説明

Fターム[5F110EE32]の内容

薄膜トランジスタ (412,022) | ゲート (57,237) | サイドウォールを有するもの (2,180) | 堆積によるもの (1,135)

Fターム[5F110EE32]に分類される特許

1,121 - 1,135 / 1,135


直流ノード拡散領域の下に埋め込み酸化物を設けず、すべてのデバイスのための本体接触部を有する選択的SOI構造を提供する。印加電圧Vdd、接地GND、基準電圧Vrefおよびその他の類似DCノードなどのDCノード拡散領域の直下に存在する埋め込み酸化物を設けずに、すべてのデバイスのための本体接触部を有する選択的SOI構造を提供する。本発明の選択的SOI構造をIC中に用いて回路の性能を改善することができる。本発明の選択的SOI構造は、上に配置された複数のSOIデバイスを有する上部Si含有層を備える絶縁体上シリコン(SOI)基板材料を含む。本SOIデバイスは、本体接触部領域を介して下地のSi含有基板と接触する。下地の埋め込み酸化物領域を備えないDCノード拡散領域がSOIデバイスの一つに隣接する。

(もっと読む)


下地SiGe層1上に歪みSi層2をエピタキシャル成長させ、ゲート絶縁膜3aとゲート電極4aを形成した後、ゲート電極4aをマスクにして、下地SiGe層1及び歪みSi層2に不純物をイオン注入し(図2(a))、活性化のための熱処理を行ってソース・ドレイン領域6を形成する(図2(b)、(c))。このとき、歪みSi層2の膜厚は、最終的なMISFETのソース・ドレイン領域6の不純物濃度が最大となる深さをT(=R)としたとき、2T以下にする。 (もっと読む)


半導体製造プロセスは、基板上にシリコンフィンを形成することを含む。フィンの主面上にはゲート誘電体が形成される。フィンの少なくとも2つの面の上にゲート電極が形成される。次いで、ゲート電極の側壁に近接して誘電体スペーサが選択的に形成されて、誘電体スペーサが該側壁に限定されることによって、主フィン面の大部分が露出したままとされる。その後、主フィン面上にシリサイドが形成される。一実施形態では、ゲート電極の形成は、フィンおよび基板の上にポリシリコンを堆積し、ポリシリコンの上にキャッピング層を堆積し、キャッピング層の上にフォトレジストをパターニングし、パターニングしたフォトレジストが適所に配された状態でキャッピング層およびポリシリコンをエッチングすることを含む。エッチングによりポリシリコンの幅はキャッピング層の幅よりも小さくなり、ポリシリコンの側壁に隣接するキャッピング層の下に空隙ができ、ここに限定スペーサを形成することができる。
(もっと読む)


一実施形態においては、基板上にシリコン膜又はシリコンゲルマニウム膜を堆積させる方法であって、プロセスチャンバ内に基板を配置するステップと、基板表面を約600℃〜900℃の範囲の温度に、プロセスチャンバ内の圧力を約13Pa(0.1トール)〜約27kPa(200トール)の範囲に維持しつつ、加熱するステップと、を含む前記が提供される。堆積ガスは、プロセスチャンバに供給され、SiH、任意のゲルマニウム源ガス、エッチング剤、キャリヤガス、任意に少なくとも1つのドーパントガスを含んでいる。シリコン膜又はシリコンゲルマニウム膜は、基板上に選択的且つエピタキシャル的に成長する。一実施形態は、シリコン含有膜とキャリヤガスとして不活性ガスを堆積させる方法を含んでいる。方法は、また、選択的シリコンゲルマニウムエピタキシャル膜を用いる電子デバイスの製造を含んでいる。 (もっと読む)


ソース/ドレイン領域の少なくともその幅が最も大きい部分では半導体領域の幅よりも大きく、かつソース/ドレイン領域の最上部側から基体側に向かって連続的に幅が大きくなっている傾斜部を有し、該傾斜部表面にシリサイド膜が形成されていることを特徴とする半導体装置とする。
(もっと読む)


電界効果トランジスタのゲート電極などの、シリコン含有領域に、埋め込まれたニッケルシリサイド層(260A)、続いてコバルトシリサイド層(261A)を形成することによって、縮小されたシリコン回路構造のシート抵抗及び接触抵抗を過度に損なうことなく、デバイスを更に縮小することができるように、両シリサイドの優れた特性が組み合わせられる。
(もっと読む)


分離構造を有する半導体デバイス(10)を形成するための方法が漏れ電流を低減する。チャネル分離構造(32、30、34)がチャネル構造の中の漏れ電流を低減する。さらに、電流電極領域の下に電流電極誘電体分離構造(36)が形成され、電流電極(40)間の漏れを防ぐ。
(もっと読む)


【課題】n型電界効果トランジスタ(NFET)およびp型電界効果トランジスタ(PFET)がそれぞれ、第1の半導体の単結晶層内に配置されたチャネル領域を有し、PFETのチャネル領域には第1の大きさの応力が加えられているが、NFETのチャネル領域にはその大きさの応力が加えられていない構造体およびその製造方法を提供すること。
【解決手段】この応力は、第1の半導体とは格子不整合の第2の半導体の層によって加えられる。この第2の半導体の層は、PFETのソースおよびドレイン領域ならびに拡張領域の上の、PFETのチャネル領域から第1の距離のところに形成されており、この第2の半導体の層は、NFETのソースおよびドレイン領域の上の、NFETのチャネル領域からより大きな第2の距離のところにも形成されており、またはNFETには全く形成されていない。 (もっと読む)


【課題】減少されたゲート高さを有する集積回路トランジスタを形成する方法およびシステムを開示すること。
【解決手段】本方法は、基板、基板の上のゲート導体(13)、およびゲート導体(13)の上の少なくとも1つの犠牲層(14〜16)を有する積層構造を形成する。このプロセスは、積層構造を基板から延びる少なくとも1つのゲート・スタックにパターン形成し、ゲート・スタックに隣接してスペーサ(60)を形成し、ゲート・スタックに隣接してソースおよびドレイン領域(71)を形成するようにスペーサで保護されていない基板の領域にドーピングし、そして、スペーサ(60)および犠牲層(14〜16)を除去する。 (もっと読む)


【課題】 高性能デバイスの金属置換ゲートのための構造および形成方法を提供する。
【解決手段】 まず、半導体基板(240)上に設けたエッチ・ストップ層(250)上に、犠牲ゲート構造(260)を形成する。犠牲ゲート構造(300)の側壁上に、1対のスペーサ(400)を設ける。次いで、犠牲ゲート構造(300)を除去して、開口(600)を形成する。続けて、スペーサ(400)間の開口(600)内に、タングステン等の金属の第1の層(700)、窒化チタン等の拡散バリア層(800)、およびタングステン等の金属の第2の層(900)を含む金属ゲート(1000)を形成する。 (もっと読む)


【課題】ソース/ドレイン拡張とフロントゲート(front gate)に自己整合させたバックゲートを含む、FD型SOI−CMOSデバイスの製造方法に関する。
【解決手段】
SOI−CMOS技術は、ポリシリコン、即ちポリSiバックゲートは、フロントゲート・デバイスの閾値電圧を制御するために使用され、nMOS及びpMOSバックゲートは、互いに独立に、及びフロントゲートと独立に、スイッチされる。
特に、バックゲートが、デバイスのフロントゲート及びソース/ドレイン拡張に自己整合されたバックゲートFD型CMOSデバイスの製造方法を提供する。バックゲートFD型CMOSデバイスは、SIMOX又は結合SOI−ウエハ、ウエハボンディングと薄膜化、ポリSiエッチング、LP−CVD、機械化学研磨(CMP)を用いて製造される。 (もっと読む)


【課題】 ひずみSi/Si1-XGeXデバイス基板において、極めて浅い接合を形成する方法およびそれによって得られる半導体構造を提供する。
【解決手段】 半導体デバイスを形成する方法(およびその結果として得られる構造)は、基板上に、ドーパントおよび少なくとも1つの種を注入するステップと、基板をアニールするステップであって、少なくとも1つの種が、基板のアニールの間のトーパントの拡散を遅らせるステップと、を含む。 (もっと読む)


【課題】 電気特性の優れた多結晶TFTを提供する。
【解決手段】多結晶膜3を堆積させる工程、堆積した多結晶膜のうち所望の位置4のみを残すようにエッチングする工程、残された部分的な多結晶膜の中で所望の結晶方位の結晶粒5だけを、しかも所望の結晶面(ファセット)6を出した状態になるように異方性エッチングする工程、さらに、こうして得られた結晶核の上に膜を堆積し結晶化させる工程を用いる。 (もっと読む)


【課題】 本発明は薄膜トランジスタアレイ及びその製造方法と液晶表示装置及びその製造方法とエレクトロルミネッセンス表示装置及びその製造方法に関するものであり、均一性と性能に優れた薄膜トランジスタ及びその製造方法を生産性が高く低コストで提供することを目的とする。
【解決手段】 ゲート電極側面に側壁を形成することによって、自己整合的にLDDまたはオフセット領域を形成し、また、層間絶縁膜を複数の層で形成し、これら複数の層間絶縁膜上にソース・ドレイン電極とソースバス配線と画素電極を一括して形成する。 (もっと読む)


【課題】 優れた特性を有する多結晶シリコン膜を備えた半導体装置を高い歩留まりで製造することが可能な半導体装置の製造方法を提供する。
【解決手段】 石英ガラスや無アルカリガラスなどの基板1上に、非晶質シリコン膜2aを形成する。その非晶質シリコン膜2a上にWシリサイド膜(導電膜)4bを形成する。そして、Wシリサイド膜(導電膜)4bに対し、高周波やYAGレーザービームなどの電磁波を照射することにより、Wシリサイド膜(導電膜)4bを発熱させ、この熱を利用して、非晶質シリコン膜2aを多結晶シリコン膜2に変える。 (もっと読む)


1,121 - 1,135 / 1,135