説明

Fターム[4K037EA25]の内容

薄鋼板の熱処理 (55,812) | 鋼の合金成分及び不純物 (28,900) |  (1,687)

Fターム[4K037EA25]に分類される特許

61 - 80 / 1,687


【課題】980MPa級以上の強度を確保しつつ、室温での成形性および温間での成形加重低減効果を兼備する高強度鋼板およびその温間成形方法を提供する。
【解決手段】質量%で、C:0.02〜0.3%、Si:1〜3%、Mn:1.8〜3%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜85%、残留γ:3%以上、マルテンサイト+前記残留γ:10〜45%、フェライト:5〜40%の各相を含む組織を有し、前記残留オーステナイト中のC濃度(Cγ)が0.3〜1.2質量%であり、前記成分組成中のNの一部または全部が固溶Nであり、該固溶N量が30〜100ppmである高強度鋼板。 (もっと読む)


【課題】980MPa級以上の強度を確保しつつ、室温での成形性および温間での成形加重低減効果を兼備する高強度鋼板およびその温間成形方法を提供する。
【解決手段】質量%で、C:0.02〜0.3%、Si:1〜3%、Mn:1.8〜3%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.008%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜85%、残留γ:3%以上、マルテンサイト+前記残留γ:10〜45%、フェライト:5〜40%の各相を含む組織を有し、前記残留オーステナイト中のC濃度(Cγ)が0.3〜1.2質量%であり、前記成分組成中のNの一部が固溶Nであり、該固溶N量が12ppm以下(0ppmを含む)である高強度鋼板。 (もっと読む)


【課題】成形性に優れたDP鋼において、母材のみならずHAZについても疲労特性を改善しうる鋼強度熱延鋼板を提供する。
【解決手段】質量%で、C:0.05〜0.20%、Si:2.0%以下、Mn:1.0〜2.5%、Al:0.001〜0.10%、V:0.0005〜0.10%を含み、さらに、Ti:0.02〜0.20%、および/または、Nb:0.02〜0.20%を、C−12×(V/51+Ti/48+Nb/93)>0.03を満たすように含み、残部が鉄および不可避的不純物からなり、全組織に対する面積率で、フェライト:50〜95%を含み、残部が、マルテンサイト+残留オーステナイトからなる硬質第2相の組織を有し、前記フェライト中に存在する析出炭化物の平均粒径が6nm未満であるとともに、その析出炭化物を構成するV、TiおよびNbの合計含有量が0.02%以上である。 (もっと読む)


【課題】従来よりもさらに靭性に優れる熱間プレス部材の製造方法を提供する。
【解決手段】C:0.15〜0.45%、Mn+Cr:0.5〜3.0%、さらにP:0.05%以下、S:0.03%以下、Si:0.5%以下、Ni:3%以下、Cu:1%以下、V:1%以下およびAl:1%以下の1種または2種以上を含有し、残部Fe及び不純物からなる化学組成を有する鋼材を、Ac点以上(Ac点+100℃)以下の温度域に10分間以下保持したのちに熱間プレスを施し、次いで上部臨界冷却速度以上の冷却速度でMf点まで冷却する焼入れ処理を施して引張強さを1.2GPa以上としたのちに、150℃以上200℃以下の温度域に10分間以上保持する熱処理を施すことによって、熱間プレス部材を製造する。 (もっと読む)


【課題】シーム溶接性に優れた引張強度が1180MPa以上の高強度鋼板を提供する。
【解決手段】鋼板の化学成分が、C:0.12〜0.40%、Si:0.5%以下(0%を含む)、Mn:1.5%以下(0%を含まない)、Al:0.15%以下(0%を含まない)、N:0.01%以下(0%を含まない)、P:0.02%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Ti:0.2%以下(0%を含まない)、およびB:0.01%以下(0%を含まない)を満たし、残部が鉄および不可避不純物からなると共に、Ceq1(=C+Mn/5+Si/13)が0.50%以下であり、鋼組織がマルテンサイト単一組織であり、かつ引張強度が1180MPa以上であることを特徴とするシーム溶接性に優れた高強度鋼板。 (もっと読む)


【課題】成形性に優れる軟質熱延鋼板の製造方法を提供する。
【解決手段】質量%で、C:0.01〜0.06%、Si:0.1%以下、Mn:0.1〜0.5%、P:0.03%以下、S:0.03%以下、N:0.005%以下、O:0.02%以下を含有し、さらに、sol.Al:0.002%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材を加熱し、さらに、仕上圧延終了温度が750℃〜Ar変態点の温度範囲とする仕上圧延を施したのち、巻取温度:600℃以上で巻き取る。なお、好ましくはさらに、酸洗を施した後、伸長率:0.5〜5%調質圧延を施してもよい。これにより、降伏強さ:210MPa未満の低強度で、伸び:40%以上の高延性を有し、成形性に優れた軟質熱延鋼板を、容易に得ることができる。 (もっと読む)


【課題】加工性に優れた引張強度440MPa以上の高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。
【解決手段】組織として、面積率が60%以上のフェライト相と、面積率が20〜30%のパーライト相と、面積率が1〜5%のベイナイト相を有し、前記フェライト相の粒内に存在するセメンタイト相の面積率が5%以下である。製造するにあたっては、連続溶融亜鉛めっき処理では、10℃/s以上の平均加熱速度で650℃以上の温度域まで加熱し、700〜(Ac3−5)℃の温度で10秒以上保持し、次いで、10〜200℃/sの平均冷却速度で300〜500℃の温度域まで冷却し、該300〜500℃の温度域で30〜300秒保持したのち、溶融亜鉛めっき処理する。 (もっと読む)


【課題】成形性に優れる軟質熱延鋼板の製造方法を提供する。
【解決手段】質量%で、C:0.01〜0.06%、Si:0.1%以下、Mn:0.1〜0.5%、P:0.03%以下、S:0.03%以下、N:0.005%以下、O:0.02%以下を含有し、さらに、sol.Al:0.09%以上を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材を加熱し、さらに、仕上圧延終了温度が750℃〜Ar変態点の温度範囲とする仕上圧延を施したのち、巻取温度:600℃以上で巻き取る。なお、好ましくはさらに、酸洗を施した後、伸長率:0.5〜5%調質圧延を施してもよい。これにより、降伏強さ:210MPa未満の低強度で、伸び:40%以上の高延性を有し、成形性に優れた軟質熱延鋼板を、容易に得ることができる。 (もっと読む)


【課題】加工性に優れた引張強度440MPa以上の高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。
【解決手段】組織として、面積率が50%以上で、平均粒径が15μm以下のフェライト相と、面積率が10〜30%で平均粒径が10μm以下のパーライト相と、面積率が3〜10%で平均粒径が5μm以下のベイナイト相を有し、前記フェライト相の粒内に存在するセメンタイト相の面積率が10%以下である。製造するにあたっては、連続溶融亜鉛めっき処理では、10℃/s以上の平均加熱速度で650℃以上の温度域まで加熱し、(Ac3+5)℃以上の温度で10秒以上保持し、次いで、10〜200℃/sの平均冷却速度で300℃以下の温度域まで冷却し、該300℃以下の温度域で30〜300秒保持したのち、溶融亜鉛めっき処理する。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、Ar3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃未満の温度域で巻取り、得られた熱延鋼板に300℃以上の温度域に加熱する熱延板焼鈍を施した後、冷間圧延し、次いで(Ac3点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相で第二相に残留オーステナイトを含む金属組織を持つ冷延鋼板を製造する。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、最終1パスの圧下量が15%超でAr3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃超の温度域で巻取り、得られた熱延鋼板に冷間圧延を施し、次いで(Ac3点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相、第二相に残留オーステナイトを含む金属組織の冷延鋼板を製造する。 (もっと読む)


【課題】接触抵抗特性および実用性に優れた燃料電池セパレータ用ステンレス鋼を提供する。
【解決手段】C:0.03%以下、Si:1.0%以下、Mn:1.0%以下、S:0.01%以下、P:0.05%以下、Al:0.20%以下、N:0.03%以下、Cr:16〜40%を含み、Ni:20%以下、Cu:0.6%以下、Mo:2.5%以下の一種以上を含有し、残部がFe および不可避的不純物からなるステンレス鋼である。そして、ステンレス鋼の表面を光電子分光法により測定した場合に、Fを検出する。かつ、Cr及びFeのピークを金属ピークと金属ピーク以外のピークに分離した結果から算出される金属形態以外のCrとFeの原子濃度の合計と、金属形態のCrとFeの原子濃度の合計の比率は3.0以上である。 (もっと読む)


【課題】高強度高加工性缶用鋼板およびその製造方法を提供する。
【解決手段】C:0.001%以上0.080%以下、Si:0.003%以上0.100%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0050%以上0.0150%以下、B:0.0002%以上0.0050%以下を含有し、残部はFeおよび不可避的不純物からなる。圧延方向断面において、結晶粒の展伸度が5.0以上である結晶粒を面積率にして0.01〜1.00%含む。このような缶用鋼板は、スラブ再加熱温度を1200℃以上とし、熱間圧延後650℃未満の温度で巻き取り、一次冷間圧延を行い、引き続き、均熱温度680〜760℃、均熱時間10〜20秒で連続焼鈍を行い、20%以下の圧延率で二次冷間圧延を行うことで得られる。 (もっと読む)


【課題】500MPa以上の引張強さを有する高張力熱延鋼板で、伸び、伸びフランジ性、強度−伸び−伸びフランジ性バランスに優れた高張力熱延鋼板を提供する。
【解決手段】質量%で、(x)C:0.03〜0.20%、Si:0.01〜1.5%、Mn:1.0%以下、P:0.08%以下、S:0.005%以下、Al:0.01〜0.08%、N:0.001〜0.005%、Ti、Nb、Vの1種又は2種以上を合計で0.02〜1.0%、を少なくとも含み、残部がFe及び不可避的不純物からなる成分組成と、(y)強度が大きく異なる2種類のフェライト相からなる複合組織を有し、(y1)強度が低い軟質フェライト相の粒径が15μm以下であり、かつ、(y2)軟質フェライト相の結晶粒の60%以上の結晶粒が、他の軟質フェライト相の結晶粒と接していないことを特徴とする高張力熱延鋼板。 (もっと読む)


【課題】形状凍結性に優れた冷延鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.0010〜0.0030%、Si:0.05%以下、Mn:0.1〜0.5%、Ti:0.021〜0.060%、B:0.0005〜0.0050%を含み、かつBとCを、B/Cが0.5以上を満たすように含有する組成の鋼素材に、仕上圧延終了温度:870〜950℃とする仕上圧延を施し、巻取温度:450〜630℃で巻き取る熱延工程と、冷延圧下率:90%以下とする冷延工程と、冷延工程後、600℃以上の温度域を1〜30℃/sの平均加熱速度で、700〜850℃の範囲の均熱温度まで加熱し、30〜200s間保持した後、600℃までの温度域を平均で3℃/s以上の冷却速度で、冷却する焼鈍工程を施した、平均粒径:10〜30μmのフェライトを主体とする組織を有し、比例限が100MPa以下である、形状凍結性に優れた冷延鋼板。 (もっと読む)


【課題】 温間成形性が良好であり、且つ温間成形後の強度と延性に優れた高強度鋼板およびその製造方法を提供する。
【解決手段】 室温における引張強さが780MPa以上であり、400℃以上700℃以下の加熱温度域における降伏応力が室温における降伏応力の80%以下であり、前記加熱温度域における全伸びが室温における全伸びの1.1倍以上であり、前記加熱温度域に加熱して20%以下のひずみを与えたのち前記加熱温度から室温まで冷却した後の降伏応力が前記加熱前の室温における降伏応力の70%以上であり、前記加熱温度域に加熱して20%以下のひずみを与えたのち前記加熱温度から室温まで冷却した後の全伸びが前記加熱前の室温における全伸びの70%以上である高強度鋼板とする。 (もっと読む)


【課題】 高価な元素を含有させることなく、伸びと穴広げ性が優れる高強度熱延鋼板およびその製造方法を提供する。
【解決手段】 質量%で、C:0.03〜0.10%、Mn:0.5〜2.5%、P:0.04%以下、S:0.01%以下、N:0.01%以下を含み、かつSiとAlの添加量の合計が:0.1〜2.5%であり、残部がFe及び不可避的不純物からなり、金属組織が面積率80%以上のフェライトと3〜15%のマルテンサイトを含み、パーライトが3%未満である混合組織であり、板厚の1/4厚における円相当直径3μm以上のマルテンサイト個数密度が5個/10000μm以下であり、さらにR/D>1.0[R:平均マルテンサイト間隔(μm)、D:マルテンサイト平均直径(μm)]を満たすことを特徴とする伸びと穴広げ性に優れた高強度熱延鋼板。 (もっと読む)


【課題】フランジ加工性に優れる高強度缶用鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.001%以上0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超0.0170%以下を含有し、残部はFeおよび不可避的不純物からなる。N total−(N as AlN)(N totalとは、Nの総量であり、前記N as AlNとは、AlNとして存在するN量である)が0.0100%以上0.0160%以下であり、平均塑性ひずみ比:平均r値が1.0超である。熱間圧延を行い、630℃未満で巻取り、91.5%以上の圧延率で冷間圧延を行い、焼鈍し、20%以下の圧延率で二次冷間圧延を行うことで得られる。 (もっと読む)


【課題】引張強度が1180MPa以上であって、加工性と低温脆性に優れた高強度鋼板、及びその製造方法を提供する。
【解決手段】本発明の高強度鋼板は、C:0.10〜0.30%、Si:1.40〜3.0%、Mn:0.5〜3.0%、P:0.1%以下、S:0.05%以下、Al:0.005〜0.20%、N:0.01%以下、O:0.01%以下、を含有し、残部Feおよび不可避的不純物からなり、かつ、鋼板の板厚1/4位置について、走査型電子顕微鏡で組織を観察したとき、全組織に対するフェライトの体積率は5〜35%、ベイニティックフェライトおよび/または焼戻しマルテンサイトの体積率は60%以上であり、光学顕微鏡で組織を観察したとき、全組織に対するフレッシュマルテンサイトと残留オーステナイトの混合組織(MA組織)の体積率は6%以下(0%を含まない)であるとともに、X線回折法で残留オーステナイトを測定したとき、全組織に対する残留オーステナイトの体積率は5%以上である。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れ、引張強度が750 MPa以上の高張力溶融めっき冷延鋼板の提供。
【解決手段】冷延鋼板が、質量%で、C:0.10%超0.25%未満、Si:0.50%超2.0%未満、Mn:1.50%超3.0%以下を含有し、場合によりさらに適量のTi、Nb、V、Cr、Mo、B、Ca、Mg、REMおよびBiの1種又は2種以上を含有し、P:0.050%未満、S:0.010%以下、sol. Al:0.50%以下およびN:0.010%以下である化学組成と、主相が低温変態生成相で、第二相に残留オーステナイトを含む金属組織とを有する。前記残留オーステナイトは全組織に対する体積率が4.0%超25.0%未満、平均粒径が0.80μm未満であり、前記残留オーステナイトの内、粒径が1.2μm以上である残留オーステナイト粒の数密度が3.0×10−2個/μm2以下である。 (もっと読む)


61 - 80 / 1,687