説明

Fターム[4K037EA05]の内容

薄鋼板の熱処理 (55,812) | 鋼の合金成分及び不純物 (28,900) | C 0.01%〜0.1% (1,320)

Fターム[4K037EA05]に分類される特許

41 - 60 / 1,320


【課題】熱延温度域でα+γの2相となるフェライト系ステンレス鋼において耐リジング性を改善する。
【解決手段】質量%で、C:0.001〜0.30%、Si:0.01〜1.00%、Mn:0.01〜2.00%、P:0.050%以下、S:0.020%以下、Cr:11.0〜22.0%、N:0.001〜0.10%を含有し、下記(3)式で定義するApが下記(2)式を満たし、かつ、Sn量が下記(1)式を満たし、残部がFe及び不可避的不純物からなり、金属組織がフェライト単相であることを特徴とする耐リジング性に優れたフェライト系ステンレス鋼板。0.060≦Sn≦0.634−0.0082Ap(1) 10≦Ap≦70(2) Ap=420C+470N+23Ni+9Cu+7Mn−11.5(Cr+Si)−12Mo−52Al−47Nb−49Ti+189(3) Sn、C、N、Ni、Cu、Mn、Cr、Si、Mo、Al、Nb、及び、Tiは、各元素の含有量。 (もっと読む)


【課題】540MPa以上のTSを有し、加工性と材質安定性に優れた冷延鋼板、溶融亜鉛めっき鋼板の製造に使用できる熱延鋼板およびその製造方法を提供する。
【解決手段】成分組成は、質量%でC:0.04%以上0.20%以下、Si:0.7%以上2.3%以下、Mn:0.8%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部がFeおよび不可避的不純物からなり、熱延板組織は、フェライトとパーライトを有し、前記フェライトは面積率が75%以上かつ平均結晶粒径が5μm以上25μm以下であり、前記パーライトは面積率が5%以上かつ平均結晶粒径が2.0μm以上であり、さらに、前記パーライトの平均自由行程が5μm以上であることを特徴とする加工性と材質安定性に優れた冷延鋼板用熱延鋼板。 (もっと読む)


【課題】強度と加工性(伸びフランジ性)を兼ね備えた高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.06%以上0.15%以下、Si:0.3%超0.5%以下、Mn:0.5%以上2.0%以下、P:0.06%以下、S:0.005%以下、Al:0.06%以下、N:0.006%以下、Ti:0.08%以上0.2%以下、V:0.2%以上0.4%以下、Cr:0.04%以上0.2%以下を含有し、残部がFeおよび不可避的不純物からなる組成と、フェライト相の組織全体に対する面積率が98%以上であるマトリックスを有し、該マトリックスの相当転位密度が7.0×1014m-2以上1.0×1015m-2以下であり、前記マトリックス中に一辺が10nm以下であり厚さが1nm以下である板状形態の析出物が析出した組織とを有する熱延鋼板の表面に、溶融亜鉛めっき処理或いはさらに合金化処理を施す。 (もっと読む)


【課題】成形性とスポット溶接性に優れた高強度溶融亜鉛めっき鋼板を低コストで安定して提供する。
【解決手段】鋼板の表面に溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板である。鋼板は、C:0.02〜0.10%、Si:0.005〜0.5%、Mn:1.4〜2.5%、P:0.025%以下、S:0.010%以下、sol.Al:0.001〜0.2%、N:0.008%以下およびTi:0.15%以下を含有し、さらにCa:0.01%以下、Mg:0.01%以下およびREM:0.01%以下からなる群から選択された1種または2種以上を含有するとともに、下記式(1)〜(3)を満足する化学組成を有するとともに、面積%で、フェライト:50〜94%、ベイナイト:5〜49%ならびにマルテンサイトおよび残留オーステナイトの合計:1〜20%を含有する鋼組織を有する。溶融亜鉛めっき鋼板は、全伸び(El)と穴拡げ率(λ)との積(El×λ値):1500%以上、降伏比(YR):75%以上、引張強度(TS):490MPa以上の機械特性を有し、溶接電極先端径:6mm、加圧力:4410kN、溶接電流:9kAおよび通電時間:18サイクルの直流式抵抗スポット溶接条件で作成した抵抗スポット溶接継手の十字引張試験における十字引張力(CTS)とせん断試験におけるせん断力(TSS)との比の値である延性比(CTS/TSS)が0.55以上、抵抗スポット溶接継手の溶金部と母材とのビッカース硬さの比の値が2.0以下である抵抗スポット溶接性を有する。 (もっと読む)


【課題】延性と伸びフランジ性に優れ、延性−伸びフランジ性のバランスも良好な高張力熱延鋼板の提供。
【解決手段】質量%で、C:0.08%超0.30%未満、Si:3.0%以下、Mn:1.0%以上4.0%以下、P:0.10%以下、S:0.010%以下、sol.Al:3.0%以下、N:0.010%以下を含有し、かつSi+sol.Alの合計含有量が0.8%以上3.0%以下の化学組成を有し、かつDαq≦5.0、Vαq≧50、Vγq≧3、Vαs>Vαq、Vγs>Vγq(DαqおよびVαqは、それぞれ鋼板表面から板厚の1/4深さ位置でのフェライトの平均粒径(μm)および面積率(%)、Vγqは同位置での残留オーステナイト体積率(%)、VαsおよびVγsはそれぞれ鋼板表面から100μm深さ位置でのフェライト面積率(%)および残留オーステナイト体積率(%)を表す)を満たす鋼組織を有する。 (もっと読む)


【課題】980MPa級以上の強度を確保しつつ、室温での成形性および温間での成形加重低減効果を兼備する高強度鋼板およびその温間成形方法を提供する。
【解決手段】質量%で、C:0.02〜0.3%、Si:1〜3%、Mn:1.8〜3%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.008%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜85%、残留γ:3%以上、マルテンサイト+前記残留γ:10〜45%、フェライト:5〜40%の各相を含む組織を有し、前記残留オーステナイト中のC濃度(Cγ)が0.3〜1.2質量%であり、前記成分組成中のNの一部が固溶Nであり、該固溶N量が12ppm以下(0ppmを含む)である高強度鋼板。 (もっと読む)


【課題】成形性に優れたDP鋼において、母材のみならずHAZについても疲労特性を改善しうる鋼強度熱延鋼板を提供する。
【解決手段】質量%で、C:0.05〜0.20%、Si:2.0%以下、Mn:1.0〜2.5%、Al:0.001〜0.10%、V:0.0005〜0.10%を含み、さらに、Ti:0.02〜0.20%、および/または、Nb:0.02〜0.20%を、C−12×(V/51+Ti/48+Nb/93)>0.03を満たすように含み、残部が鉄および不可避的不純物からなり、全組織に対する面積率で、フェライト:50〜95%を含み、残部が、マルテンサイト+残留オーステナイトからなる硬質第2相の組織を有し、前記フェライト中に存在する析出炭化物の平均粒径が6nm未満であるとともに、その析出炭化物を構成するV、TiおよびNbの合計含有量が0.02%以上である。 (もっと読む)


【課題】980MPa級以上の強度を確保しつつ、室温での成形性および温間での成形加重低減効果を兼備する高強度鋼板およびその温間成形方法を提供する。
【解決手段】質量%で、C:0.02〜0.3%、Si:1〜3%、Mn:1.8〜3%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜85%、残留γ:3%以上、マルテンサイト+前記残留γ:10〜45%、フェライト:5〜40%の各相を含む組織を有し、前記残留オーステナイト中のC濃度(Cγ)が0.3〜1.2質量%であり、前記成分組成中のNの一部または全部が固溶Nであり、該固溶N量が30〜100ppmである高強度鋼板。 (もっと読む)


【課題】成形性に優れるとともに、母材のみならずHAZについても疲労特性を改善しうる鋼強度熱延鋼板を提供する。
【解決手段】質量%で、C:0.05〜0.20%、Si:2.0%以下、Mn:1.0〜2.5%、Al:0.001〜0.10%、V:0.0005〜0.10%を含み、さらに、Ti:0.02〜0.20%、および/または、Nb:0.02〜0.20%を、C−12×(V/51+Ti/48+Nb/93)>0.03を満たすように含み、残部が鉄および不可避的不純物からなり、全組織に対する面積率で、フェライト:50〜90%、ベイナイト:10〜50%、マルテンサイト+残留オーステナイト:10%未満の組織を有し、前記フェライト中に存在する析出炭化物の平均粒径が6nm未満で、かつ、その析出炭化物を構成するV、TiおよびNbの合計含有量が0.02%以上である。 (もっと読む)


【課題】成形性に優れる軟質熱延鋼板の製造方法を提供する。
【解決手段】質量%で、C:0.01〜0.06%、Si:0.1%以下、Mn:0.1〜0.5%、P:0.03%以下、S:0.03%以下、N:0.005%以下、O:0.02%以下を含有し、さらに、sol.Al:0.09%以上を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材を加熱し、さらに、仕上圧延終了温度が750℃〜Ar変態点の温度範囲とする仕上圧延を施したのち、巻取温度:600℃以上で巻き取る。なお、好ましくはさらに、酸洗を施した後、伸長率:0.5〜5%調質圧延を施してもよい。これにより、降伏強さ:210MPa未満の低強度で、伸び:40%以上の高延性を有し、成形性に優れた軟質熱延鋼板を、容易に得ることができる。 (もっと読む)


【課題】成形性に優れる軟質熱延鋼板の製造方法を提供する。
【解決手段】質量%で、C:0.01〜0.06%、Si:0.1%以下、Mn:0.1〜0.5%、P:0.03%以下、S:0.03%以下、N:0.005%以下、O:0.02%以下を含有し、さらに、sol.Al:0.002%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材を加熱し、さらに、仕上圧延終了温度が750℃〜Ar変態点の温度範囲とする仕上圧延を施したのち、巻取温度:600℃以上で巻き取る。なお、好ましくはさらに、酸洗を施した後、伸長率:0.5〜5%調質圧延を施してもよい。これにより、降伏強さ:210MPa未満の低強度で、伸び:40%以上の高延性を有し、成形性に優れた軟質熱延鋼板を、容易に得ることができる。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、Ar3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃未満の温度域で巻取り、得られた熱延鋼板に300℃以上の温度域に加熱する熱延板焼鈍を施した後、冷間圧延し、次いで(Ac3点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相で第二相に残留オーステナイトを含む金属組織を持つ冷延鋼板を製造する。 (もっと読む)


【課題】塗装焼付け後に500MPa以上の降伏強度、0.9以上の降伏比、10%以上の伸びを有し、さらには異方性が-0.50〜0となる缶用鋼板の母材に用いる熱延鋼板およびその製造方法を提供する。
【解決手段】C:0.02〜0.12%、Si:0.005〜0. 5%、Mn:0.3〜1.5%、P:0.005〜0.2%、Al:0.10%以下、N: 0.012%以下、Nb:0.005〜0.10%を含有することにより固溶強化、析出強化、細粒化強化した鋼板を、熱延時の仕上げ温度を870℃以上、その後の冷却速度を40℃/s以下、巻取り温度を620℃以上で製造することでΔrを-0.50〜0の範囲とする。なお、この場合の組織は、実質的にフェライト単相組織であり、フェライト平均結晶粒径は6μm以上である。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、最終1パスの圧下量が15%超でAr3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃超の温度域で巻取り、得られた熱延鋼板に冷間圧延を施し、次いで(Ac3点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相、第二相に残留オーステナイトを含む金属組織の冷延鋼板を製造する。 (もっと読む)


【課題】接触抵抗特性および実用性に優れた燃料電池セパレータ用ステンレス鋼を提供する。
【解決手段】C:0.03%以下、Si:1.0%以下、Mn:1.0%以下、S:0.01%以下、P:0.05%以下、Al:0.20%以下、N:0.03%以下、Cr:16〜40%を含み、Ni:20%以下、Cu:0.6%以下、Mo:2.5%以下の一種以上を含有し、残部がFe および不可避的不純物からなるステンレス鋼である。そして、ステンレス鋼の表面を光電子分光法により測定した場合に、Fを検出する。かつ、Cr及びFeのピークを金属ピークと金属ピーク以外のピークに分離した結果から算出される金属形態以外のCrとFeの原子濃度の合計と、金属形態のCrとFeの原子濃度の合計の比率は3.0以上である。 (もっと読む)


【課題】高強度高加工性缶用鋼板およびその製造方法を提供する。
【解決手段】C:0.001%以上0.080%以下、Si:0.003%以上0.100%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0050%以上0.0150%以下、B:0.0002%以上0.0050%以下を含有し、残部はFeおよび不可避的不純物からなる。圧延方向断面において、結晶粒の展伸度が5.0以上である結晶粒を面積率にして0.01〜1.00%含む。このような缶用鋼板は、スラブ再加熱温度を1200℃以上とし、熱間圧延後650℃未満の温度で巻き取り、一次冷間圧延を行い、引き続き、均熱温度680〜760℃、均熱時間10〜20秒で連続焼鈍を行い、20%以下の圧延率で二次冷間圧延を行うことで得られる。 (もっと読む)


【課題】500MPa以上の引張強さを有する高張力熱延鋼板で、伸び、伸びフランジ性、強度−伸び−伸びフランジ性バランスに優れた高張力熱延鋼板を提供する。
【解決手段】質量%で、(x)C:0.03〜0.20%、Si:0.01〜1.5%、Mn:1.0%以下、P:0.08%以下、S:0.005%以下、Al:0.01〜0.08%、N:0.001〜0.005%、Ti、Nb、Vの1種又は2種以上を合計で0.02〜1.0%、を少なくとも含み、残部がFe及び不可避的不純物からなる成分組成と、(y)強度が大きく異なる2種類のフェライト相からなる複合組織を有し、(y1)強度が低い軟質フェライト相の粒径が15μm以下であり、かつ、(y2)軟質フェライト相の結晶粒の60%以上の結晶粒が、他の軟質フェライト相の結晶粒と接していないことを特徴とする高張力熱延鋼板。 (もっと読む)


【課題】 温間成形性が良好であり、且つ温間成形後の強度と延性に優れた高強度鋼板およびその製造方法を提供する。
【解決手段】 室温における引張強さが780MPa以上であり、400℃以上700℃以下の加熱温度域における降伏応力が室温における降伏応力の80%以下であり、前記加熱温度域における全伸びが室温における全伸びの1.1倍以上であり、前記加熱温度域に加熱して20%以下のひずみを与えたのち前記加熱温度から室温まで冷却した後の降伏応力が前記加熱前の室温における降伏応力の70%以上であり、前記加熱温度域に加熱して20%以下のひずみを与えたのち前記加熱温度から室温まで冷却した後の全伸びが前記加熱前の室温における全伸びの70%以上である高強度鋼板とする。 (もっと読む)


【課題】 高価な元素を含有させることなく、伸びと穴広げ性が優れる高強度熱延鋼板およびその製造方法を提供する。
【解決手段】 質量%で、C:0.03〜0.10%、Mn:0.5〜2.5%、P:0.04%以下、S:0.01%以下、N:0.01%以下を含み、かつSiとAlの添加量の合計が:0.1〜2.5%であり、残部がFe及び不可避的不純物からなり、金属組織が面積率80%以上のフェライトと3〜15%のマルテンサイトを含み、パーライトが3%未満である混合組織であり、板厚の1/4厚における円相当直径3μm以上のマルテンサイト個数密度が5個/10000μm以下であり、さらにR/D>1.0[R:平均マルテンサイト間隔(μm)、D:マルテンサイト平均直径(μm)]を満たすことを特徴とする伸びと穴広げ性に優れた高強度熱延鋼板。 (もっと読む)


【課題】フランジ加工性に優れる高強度缶用鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.001%以上0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超0.0170%以下を含有し、残部はFeおよび不可避的不純物からなる。N total−(N as AlN)(N totalとは、Nの総量であり、前記N as AlNとは、AlNとして存在するN量である)が0.0100%以上0.0160%以下であり、平均塑性ひずみ比:平均r値が1.0超である。熱間圧延を行い、630℃未満で巻取り、91.5%以上の圧延率で冷間圧延を行い、焼鈍し、20%以下の圧延率で二次冷間圧延を行うことで得られる。 (もっと読む)


41 - 60 / 1,320