説明

Fターム[5F003BC05]の内容

バイポーラトランジスタ (11,930) | コレクタ (1,152) | コレクタ抵抗 (115)

Fターム[5F003BC05]に分類される特許

1 - 20 / 115


【課題】多くの半導体装置に必要な低温処理と両立しない高温操作を必要とするような欠点がない、半導体構造を提供することを目的とする。
【解決手段】下部誘電層(151)へ接合された基板(103)、および、下部電極(121)を通じて前記下部誘電層(151)と接合される垂直方向半導体装置(111)を含む半導体構造であって、前記垂直方向半導体装置(111)は、n−p−n層(124)を有する隔離構造(135)を含む。 (もっと読む)


【課題】異なる不純物濃度の埋め込み層を有する半導体装置を短時間かつ低コストで製造する方法を提供する。
【解決手段】半導体装置の製造方法は、半導体基板の表面に第1の酸化膜11を形成する第1の酸化膜形成ステップと、フォトダイオードが形成される第1の領域に形成された前記酸化膜の一部を除去して第1の間隔で第1の開口部を形成すると共に、トランジスタが形成される第2の領域に形成された前記酸化膜を除去して前記半導体基板の表面を露出させる第1の開口部12を形成ステップと、前記第1の酸化膜をマスクとして利用して前記第1の開口部及び前記第2の領域に対して第1の不純物を注入する第1の不純物注入ステップと、前記第1の不純物を熱拡散させる第1の熱拡散ステップと、を有する。 (もっと読む)


【課題】トランジスタの占有面積をほとんど増やすことなく、かつ、HBTとHFETとを接続する配線による悪影響を受けないBi−HFET(半導体装置)を提供する。
【解決手段】基板101上に形成されたHFET160と、HFET160上に形成されたHBT170とを備え、HFET160は、チャネル層102と、コンタクト層104とを有し、HBT170は、HFET160のコンタクト層104と接続、又は、一体化されたサブコレクタ層107と、コレクタ層108と、ベース層109と、エミッタ層110と、エミッタキャップ層111と、エミッタコンタクト層112とを有し、コレクタ層108、ベース層109及びエミッタ層110は、メサ形状の構造体であるベースメサ領域830を構成し、ゲート電極202は、第一のコレクタ電極203とベースメサ領域830との平面的な間に設けられたリセス領域820内に形成されている。 (もっと読む)


【課題】少工数で製造可能で且つ高い耐圧性能を有する半導体装置を提供する。
【解決手段】素子形成領域と、素子形成領域を外部領域から絶縁分離するべく素子形成領域表面から基板表面までの深さで素子形成領域側面を包囲するよう形成された第1絶縁トレンチ領域10aとを備える半導体装置であって、素子形成領域は、埋め込みコレクタ領域と、コレクタ耐圧領域4と、ベース領域5と、表面コレクタ領域8bと、エミッタ領域8aと、ベース領域と表面コレクタ領域との間におけるキャリアの直線的な移動を遮るよう、当該領域間において素子形成領域表面から基板表面にまでの深さで形成される第2絶縁トレンチ領域10bとを備え、半導体装置を平面視した際、第2絶縁トレンチと第1絶縁トレンチ領域との間には、キャリアが第2絶縁トレンチを迂回してベース領域と表面コレクタ領域との間を移動するためのキャリア迂回領域12a,12bが形成される。 (もっと読む)


【課題】 放熱性を改善したバイポーラトランジスタを有する半導体装置を提供することにある。
【解決手段】 複数のバイポーラトランジスタQuが配列される半導体装置であって、エミッタ配線L3は幅広部と細長部とを有し、細長部におけるバイポーラトランジスタ素子数が、幅広部が配置された配列の外縁に沿う方向に配列されたバイポーラトランジスタ素子数よりも少なくなるように配置する。
【効果】エミッタ配線の寄生抵抗によるエミッタ−ベース間電圧ばらつきを低減する。 (もっと読む)


【課題】ホールド電圧を変化させずに、トリガー電圧のみを調節することができるようにする。
【解決手段】本実施形態における保護素子10は、低濃度コレクタ層102、シンカー層110、高濃度コレクタ層112、エミッタ層130、高濃度ベース層122、ベース層120、第1導電型層140、及び第2導電型層150を有している。第2導電型層150は低濃度コレクタ層102に形成されており、ベース層120と第1導電型層140の間に位置している。第2導電型層150は低濃度コレクタ層102よりも不純物濃度が高い。 (もっと読む)


【課題】 GaN基板上に結晶成長する各半導体層の平坦性向上した半導体基板を実現し、この半導体基板を基礎として、特性の高性能化された半導体素子を提供する。
【解決手段】n型基板11と、n型基板11上に積層された窒化物系III−V族化合物半導体単結晶からなるn型ドリフト層24と、n型ドリフト層24上に設けられた窒化物系III−V族化合物からなるp型ベース層25と、p型ベース層25上に設けられた窒化物系III−V族化合物からなるn型エミッタ層26と、n型基板11とn型ドリフト層24との間に設けられた、Siを5x1017cm-3以上2x1019cm-3以下含有する層とを備える。 (もっと読む)


【課題】同一基板上にヘテロ接合バイポーラトランジスタ(HBT)と電界効果トランジスタ(FET)とが形成され、HBTのコレクタ抵抗が低減されてHBTの特性が向上され、かつFETのゲートリセスのエッチング精度が良好で、FETのオン抵抗が低い半導体装置を安定的に提供する。
【解決手段】HBT101Aにおいては、サブコレクタ層が複数の半導体層13〜15の積層構造からなり、かつ、サブコレクタ層においてコレクタ層17より張り出した部分上にコレクタ電極28が形成されている。FET101B、101Cにおいては、HBT101Aのサブコレクタ層をなす複数の半導体層のうち半導体基板1側の少なくとも1層の半導体層13が、キャップ層の少なくとも一部の層を兼ねている。HBTサブコレクタ層の総膜厚が500nm以上であり、FETキャップ層の総膜厚が50nm以上300nm以下である。 (もっと読む)


【課題】高温や電流密度が高い条件下でも基板へ少数キャリアが到達するのを防いで、順方向電圧の増大を防ぐことができるバイポーラ半導体素子を提供する。
【解決手段】このSiC pinダイオード20では、n型SiC基板21とn型のドリフト層23との間に形成されている厚さを20μmとしたn型のバッファ層22が、p型のアノード層24,25からの正孔のトラップとして働いて、正孔(少数キャリア)がn型SiC基板21へ到達することを防ぐ。これにより、正孔(少数キャリア)がn型SiC基板21へ到達することを防いで、n型SiC基板21から積層欠陥が拡大するのを防いで、順方向電圧の増大を防止できる。 (もっと読む)


【課題】GaAs基板上にHEMT、HBTを順次積層してなるトランジスタ素子において、HEMTの移動度の低下を抑制することが可能なトランジスタ素子を提供する。
【解決手段】GaAs基板2上に高電子移動度トランジスタ(HEMT)3が形成され、HEMT3上にヘテロバイポーラトランジスタ(HBT)4が形成されたトランジスタ素子において、HEMT3がアンドープInGaAsPからなるバリア層10を有する。 (もっと読む)


【課題】半導体デバイスにおいて耐圧を高めること。
【解決手段】n型のシリコン基板1と、シリコン基板1の表層に形成されたp型のベース領域2と、ベース領域2の上方に形成され、シリコンよりもバンドギャップが広い半導体材料を含むn型のコレクタ層7aとを有する半導体デバイスによる。 (もっと読む)


【課題】表面上に素子をより高密度に実装する。
【解決手段】第1のトレンチと第2のトレンチとの間の位置において、エピタキシャル層の表面から基板へと下方に延在するドーパントのウェルは、エピタキシャル層の背景ドーピング濃度とは異なるドーピング濃度を有し、エピタキシャル層の残りの部分と第1および第2の接合を形成する。第1の接合は、第1のトレンチの底部から基板に延在し、第2の接合は、第2のトレンチの底部から前記基板に延在する。ウェルおよび第1および第2のトレンチは分離構造を構成し、分離構造は、分離構造の一方側のエピタキシャル層に形成された第1の素子と分離構造の他方側のエピタキシャル層に形成された第2の素子とを電気的に分離する。分離構造による電気的分離は第1および第2のトレンチとPN接合とによってもたらされ、ウェルは第1の導電型の材料でドープされ、基板およびエピタキシャル層は、第1の導電型とは反対の第2の導電型の材料でドープされ、第1および第2の接合はPN接合である。 (もっと読む)


関連するデバイスまたは回路24を保護する静電気放電(ESD)保護クランプ21、21’、70、700は、バイポーラ21、21’、70、700を備える。アバランシェ降伏が、上にある誘電体・半導体界面791から離れ、デバイス70、700のベース領域74、75の部分84,84以内に望ましく起こるように向かうベース75およびコレクタ86領域のドーパントを構成される。例えば、半導体ダイまたはウェハのトランジスタ21、21’、70、700の異なる方位配向のおかげで、ESDトリガ電圧の最大変化(△Vt1)MAXはベース・コレクタ間隔寸法Dの関数である。トリガ電圧一貫性および製造歩留まりが改良される。
(もっと読む)


【課題】イオン注入後のアニール後に生じる残留欠陥を除去することができ、その後シリコンエピタキシャル層を形成しても積層欠陥を生じない、高品質な半導体基板の製造方法を提供する。
【解決手段】半導体基板の製造方法であって、少なくとも、シリコン単結晶基板に選択的にイオン注入を行う工程と、該イオン注入後に、前記シリコン単結晶基板の結晶性を回復させる回復熱処理と前記注入イオンを拡散させる拡散熱処理を行う熱処理工程と、該熱処理後に、前記イオン注入工程によって前記シリコン単結晶基板の表面層に形成されたアモルファス層の全部を取り込む厚さの熱酸化膜を形成する熱酸化膜形成工程と、該形成された熱酸化膜を除去する工程と、該熱酸化膜を除去した表面上にエピタキシャル層を形成する工程と、を有することを特徴とする半導体基板の製造方法。 (もっと読む)


【課題】低コストで性能向上が可能なBiCMOS型半導体集積回路装置を実現することができる半導体装置およびその製造方法を提供する。
【解決手段】n型の半導体基板1の表面から所定の深さに、コレクタ領域を構成するn型の不純物領域26を備える。当該不純物領域26の上方、かつ半導体基板1に形成されたシャロートレンチ分離14で挟まれた領域18にはp型のベース領域20を備える。ベース領域20には、n型の半導体膜からなるエミッタ電極が接触して設けられている。当該半導体装置は、不純物領域26がベース領域20下からシャロートレンチ分離14下まで延在し、当該シャロートレンチ分離14を貫通して不純物領域26に電気的に接続するコンタクトプラグ52を備える。 (もっと読む)


【課題】ESD耐量及びノイズ耐性を向上させたESD保護素子を提供する。
【解決手段】本発明によるESD保護素子は、NPNバイポーラトランジスタTr1と、一端がパッド10に接続されたトリガ素子20とを具備する。NPNバイポーラトランジスタTr1は、第1ベース拡散層204と、パッド10に接続されたコレクタ拡散層4と、第1ベース拡散層204上に形成され、第1配線L1を介してトリガ素子20の他端に接続されたトリガタップ1と、第1ベース拡散層204上に形成され、第1配線L1と異なる第2配線L2を介してGNDに共通接続されたエミッタ拡散層2及び第2ベース拡散層3とを備える。 (もっと読む)


【課題】高周波帯域で動作する半導体装置の特性の低下を抑制しつつ、製造コストを低減できる半導体装置及びその製造方法を提供する。
【解決手段】本発明に係る半導体装置100は、電界効果型トランジスタと、ヘテロ接合バイポーラトランジスタと、ヘテロ接合バイポーラトランジスタのGaAsベース層7を用いて形成されたベースエピ抵抗素子28と、電界効果型トランジスタのInGaAsチャネル層4を用いて形成された配線部26と、配線部26とベースエピ抵抗素子28とを絶縁する高抵抗化領域27と、配線部26の水平方向の周囲を囲う絶縁性の素子分離領域24とを含む。また、ベースエピ抵抗素子28は、半絶縁性GaAs基板1の主面に垂直な方向から見て、配線部26と交差しているベースエピ抵抗素子領域29を有する。 (もっと読む)


【課題】モジュール化された、相互作用しないやり方で、単一の半導体ウェハにともに接近して実装され、十分に分離された、最適化されたトランジスタまたは他のデバイスの任意の集合の作製を可能にする。
【解決手段】
一群の半導体デバイスが、エピタキシャル層を含まない基板に形成される。一実施例では、この一群は、5VのCMOSペア、12VのCMOSペア、5VのNPN、5VのPNP、いくつかの形状の横型トレンチMOSFET、および30V横型N−チャネルDMOSを含む。これらのデバイスの各々は、横方向かつ縦方向の双方において極めて小型であり、基板の他のすべてのデバイスから十分に分離され得る。 (もっと読む)


【課題】線形性に優れた半導体抵抗素子を提供する。
【解決手段】本発明の半導体装置は、GaAs基板101上に形成され、3−5族化合物半導体から構成されるHBT130と、GaAs基板101上に形成され、HBT130を構成する半導体エピタキシャル層の少なくとも1層から構成される半導体抵抗素子120とを備え、半導体抵抗素子120は、ヘリウム不純物を含む。 (もっと読む)


【課題】耐破壊性に優れたヘテロ接合バイポーラトランジスタを提供する。
【解決手段】サブコレクタ層と、第1コレクタ層、第2コレクタ層、第3コレクタ層及び第4コレクタ層を有しサブコレクタ層上に形成されたコレクタ層と、コレクタ層上に形成されたベース層と、ベース層上に形成され、ベース層を構成する半導体よりも大きなバンドギャップを有する半導体から構成されるエミッタ層とを備え、第1コレクタ層は、第2コレクタ層、第3コレクタ層及び第4コレクタ層を構成する半導体と異なる半導体から構成されてサブコレクタ層上に形成され、第4コレクタ層は、第2コレクタ層の不純物濃度よりも低い不純物濃度で第1コレクタ層上に形成され、第2コレクタ層は、サブコレクタ層の不純物濃度よりも低く第3コレクタ層の不純物濃度よりも高い不純物濃度で第4コレクタ層上に形成され、第3コレクタ層は、第2コレクタ層とベース層との間に形成される。 (もっと読む)


1 - 20 / 115