説明

Fターム[5F140BD11]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート絶縁膜 (8,730) | 材料 (6,782) | 金属酸化膜 (2,702)

Fターム[5F140BD11]の下位に属するFターム

Fターム[5F140BD11]に分類される特許

1,401 - 1,414 / 1,414


本発明の例示的な一実施形態は、その上に位置するhigh-k誘電体層と、このhigh-k誘電体層上に位置するゲート電極層と、を含む基板(104)上に電界効果トランジスタを形成する方法である。この方法は、基板(104)上に位置するhigh-k誘電体部(106)と、high-k誘電体部(106)上に位置するゲート電極部とを含むゲートスタック(102)を形成するように、ゲート電極層およびhigh-k誘電体層をエッチングするステップ(202)を含む。この例示的な実施形態によれば、この方法は、ゲートスタック(102)上で窒化プロセスを実行するステップ(204)をさらに含む。この窒化プロセスは、ゲートスタック(102)のサイドウォール(110)を窒化するように、窒素を含むプラズマを利用するステップによって実行することができる。この窒化プロセスの結果、窒素がhigh-k誘電体部(106)に入り込み、窒素がhigh-k誘電体部(106)中に酸素拡散バリアを形成するようにされてよい。
(もっと読む)


ソース/ドレイン領域の少なくともその幅が最も大きい部分では半導体領域の幅よりも大きく、かつソース/ドレイン領域の最上部側から基体側に向かって連続的に幅が大きくなっている傾斜部を有し、該傾斜部表面にシリサイド膜が形成されていることを特徴とする半導体装置とする。
(もっと読む)


シリコン基板(101)上に、RTO法によりシリコン酸化物からなる下地層(103)を形成する。このとき、下地層(103)の膜厚を1.5nm以上とする。次に、下地層(103)上に、CVD法によりハフニウム窒化物を0.5乃至1.0nmの厚さに堆積させ、金属化合物層(104)とする。次に、水素雰囲気中において熱処理を施し、金属化合物層(104)から下地層(103)中にハフニウム元素を拡散させてシリケート化させ、ゲート絶縁膜(106)を形成する。その後、酸化雰囲気中において熱処理を行う。このとき、シリコン基板(101)とゲート絶縁膜(106)との界面には、ハフニウム元素が到達しないようにする。
(もっと読む)


【課題】半導体基板(12)に形成され、シリコン酸化物およびそれの異なる程度の窒化(18Dと18E)で構成されたPFETゲート誘電体層(16)およびNFETゲート誘電体層(14)でそれぞれ覆われたPFET領域およびNFET領域を有するCMOS半導体(10)材料を形成する方法を提供すること
【解決手段】シリコン基板(12)にPFET領域(16)およびNFET領域(14)を設け、その上にPFETおよびNFETゲート酸化物層を形成する。PFET領域の上のPFETゲート酸化物層の窒化を行って、PFET領域の上のPFETゲート酸化物層に、第1の濃度レベルの窒素原子を有する、PFET領域の上のPFETゲート誘電体層(42)を形成する。NFETゲート酸化物層の窒化を行って、第1の濃度レベルと異なる濃度レベルの窒素原子を有する、NFET領域の上のNFETゲート誘電体層(40)を形成する。NFETゲート誘電体層(40)およびPFETゲート誘電体層(42)は、同じ厚さを有することができる。 (もっと読む)


【課題】電流の流れを調整するトランジスタデバイスの組立て方法において、更なる駆動電流を可能にし、デバイスの動作を最適化するプロセスを提供すること。
【解決手段】本発明の一実施形態における方法は、チャンネル領域に対するショットキーバリア接合位置のより良い制御を与えるために、メタルソースドレイン接触の形成に先行して等方性エッチングプロセスを利用する。このショットキーバリア10接合の配置の制御性からの改善により、更なる駆動電流を可能にし、デバイスの動作を最適化する。 (もっと読む)


ハフニウムベースの誘電体膜を堆積する方法が提供される。本方法は、オゾンとハフニウム前駆体を含む1つ又はそれ以上の反応物質とを用いた原子層堆積段階を含む。半導体デバイスもまた提供される。該デバイスは、基板と、基板上に形成されたハフニウムベースの誘電体層と、基板及びハフニウムベースの誘電体層間に形成された界面層とを含み、該界面層は二酸化ケイ素を含み且つ結晶構造を有する。 (もっと読む)


【課題】 高性能デバイスの金属置換ゲートのための構造および形成方法を提供する。
【解決手段】 まず、半導体基板(240)上に設けたエッチ・ストップ層(250)上に、犠牲ゲート構造(260)を形成する。犠牲ゲート構造(300)の側壁上に、1対のスペーサ(400)を設ける。次いで、犠牲ゲート構造(300)を除去して、開口(600)を形成する。続けて、スペーサ(400)間の開口(600)内に、タングステン等の金属の第1の層(700)、窒化チタン等の拡散バリア層(800)、およびタングステン等の金属の第2の層(900)を含む金属ゲート(1000)を形成する。 (もっと読む)


半導体基板上に形成する絶縁膜を高性能化して、リーク電流の少ない電子デバイスを製造する方法を提供する。高誘電材料金属のみを半導体基板上に金属膜として形成し、その金属膜を250〜450℃に加熱し、その加熱した金属膜に、クリプトンガス(またはキセノンガス)を酸素ガスと混合させ、その混合ガスをプラズマ化したガスを加えることにより、金属膜を酸化して、半導体基板上に絶縁膜を形成するようにしたことを特徴とする。 (もっと読む)


高温で顕著に変化しないn型またはp型の仕事関数を有する遷移金属合金の実施例を示した。示された遷移金属合金は、トランジスタのゲート電極として使用しても良く、ゲート電極の一部を構成しても良い。これらの遷移金属合金を用いて、ゲート電極を形成する方法についても示した。
(もっと読む)


【課題】 自己制限的界面酸化による超極薄酸化物層および酸窒化物層の形成の提供。
【解決手段】 超極薄酸化物層および酸窒化物層は、基板の自己制限的酸化を達成するように、および超極薄酸化物並びに酸窒化物を提供するように、低圧プロセスを利用して形成される。被処理基板は、酸化物層、酸窒化物層、窒化物層、およびhigh−k層のような初期の誘電体層を含むことができるか、あるいは、初期の誘電体層をなくすことができる。プロセスは、バッチ型処理チャンバを使用するか、あるいは、単一のウェーハ処理チャンバを使用することによって、実行されることができる。本発明の一実施例は、厚さ約15ÅのSiO層をもたらす、Si基板の自己制限的酸化を提供し、そこにおいて、SiO層の厚さは、基板にわたって約1Å未満で変化する。 (もっと読む)


SiC基板1と、SiC基板1表面に形成されたソース3a及びドレイン3bと、SiC表面に接して形成され厚さが1分子層以上のAlN層5と、その上に形成されたSiO層とを有する絶縁構造と、この絶縁構造上に形成されたゲート電極15とを有しており、SiCとの間の界面状態を良好に保ちつつ、リーク電流を抑制することができる。 (もっと読む)


Si(100)基板の表面にシリコン酸化膜を形成した後、このシリコン酸化膜をプラズマ窒化して酸窒化シリコン膜にする。その後NOガス雰囲気中で770乃至970℃の温度条件下で熱処理することにより、ゲート絶縁膜における基板との界面部分の窒素濃度を1乃至10原子%にすると共に、基板と酸窒化シリコン膜との界面に存在する界面Si結合欠陥の結合手の方位角分布が、基板の[100]方位に対して25°以上の角度にピークをもつようにする。 (もっと読む)


【課題】半導体用途における誘電体膜を形成するためのシステム及び方法、特に、混合気化前駆体を用いて基板上に多成分誘電体膜を作製するためのシステム及び方法を提供する。
【解決手段】本発明は、気化した前駆体の混合物が、原子層堆積(ALD)処理における単一パルス段階中にチャンバ内に一緒に存在して多成分膜を形成するような気化前駆体の混合をもたらすためのシステム及び方法を提供する。気化前駆体は、少なくとも1つの異なる化学成分から成り、そのような異なる成分が単層を形成して多成分膜を生成することになる。本発明の更に別の態様では、組成勾配を有する誘電体膜が提供される。 (もっと読む)


【課題】シリコン基板上のSi1−xGe層を用いた素子構造において、電流駆動能力の高いMISFETを含む半導体装置及びその製造方法を提供することにある。
【解決手段】シリコン基板101上に、Si1−xGe層103を形成し、このSi1−xGe層103にMISFETを形成する。ソース層及びドレイン領域106,107の接合深さを、前記Si1−xGe層103とシリコン層とが接する面を越えないようにする。 (もっと読む)


1,401 - 1,414 / 1,414