説明

Fターム[5F103NN07]の内容

半導体装置を構成する物質の物理的析出 (6,900) | 析出条件・析出状況 (521) | 析出物質以外へのエネルギービームの照射 (13)

Fターム[5F103NN07]に分類される特許

1 - 13 / 13


【課題】p型伝導性のNドープZnO系半導体膜の新規な製造方法を提供する。
【解決手段】ZnO系半導体膜製造方法は、Znソースガン、Oラジカルガン、Nラジカルガン、Mgソースガンを備え、Nラジカルガンが、ラジオ周波が印加されpBNまたは石英を用いた無電極放電管を含む結晶製造装置により、NドープMgZn1−xO膜を成長させる方法であって、基板法線方向から見て、膜の成長表面側上方に、Znソースガン、Oラジカルガン、Nラジカルガン、Mgソースガンが円周方向に並んで配置されており、NラジカルガンとZnソースガンのビーム照射方向の方位角同士のなす角θを90°≦θ≦270°とするとともに、ラジオ周波パワーを、無電極放電管からスパッタリングされたBまたはSiが膜中に取り込まれない程度に低くする。 (もっと読む)


【課題】高密度かつ複雑な三次元微細構造を基板の表面に形成可能な三次元微細加工方法を提供する。
【解決手段】第1工程では、真空中でIII−V族化合物半導体基板1の表面に電子ビームを照射することにより、当該基板1の表面の自然酸化膜2を化学的に安定なIII族酸化物3に置換させ、改質マスク部3を周期的に形成する。第2工程では、真空中で前記基板1を昇温させることにより、前記改質マスク部3以外の部分の前記自然酸化膜2を脱離させて基板表面を露出させる。第3工程では、真空にV族原料を供給した環境下で前記基板1を所定温度で加熱することで、前記基板表面の露出部分からIII族原子を優先的に剥離させて前記改質マスク部3上をホッピングさせ、当該露出部分に窪み4を形成する。第4工程では、固体成長原料を用いた分子線エピタキシャル成長法を行うことで、前記窪み4の部分にIII−V族化合物半導体結晶5を選択成長させる。 (もっと読む)


【課題】III族窒化物半導体からなる微細柱状結晶を選択的に成長させることにより、III族窒化物半導体微細柱状結晶の位置および形状を制御する。
【解決手段】微細柱状結晶の製造方法が、基板表面の所定領域に、金属窒化物または金属酸化物からなる表面を有する膜を形成する工程と、前記膜および前記基板表面の境界近傍であって、前記膜の周縁部と前記基板表面とが接する部分を含む領域を成長促進領域として、前記基板表面に成長原料を導き、少なくとも前記成長促進領域上に、III族窒化物半導体からなる微細柱状結晶を成長させる工程とを含む。 (もっと読む)


【課題】歩留まりの向上を図ることができ、量産性に優れ、高性能でかつ高信頼性な半導体素子及びその製造方法を提供する。
【解決手段】半導体素子10は、ZnO(酸化亜鉛)単結晶基板12と、ZnO単結晶基板12上に成長させて形成される窒化物半導体層を含む素子30と、ZnO単結晶基板12の外面のうち、素子30を形成する表面12aとは反対側の裏面12bおよび両側面12c、12cを覆う窒化物半導体からなる保護膜40と、を備えている。ZnO単結晶基板12の裏面12bおよび両側面12c、12cが窒化物半導体からなる保護膜40で覆われているので、ZnO単結晶基板12の表面12a上に窒化物半導体層を成長させる際にZnOの昇華を抑制できる。V族原料としてアンモニアNH3を用いて窒化物半導体層を成長させるMOCVD法を利用できる。
(もっと読む)


【課題】スパッタリングされた材料内の軽い成分は、スパッタリングされた材料内の重い成分よりも高濃度に堆積される傾向がある。このことから、スパッタリングされた材料が均質に堆積されるスパッタ堆積装置および方法を提供する。
【解決手段】少なくとも1つのスパッタターゲット2、第1のプラズマ3、基板ホルダー4、および追加プラズマ5を備えたスパッタ堆積装置を提案する。追加プラズマ5は、ECWRプラズマであることが好ましい。別の形態によれば、追加プラズマ5と上記基板ホルダー4との間に、アノード6が備えられている。さらに別の形態によれば、基板ホルダー4は、厚さを変化させた誘電体層を有している。 (もっと読む)


【課題】 高品位の結晶性を有し、且つ精密にサイズ・位置制御がなされ、デバイスへの集積化の自由度の高められた、均質なβ-FeSi2又はFeSi2アモルファスドットアレイ構造体とその効率的な作製方法を提供する。
【解決手段】 β-FeSi2結晶又はFeSi2アモルファスをを含有するドットが基板表面に均質に設けられたFeSi2ドットアレイ構造体。この構造体を、FeSi2膜を有する透明板の膜面側に基板を対向させ、透明板側からパルスレーザー光を照射し、対向基板上にβ-FeSi2結晶又はFeSi2アモルファスを含有するドットを転写することにより作製する。 (もっと読む)


【課題】 可視光透過半導体膜の形成の際に、堆積中の膜に光放出装置からの光を照射しながら半導体膜を形成することにより、各種の可視光透過半導体膜を耐熱性の低い透明基板上に形成することを可能にした可視光透過半導体素子を提供することにある。
【解決手段】 透明基板8と、透明基板8への半導体の組成を含む材料の堆積中に光放出装置9bからの光を照射しながら形成される半導体膜とからなることを特徴とする可視光透過半導体素子である。 (もっと読む)


【課題】 アモルファス状の低温バッファ層を形成することなく、直接窒化物半導体のa軸とc軸の両方が揃った単結晶層を基板上に形成し、その単結晶層上に窒化物半導体層がエピタキシャル成長された窒化物半導体発光素子やトランジスタ素子などの窒化物半導体素子、およびその窒化物半導体単結晶層を直接成長する方法を提供する。
【解決手段】 窒化物半導体が格子整合しない基板1上に窒化物半導体層3が成長される場合に、基板1上に、AlxGayIn1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)からなりa軸およびc軸が整列した単結晶の緩衝層2が直接設けられ、その単結晶の緩衝層2上に窒化物半導体層3がエピタキシャル成長されている。この単結晶の緩衝層は、PLD法を用いることにより形成することができる。 (もっと読む)


【課題】炭化珪素層等のイオン結合度が小さく共有結合性の強い材料からなる半導体層上に、欠陥密度が小さく良質な、GaN等のイオン結合性の大きな半導体層を形成する方法を提供する。
【解決手段】第1のイオン結合度を有する第1の半導体層102の表面に、第1のイオン結合度よりも大きな第2のイオン結合度を有する第2の半導体層103を形成する半導体層形成方法において、第2の半導体層103を形成する側に在る第1の半導体層102の表面に、真空中で電子を照射しながら、第2の半導体層103を形成する。第1の半導体層102は炭化珪素半導体から構成され、第2の半導体層103はIII族窒化物半導体から構成されている。 (もっと読む)


【課題】シリコン薄膜の製造方法を提供する。
【解決手段】RF出力により発生したXeイオンをSiターゲットに衝突させ、当該SiターゲットからSiパーティクルを発生させ、当該Siパーティクルを所定の基板上に堆積させる方法において、工程圧力を0.67Pa(5mTorr)以下、前記RF出力を200W以上にするシリコン薄膜の製造方法である。 (もっと読む)


【課題】珪素結晶基板上のIII族窒化物半導体層を用いて半導体素子を構成するに際し、結晶性及び表面の平坦性に優れるIII族窒化物半導体層から半導体素子を構成できるようにする。
【解決手段】珪素単結晶基板と、その基板の表面に設けた炭化珪素層と、その炭化珪素層に接して設けたIII族窒化物半導体接合層と、そのIII族窒化物半導体接合層上にIII族窒化物半導体からなる超格子構造層を備えた半導体素子において、炭化珪素層は立方晶で格子定数が0.436nmを超え、0.460nm以下の、組成的に珪素を富裕に含む非化学量論的な組成の層とし、III族窒化物半導体接合層は、組成がAlGaIn1−αα(0≦X、Y、Z≦1、X+Y+Z=1、0≦α<1、Mは窒素以外の第V族元素である。)とする。 (もっと読む)


【課題】Gaを供給してAlN(窒化アルミニウム)を成長させることにより、AlNの貫通転位を少なくし、結晶性の良いAlNを得る方法を提供する。
【解決手段】AlN層4の成長は、SiC基板2の基板温度が850℃、Gaの供給量が、0〜1.4×10−4Pa、Alの供給量が4.5×10−5Pa、Nの供給量が電力180ワットで、Nの流量が0.19sccmとされる。この条件において、AlN層4は、500nmの厚さ成長させられる。AlおよびGaの供給には、クヌードセンセルを用いた金属AlおよびGaの昇華、Nの供給には、RFプラズマ銃による窒素プラズマを用いた。また、N/Al比は、1よりわずかに小さい条件とした。なお、Gaの照射は、AlN層4の最初の10nmのみであり、AlN層4が10nm成長した時点で、Gaの供給量はゼロとされる。AlN層4が成長する間、AlおよびNの供給量は一定である。 (もっと読む)


【課題】 基板のクリーニング効果、および、結晶成長の高品質化を実現する。
【解決手段】 本発明の分子線エピタキシャル成長装置は、水素ラジカル発生装置10および分子線セル23が、それぞれ独立して設けられている。そして、水素ラジカル発生装置10から水素ラジカルが、分子線セル23から成膜材料の分子線または原子線が、それぞれ別々に、基板処理室20に供給されるようになっている。さらに、水素ラジカルは光励起により発生させる。これにより、水素ラジカルを放出ガスの発生なしに効率的に発生させることができ、基板21のクリーニング効果、および、成膜材料中の不純物を除去する効果を顕著に高めることができる。 (もっと読む)


1 - 13 / 13