mn:1.10〜1.60%、P:0.008%以下、S:0.0006%以下、Cu:0.05〜0.50%、Cr:0.05〜0.50%、Ni:0.05〜1.00%、Mo0.50%以下、Nb:0.005〜0.080%、V:0.005〜0.080%、Ti:0.005〜0.030%、N:0.0015〜0.0070%、Al:0.005〜0.060%及びCa:0.0005〜0.0060%を含有し、残部はFe及び不純物からなり、式(1)を満たす。
0.6<Cu+Cr+Ni+Mo<1.5 (1)
ここで、式(1)中の各元素記号には、各元素の含有量(質量%)が代入される。 (もっと読む)


【解決課題】高強度中空ばね用シームレス鋼管の製造時にその内面表層部における粗大な内面疵の発生を抑制し、高品質のシームレス鋼管用素管の製造方法を提供すること。
【解決手段】
C:0.2〜0.7質量%、Si:0.5〜3質量%、Mn:0.1〜2質量%、Al:0.1質量%以下(0%を含まない)、P:0.02質量%以下(0%を含まない)、S:0.02質量%以下(0%を含まない)及びN: 0.02質量%以下(0%を含まない)を含有する鋼からなり、且つ、その内面表層部における鋼組織の平均結晶粒径が15μm以下に調整された中空ビレットを用いて熱間押出加工を行い、中空シームレス鋼管用の素管を製造することを特徴とする高強度中空ばね用シームレス鋼管用素管の製造方法。 (もっと読む)


【課題】一つの部品内に、十分な降伏強度および延性が付与された部分(高強度化させる部分)と、切削加工性を向上させるために降伏強度が抑えられた部分(低強度化させる部分)とを、非調質で形成させた鍛造部品の製造方法を提供することにある。
【解決手段】被加工材について、TNbCとなるように加熱する加熱処理工程と、前記被加工材を、1050℃以上として、熱間鍛造を行い、当該熱間鍛造により前記被加工材の真歪量を0.3以上とする熱間鍛造工程と、前記被加工材の高強度化させる部分について、急冷停止温度までの平均冷却速度が、3.0℃/s以上となり、急冷停止温度から400℃までの平均冷却速度が、0.1℃/s以上、1.5℃/s以下となり、前記被加工材の低強度化させる部分について、600℃までの平均冷却速度が、1.0℃/s以下となるように、前記被加工材を冷却する冷却工程と、を含むことを特徴とする。 (もっと読む)


【課題】溶接入熱量が300kJ/cmを超える大入熱溶接が適用可能な、引張強さ570MPa以上のテーパプレートの製造方法を提供する。
【解決手段】質量%で、C:0.03〜0.12%、Si:0.03〜0.5%、Mn:0.8〜2.2%、P:0.015%以下、S:0.0005〜0.0050%、Al:0.005〜0.1%、Nb:0.003〜0.014%、Ti:0.003〜0.02%
B:0.0003〜0.0025%、N:0.0030〜0.0070%、Ca:0.0005〜0.005%且つ、(1)式を満たし、残部Feおよび不可避的不純物からなる鋼スラブを1000℃〜1200℃に加熱したのち、板厚が長手方向にテーパ状に変化する熱間圧延を圧延仕上温度を900℃以下Ar点以上で行い、その後、500℃以下まで加速冷却する。0≦N−Ti/3.42≦0.0025、ただし、N、Tiは各成分の含有量(質量%)(1) (もっと読む)


【課題】一つの部品内に、十分な降伏強度および延性が付与された部分(高強度化させる部分)と、切削加工性を向上させるために降伏強度が抑えられた部分(低強度化させる部分)とを、非調質で形成させた鍛造部品の製造方法を提供することにある。
【解決手段】被加工材の高強度化させる部分について、TNbCとなるように加熱するとともに、被加工材の低強度化させる部分について、AC3点以上、TVC−50℃以下に加熱する加熱処理工程と、前記高強度化させる部分について、1050℃以上、前記加熱処理工程における前記高強度化させる部分に対する加熱温度以下とし、真歪量が0.3以上となるように熱間鍛造を行い、かつ、前記低強度化させる部分について、前記AC3点以上として、熱間鍛造を行う熱間鍛造工程と、前記高強度化させる部分について、急冷却と緩冷却を施す冷却工程と、を含むことを特徴とする。 (もっと読む)


【課題】浸炭又は浸炭窒化時に発生するオーステナイト結晶粒粗大化を抑制することが可能で、良好な冷間鍛造性を有して軟化焼鈍省略可能な表面硬化用熱間加工鋼材の提供。
【解決手段】C:0.10〜0.30%、Si≦0.50%、Mn:0.15〜1.5%、P≦0.04%、S:0.005〜0.07%、Cr:0.7〜3.0%、Al:0.01〜0.05%、N:0.007〜0.030%、Nb:0.02〜0.07及びH≦0.00004%を含有し、残部がFe及び不純物からなる化学組成を有し、鋼中NbのうちでNb(C、N)として析出しているNbの割合が85%以上、直径100nm以上のNb(C、N)の個数密度が5個/100μm2以下、かつフェライト結晶粒度の標準偏差が0.15以下である表面硬化用熱間加工鋼材。Feの一部に代えて、Mo≦0.50%、V≦0.20%及びTi≦0.50%のうちの1種以上を含んでもよい。 (もっと読む)


【課題】建築構造部材向け角形鋼管用素材として好適な、厚肉熱延鋼板を提供する。
【解決手段】質量%で、C:0.07〜0.18%、Mn:0.3〜1.5%、Al:0.01〜0.06%、N:0.006%以下を含む組成を有する鋼素材を1100〜1300℃に加熱したのち、粗圧延終了温度:950〜1150℃とする粗圧延を施したのち、圧延開始温度:1100〜850℃、圧延終了温度:900〜750℃とする仕上圧延を施し、ついで、表面温度で冷却停止温度を550℃以上とする一次冷却と、3〜15s間空冷する二次冷却と、板厚中央部温度で平均冷却速度が4〜15℃/sとなる冷却速度で冷却する三次冷却とからなる三段階の冷却で、冷却開始から板厚中央部温度で650℃に到着するまでの時間が35s以内となる冷却を施し、500〜650℃で巻取る。 (もっと読む)


【課題】厳しい腐食環境下において、優れた長期耐食性を示す船舶用鋼材、およびこのような船舶用鋼材を用いて構成した各種構造物を提供する。
【解決手段】本発明の船舶用鋼材は、C:0.04〜0.30%、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.010〜0.040%、S:0.011〜0.025%%、Al:0.010〜0.10%、Cu:0.10〜1.0%、Cr:0.01〜0.3%、およびN:0.0030〜0.010%を夫々含有し、残部が鉄および不可避的不純物からなり、且つSの含有量[S]とNの含有量[N]の比([S]/[N])が1.50〜6.0である。 (もっと読む)


【課題】船舶の甲板上という過酷な大気腐食環境で良好な耐食性を発揮すると共に、船舶上部構造物に要求される機械特性、溶接性、熱間加工性等を具備する船舶上部構造物用耐食鋼材を提供する。
【解決手段】C:0.01〜0.30%(質量%の意味、以下同じ)、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.005〜0.04%、S:0.0005〜0.01%、Al:0.005〜0.10%、Cu:0.10〜5.0%、Ni:0.10〜5.0%、Cr:0.010〜0.4%、Ti:0.005〜0.06%、およびN:0.0030〜0.008%を満たし、残部が鉄および不可避不純物からなり、かつ、Tiの含有量[Ti]とNの含有量[N]の比([Ti]/[N])が1.5以上17.0以下であることを特徴とする船舶上部構造物用耐食鋼材。 (もっと読む)


【課題】強度、衝撃特性、耐食性に優れる溶体化熱処理を省略した安価で使用エネルギーが少なく環境面でも優れた合金元素節減型二相ステンレス熱延鋼材を得ること。
【解決手段】質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.5〜7.0%、P:0.05%以下、S:0.010%以下、Ni:0.1〜5.0%、Cr:18.0〜25.0%、N:0.05〜0.30%、Al:0.001〜0.05%、を含有し、残部がFeおよび不可避的不純物よりなり、熱間圧延中におけるクロム窒化物の析出に関する指標となるクロム窒化物析出温度TNが960℃以下であって、溶体化熱処理を施した熱延鋼材よりも降伏強度が50MPa以上高い、熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材。 (もっと読む)


101 - 120 / 1,020