説明

Fターム[4K070BD08]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 制御 (486) | 制御因子 (382) | 溶鋼成分 (45)

Fターム[4K070BD08]に分類される特許

1 - 20 / 45


【課題】スピッチングやスロッピングの発生を低減しつつ、製鋼における転炉の脱炭処理を高速化することが可能な、転炉の精錬方法を提供する。
【解決手段】事前の転炉脱炭処理における操業実績から、スラグ1トン当たりの炉内残留酸素濃度を計算する工程S1と、その処理後の実績値と対比して、その差から排ガス流量の補正係数を求める工程S2と、現在の転炉脱炭処理における酸素供給量、並びに、求めた排ガス補正係数を用いて補正した排ガス流量、排ガス組成、溶銑成分及び副原料使用量から炉内残留酸素濃度を逐次算出してスラグ性状の絶対値を把握する工程S3と、炉内残留酸素濃度の値に応じて、酸素供給量、ランス高さ、及び底吹きガス流量のうち少なくとも何れか1つを調整する調整工程S4と、を有する転炉の精錬方法とする。 (もっと読む)


【課題】 転炉製鋼方法において、カーボンニュートラルであるバイオマス由来の炭材を、コークスや石炭などの化石燃料由来の炭材に替わる熱源として利用することで温室効果ガス発生量を削減する。
【解決手段】 転炉内の溶銑12を酸素吹錬して溶鋼を溶製する転炉製鋼方法において、酸素吹錬中に熱源として使用する、コークス、石炭、黒鉛などの化石燃料由来の炭材の一部または全部をバイオマス由来の炭材に置き換え、温室効果ガスの発生量を削減する。この場合に、前記バイオマス由来の炭材の硫黄含有量を0.10質量%以下とすること、前記バイオマス由来の炭材は、植物系バイオマスを炭化して製造される炭化物にバインダー及び水分を加えて成型した成型体であること、及び、前記バイオマス由来の炭材として、パームヤシ殻由来のバイオマス炭、パームヤシ空果房由来のバイオマス炭、パームヤシ幹由来のバイオマス炭のうちの何れか1種または2種以上を使用することが好ましい。 (もっと読む)


【課題】本発明は、転炉におけるプロセスに変更があった場合でも、より容易に対応し得る転炉の副原料投入量計算装置および該方法を提供する。
【解決手段】本発明の副原料投入量計算装置1は、転炉中の溶鋼成分濃度を目標値に近づけるために投入する副原料の投入量を副原料の算定投入量として算定する副原料投入量計算装置1であって、副原料の投入量における初期値を設定する設定部と、次回の試行における副原料の投入量を、現在の試行における副原料の投入量に基づいて演算するPSO演算部114と、現在の試行における副原料の投入量に対する所定の評価値を演算する評価値演算部112と、PSO演算部114による前記演算と評価値演算部112による前記演算とを所定の試行回数だけ繰り返すことによって得られた副原料の投入量の中から、最良の評価値を持つ副原料の投入量を、副原料の算定投入量とする投入量演算部115とを備える。 (もっと読む)


【課題】転炉吹止め時における溶鋼中りん濃度の制御精度を高めることが可能な転炉吹錬制御方法を提供する。
【解決手段】少なくとも、転炉吹錬時における排ガス成分及び排ガス流量を定期的に測定して、測定値を得る測定工程と、転炉吹錬の操業条件及び測定工程で得られた測定値に基づいて脱りん速度定数を推定する定数推定工程と、推定された脱りん速度定数を用いて、転炉吹錬中の溶鋼中りん濃度を逐次推定する濃度推定工程と、推定された溶鋼中りん濃度が目標溶鋼中りん濃度以下であるか否かを判断する濃度判断工程と、該濃度判断工程で、推定された溶鋼中りん濃度が目標溶鋼中りん濃度を超えていると判断された場合に、濃度推定工程で推定される溶鋼中りん濃度が目標溶鋼中りん濃度以下となるように、転炉吹錬の操業条件を変更する変更工程と、を有する、転炉吹錬制御方法とする。 (もっと読む)


【課題】ポーラスプラグの詰まりを防止しつつ金属アルミを効率よく使用して脱酸を行うことができるようにする。
【解決手段】本発明に係る脱酸処理における取鍋への金属アルミ添加方法では、転炉3にて精錬した溶鋼4を、複数の気孔を有するポーラスプラグ1が設置された取鍋2内に出鋼し、出鋼した溶鋼4に対して脱酸するに際し、気孔の平均気孔半径を80μm〜100μmとしておき、0<V/α<0.45を満たす間に脱酸のための金属アルミニウム5を取鍋2内へ添加する。ただし、V:取鍋に出鋼した現溶鋼量(ton)、α:転炉から取鍋に出鋼する全溶鋼量(ton)である。 (もっと読む)


【課題】吹錬処理後のスラグ中のリン濃度を精度高く予測すること。
【解決手段】類似度算出部10aが、実績データベース4内に格納されている複数の溶銑状態及び吹錬条件xについて、予測対象の溶銑状態及び吹錬条件xに対する類似度Wを算出し、予測式作成部10bが、実績データベース4に格納されている溶銑状態及び吹錬条件xのデータを用いて、溶銑状態及び吹錬条件xと吹錬処理後のスラグ中のリン濃度yとの関係を表す予測モデルを作成すると共に、類似度Wを重みとする評価関数を予測モデルの予測誤差を評価する評価関数として最適化問題を解くことによって、予測モデルのモデルパラメータを決定し、リン濃度予測部10cが、予測モデルに予測対象の溶銑状態及び吹錬条件xを入力することによって、予測対象の溶銑状態及び吹錬条件xで吹錬処理を行った場合の吹錬処理後のスラグ中のリン濃度yを予測する。 (もっと読む)


【課題】吹錬中の溶湯の成分を精度高く推定すること。
【解決手段】演算処理部21が、溶鋼101の吹錬中に発生する排気ガスの成分に基づいて、溶鋼101の酸化反応に使用された酸素量を酸化反応量として算出し、算出された酸化反応量に基づいて、溶鋼101を構成する各成分の酸化に使用された酸素量の組を複数生成し、生成された各組について反応平衡評価値を算出し、算出された反応平衡評価値が所定範囲内にある組を抽出し、抽出された組に基づいて溶鋼101を構成する各成分の濃度範囲を算出する。 (もっと読む)


【課題】吹錬中のスラグ中のFeO生成量の推移を推定し、吹錬終了時でのそのFeO生成量推定値を使用したりん濃度推定方法を提供することで、過剰な酸素ガスや合金使用量の削減を可能として、溶製コストを低減することを目的とするものである。
【解決手段】上底吹き機能を有する転炉容器での脱炭吹錬において、吹錬中の排ガスの組成および流量、酸素ガス流量、石炭および酸化鉄等の副原料の投入量並びに溶銑成分から逐次計算することにより得られる残留酸素量に基づきスラグ中のFeO生成量を計算し、そのFeO生成量計算値、溶鋼温度および石灰原単位をパラメータとした回帰式により、吹錬終了時点での溶鋼中りん濃度を推定することを特徴とする転炉りん濃度推定方法である。 (もっと読む)


【課題】転炉吹錬において、排ガス情報を活用して精度良く溶鋼中の炭素濃度と溶鋼温度を推定することが可能な、吹錬方法及び吹錬システムを提供する。
【解決手段】 転炉吹錬時の排ガス成分及び排ガス流量を測定する、測定工程と、測定工程により得られた測定値と転炉吹錬時の操業要因とに基づいて推定される脱炭酸素効率減衰定数及び最大脱炭酸素効率を用いて、吹錬時における溶鋼中の炭素濃度及び溶鋼温度を推定する、推定工程とを備える、転炉吹錬方法とし、当該吹錬方法を実行可能なシステムとする。 (もっと読む)


【課題】 石灰源の一部を上吹きランスから投射して転炉内の溶銑を脱炭精錬するに際し、酸素ガスを過剰に供給することなく脱炭精錬終了時の溶湯中燐濃度を低位に安定する。
【解決手段】 底吹き羽口3から攪拌用ガスを吹き込みながら、上吹きランス2から、酸素ガスを供給すると同時に石灰源19を投射して溶銑16を転炉にて脱炭精錬するにあたり、上吹きランスからの酸素ガス流量、排ガス組成、排ガス流量、副原料投入量及び溶湯成分から酸素バランスを計算することにより求められる不明酸素量に基づいて炉内でのFeO生成量を推定し、推定したFeO生成量の推移に照らし合わせて、上吹きランスからの酸素ガス流量、上吹きランスのランス高さ、攪拌用ガス流量のうちの少なくとも何れか1種を調整し、この調整により精錬開始時から全酸素量の40体積%の酸素量を供給する時点までに、炉内でのFeO生成量を3〜30kg/溶銑tの範囲に調製する。 (もっと読む)


【課題】 転炉内の溶銑を脱炭精錬するにあたり、酸素ガスを過剰に供給することなく、脱炭精錬終了時の溶湯中燐濃度を低位に安定する。
【解決手段】 上吹きランス2から酸素ガスを供給するとともに底吹き羽口3から攪拌用ガスを吹き込んで溶銑16を転炉にて脱炭精錬するにあたり、上吹きランスからの酸素ガス流量、精錬中の排ガスの組成、排ガスの流量、副原料投入量及び溶湯成分から酸素バランスを逐次計算することにより求められる不明酸素量に基づいて炉内のスラグ17のFeO濃度を推定し、推定したFeO濃度の推移に照らし合わせて、上吹きランスからの酸素ガス流量、上吹きランスのランス高さ、底吹き羽口からの攪拌用ガス流量のうちの少なくとも何れか1種を調整し、この調整により精錬開始時から全酸素量の40体積%の酸素量を供給する時点までに、炉内スラグ中のFeO濃度を5〜30質量%の範囲に調製する。 (もっと読む)


【課題】吹錬時の中間測定結果情報に基づいてO使用量と冷却材使用量を決定し、吹止後の溶鋼温度と、C及びP濃度を目標値に制御する転炉吹錬において、吹止後の溶鋼中のP濃度を精度よく推定する方法であって、脱Pを転炉のみで行って工程数を少なくし、熱裕度を向上させる。
【解決手段】溶銑予備処理にて脱Pを行っていない溶銑を用いて転炉吹錬を行い、吹錬時の中間測定時にサブランスに取付けた酸素センサーによってスラグ中の酸素ポテンシャルPOを測定し、吹止後、溶鋼の凝固温度から鋼中C濃度を推定すると共に、この溶鋼中のC濃度の推定値より溶鋼中の酸素ポテンシャルPOを推定し、その後スラブ中の酸素ポテンシャルPOの測定値と溶鋼中の酸素ポテンシャルPOの測定値から吹止後の溶鋼中のP濃度を推定する。 (もっと読む)


【課題】溶銑の脱りん吹錬の吹錬において、効率的に低りん溶銑を製造することができ、且つ、実操業にも問題なく適用することができる、吹錬方法、吹錬システム、低りん溶銑の製造方法及び低りん溶銑の製造装置を提供する。
【解決手段】 上底吹き転炉を用いて、溶銑の浴面に酸素を吹き付けるとともに粉状CaO含有脱りん剤を吹き付ける、溶銑脱りんにおける吹錬方法であって、吹錬中の排ガス流量、排ガス成分、上底吹きガス流量、副原料投入量及び溶銑成分から酸素バランスを計算して得られる炉内蓄積酸素量原単位を逐次求め、吹錬初期における炉内蓄積酸素量原単位の値が所定値以上となるように、粉状CaO含有脱りん剤の投入開始時期を制御することを特徴とする吹錬方法とし、当該方法を用いた吹錬システム、低りん溶銑の製造方法や製造装置とする。 (もっと読む)


【課題】 溶銑と鉄スクラップとを主原料として溶鋼を製造するにあたり、低品位の鉄スクラップを多用する場合であっても、鉄鋼製品の品質外れや過剰品質の問題をきたすことなく溶鋼を製造する。
【解決手段】 本発明に係る溶鋼の製造方法は、主原料として溶銑及び鉄スクラップを用いて転炉にて脱炭精錬を行い、目標成分の溶鋼を製造するにあたり、要求される鉄鋼製品の材質特性に基づいて仮に決定されている目標成分値の範囲に対し、転炉に装入した溶銑及び鉄スクラップの成分組成及び質量から転炉内溶湯のトランプエレメントの濃度を計算し、該トランプエレメントが材質特性に及ぼす影響に基づいて前記の仮に決定されている目標成分値の範囲を修正し、転炉での精錬条件及び成分調整材添加量を制御して、溶鋼成分を修正した目標成分値の範囲に入るように転炉にて調整することを特徴とする。 (もっと読む)


【課題】上底吹転炉を用いて、脱燐剤に実質的にフッ素を含む副原料を使わずに、上吹き酸素流量が2.0〜4.0Nm3/min/tの条件で溶銑から燐を除去する方法において、その脱燐処理を高能率かつ高効率で行う方法を提供する。
【解決手段】底吹き流量を0.15〜1.5Nm3/min/tとして該脱燐処理後のスラグ中T.Fe質量濃度が3〜15質量%となるように調整し、前記脱燐処理中に該溶銑に含有される炭素濃度を2.8〜3.2質量%に一旦低下させ、その後、該溶銑に炭素源を供給して前記脱燐処理後に該溶銑に含有される炭素濃度を3.4〜3.8質量%に調整する。 (もっと読む)


【課題】転炉の操業条件を包括して、簡便かつ効果的にダストおよびスピッティングの発生を抑制して鉄分歩留を向上させ、操業トラブルを低減させる吹錬方法を提供する。
【解決手段】上底吹型転炉において溶鉄の酸素吹錬を行う転炉吹錬方法であって、吹錬開始後全吹錬時間に対して吹錬開始から20%以上経過した期間において、前記酸素吹錬における上吹酸素ジェットにより形成されるキャビティ深さL(mm)およびキャビティ径D(mm)とし、前記酸素吹錬の条件として上吹撹拌動力密度εT(W/ton)、底吹撹拌動力密度εB(W/ton)、吹錬中の溶鉄中炭素濃度[C](%)およびSiの物質バランスより計算されるスラグ量WS(kg/ton)とした場合に、下記(1)式で示される吹錬指標を継続的に2.0以下に制御して吹錬することを特徴とする転炉吹錬方法。
吹錬指標=(L/D)-0.3εT0.4εB0.26[C]0.2WS-1.2 …(1) (もっと読む)


【課題】本発明は、予測値に影響を与える要因から所定の予測可能な要因を抽出することによって所定の基準を生成し、予測値のばらつきにおける分布の態様にかかわらず、予測値のばらつきを求め得る出力値予測方法、出力値予測装置および出力値予測プログラムを提供する。
【解決手段】本発明の出力値予測方法では、予め既知の所定の関係を用いて導かれる第1モデルを基準とした誤差パラメータαであって、M個の過去実績データ(X、y)から算出されたM個の誤差パラメータα(j=1〜M)を用いることで、予測対象データXの予測値yがM通り算出され、そして、予測対象データXとの類似度wに従って予測値yに対する重み付き度数Fが算出される。さらに、重み付き度数Fから予測値のばらつきとして確率密度が算出される。 (もっと読む)


【課題】本発明は、予測値のばらつきに与える影響を要因について評価して予測値のばらつきを求め得る出力値予測方法、出力値予測装置および出力値予測プログラムを提供する。
【解決手段】本発明の出力値予測方法では、予測対象データXと過去実績データ(X、y)との類似度wおよび過去実績データ(X、y)に基づいて予測対象データXの出力値yのばらつきを算出する際に、要因xが所定の出力yにおけるばらつきの大きさに寄与する程度が第A重みaとして要因xについて算出され、この算出された第A重みaを用いて、予測対象データXと過去実績データ(X、y)との所定の距離dが算出され、そして、この算出された所定の距離dに基づいて類似度wが算出される。 (もっと読む)


【課題】実施中の吹錬の挙動を表す脱炭酸素効率モデルの精度を向上させ、吹錬中の炭素濃度を精度良く推定する、溶鋼炭素濃度推定方法を提供することを目的とする。
【解決手段】脱炭酸素効率を溶鋼炭素濃度の関数として表す脱炭酸素効率モデルによって、吹錬末期に測定した溶鋼炭素濃度の測定値を起点として、それ以降の溶鋼炭素濃度を、送酸量に基いて逐次推定する溶鋼炭素濃度推定方法であって、
前記脱炭酸素効率モデルのパラメータを、対象チャージと類似する過去の操業データから対象チャージ毎に算出する。 (もっと読む)


【課題】転炉型の精錬容器を用いた溶銑予備処理方法において、蛍石を使用することなく、少ないフラックス原単位で効率的な脱りんを行い、スラグ中のりん酸濃度を高めることが可能な溶銑予備方法を提供する。
【解決手段】転炉型の精錬容器を用いて溶銑の脱りん処理を行う方法において、溶銑中のP濃度[質量%P]と溶銑中のSi濃度[質量%Si]が、下記[1]式の範囲になるように、脱りん処理前のP濃度およびSi濃度のいずれかまたは両方を調整した溶銑に、CaOを主体とする脱りん材を添加するとともに酸素源を供給し、脱りん処理により生成するスラグ中の全鉄濃度(質量%T.Fe)を10質量%以上45質量%以下、脱りん処理後の溶銑中のP濃度を0.05質量%以上、脱りん処理後温度を1350〜1400℃に制御することを特徴とする。
0.1≦[質量%Si]≦1.87([質量%P]−0.05) [1] (もっと読む)


1 - 20 / 45