説明

Fターム[5F140BF44]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 形状、配置 (2,388) | 段差部に形成されたもの (483)

Fターム[5F140BF44]に分類される特許

1 - 20 / 483


【課題】微細化に対応した半導体装置を提供する。
【解決手段】半導体基板の第1の領域内に第1の方向に沿って交互に配置されるように第1及び第2の素子分離領域を形成する。この際、第1及び第2の素子分離領域のうち少なくとも一方の素子分離領域の側面は半導体基板の主面に対して垂直とならないように第1及び第2の素子分離領域を形成する。この後、第1及び第2の素子分離領域の上部を除去して、第1の素子分離領域と第2の素子分離領域の間の半導体基板をフィンとして形成する。 (もっと読む)


【課題】製造プロセスが容易であり、かつ、電流駆動能力の高い半導体基板およびその製造方法を提供することである。
【解決手段】本実施形態による半導体装置は、半導体基板を備える。第1導電型のFin型半導体層は、半導体基板上に形成されている。第1導電型のソース層および第1導電型のドレイン層は、Fin型半導体層の長手方向の両端に設けられている。ゲート絶縁膜は、Fin型半導体層の両側面に設けられている。ゲート電極は、Fin型半導体層の両側面にゲート絶縁膜を介して設けられている。第2導電型のパンチスルーストッパ層は、ゲート電極およびFin型半導体層の下に設けられている。パンチスルーストッパ層の不純物濃度は、ソース層およびドレイン層の下にある半導体基板の不純物濃度よりも高い。 (もっと読む)


【課題】縦型トランジスタのソース又はドレイン用の拡散層を形成するにあたって形成されるシリコン膜に表面凹凸を発生させない半導体装置の製造方法を提供する。
【解決手段】複数の半導体ピラーを形成する工程と、隣り合う前記半導体ピラーで挟まれた溝の側面を覆うように絶縁膜を形成する工程と、前記絶縁膜の前記溝の底部に近い領域に側面開口を形成する工程と、前記溝の内部を覆うようにシリコン膜からなる被覆膜を形成する工程と、前記被覆膜上に前記半導体ピラー内へ拡散させる不純物で構成された不純物層を形成する工程と、前記不純物を、前記側面開口を塞ぐように形成されている前記被覆膜を通して前記半導体ピラー内に熱拡散させてソース又はドレイン用の拡散層を形成する工程と、を含む。前記被覆膜の成膜温度を510℃より高く度550℃未満の範囲とすることにより、非晶質状態のシリコン膜を形成する。 (もっと読む)


【課題】 ゲート長方向に対し水平に複数本のトレンチを形成することにより単位面積当たりのゲート幅を増大させる高駆動能力横型MOSにおいて、素子面積を増加させずに更に駆動能力を向上させる。
【解決手段】 半導体基板表面から一定の深さに設けられた高抵抗第一導電型半導体のウェル領域と、前記ウェル領域の表面から途中の深さまで達する複数本のトレンチと、前記トレンチが形成する凹凸部の表面に設けられたゲート絶縁膜と、前記トレンチ内部に埋め込まれたゲート電極と前記トレンチ両端付近を除く前記凹凸部領域において前記トレンチ内部に埋め込まれたゲート電極と接触して基板表面に設けられたゲート電極膜と、前記ゲート電極膜と接触して前記トレンチ両端付近のトレンチ内部に半導体基板表面より深い位置に表面が位置するように埋め込まれたゲート電極膜と、前記ゲート電極膜と接触していない半導体面から前記ウェル領域の深さより浅く設けられた2つの低抵抗第二導電型半導体層であるソース領域とドレイン領域を有する半導体装置とした。 (もっと読む)


【課題】FinFETの隣接するフィン同士のショートを回避しつつ、エピタキシャル層の表面積を広く確保する。
【解決手段】実施形態によれば、半導体装置は、半導体基板と、前記半導体基板の表面に形成され、(110)面である側面を有するフィンとを備える。さらに、前記装置は、前記フィンの側面に形成されたゲート絶縁膜と、前記フィンの側面および上面に、前記ゲート絶縁膜を介して形成されたゲート電極とを備える。さらに、前記装置は、前記フィンの側面に、フィン高さ方向に沿って順に形成された複数のエピタキシャル層を備える。 (もっと読む)


【課題】半導体装置のトランジスタのシリコンピラー上部に活性領域を設ける際に、エピタキシャル成長により前記シリコンピラー上部に形成されるシリコン膜の高さが、前記トランジスタ毎にばらつくことを防ぎ、前記シリコン膜への導電型ドーパントの注入深さを均一にする半導体装置の製造方法を提供する。
【解決手段】基板の主面に柱状のシリコンピラーを形成するシリコンピラー形成工程と、前記シリコンピラーを覆うように第1の絶縁膜を形成する第1絶縁膜形成工程と、前記第1の絶縁膜を上面から除去し、前記シリコンピラー上部の上面及び側面を露出させる第1絶縁膜除去工程と、前記シリコンピラー上部の上面及び側面にエピタキシャル成長法によりシリコン膜を形成するシリコン膜形成工程とを有する。 (もっと読む)


【課題】良好な特性の確保、素子サイズの増加の回避、及び製造プロセスの簡素化を実現できる半導体装置の製造方法を提供する。
【解決手段】Si基板111の主面に、LOCOS酸化膜112bを含む酸化膜112を形成する工程と、Si基板111の主面の側に、ソース・ゲート形成領域113aとドレイン形成領域113bとを形成する工程と、レジスト116をマスクとして、Si基板111の主面の側のLOCOS酸化膜112bで覆われていないトレンチ114を通してイオン117注入を行い、イオン注入層118を形成する工程と、LOCOS酸化膜112b上及びソース・ゲート形成領域113a上を部分的に覆うようにゲート電極119を形成する工程とを有し、イオン注入層118のゲート電極119側の端部とゲート電極119のイオン注入層118側の端部との間に間隔121が存在するように、各工程を行う。 (もっと読む)


【課題】プロセス条件の見直しを最小限に抑制しつつ電気的特性を向上させることができる半導体装置及びその製造方法を提供する。
【解決手段】半導体装置1は、半導体構造11の上面領域に形成された島状の絶縁膜20と、絶縁膜20の上面領域に配列された複数の凸状絶縁部23と、これら凸状絶縁部23と絶縁膜20とを被覆する層間絶縁膜26とを備える。 (もっと読む)


【課題】 寄生抵抗を低減可能な半導体装置を提供する。
【解決手段】 半導体装置は、第1半導体層の表面に沿って延びる突起(2)を有する第1半導体層(1)を含む。ゲート電極(12)は、突起の表面をゲート絶縁膜を挟んで覆う。第2半導体層(28, 45)は、突起のゲート電極により覆われる部分と別の部分の側面上に形成され、溝(31, 52)を有する。ソース/ドレイン領域(30, 46)は、第2半導体層内に形成される。シリサイド膜(33)は、溝内の表面を含め第2半導体層の表面を覆う。導電性のプラグ(37)は、シリサイド膜と接する。 (もっと読む)


【課題】基板の外周部においてクラックの発生が抑制される半導体結晶基板を提供する。
【解決手段】半導体結晶基板110と、基板110の表面に窒化物により形成された保護層120と、を有し、保護層120は、基板110の外周部となる周辺領域120aはアモルファス状態であり、基板110の周辺領域よりも内側の内部領域120bは結晶化している。 (もっと読む)


【課題】RCATの電流駆動能力を向上させることが可能な半導体装置を提供する。
【解決手段】半導体基板11は、ゲート溝13を有している。拡散層12は、ゲート溝13の上部に対応する半導体基板11の表面領域に形成されている。ゲート絶縁膜14は、ゲート溝の壁面に形成されている。ゲート電極15は、ゲート溝13の内部及びゲート溝13の外部に形成されている。圧縮応力を有する膜16は、ゲート溝13の外部のゲート電極15の全面に形成されている。 (もっと読む)


【課題】素子の特性が均一な半導体装置の製造方法を提供する。
【解決手段】実施形態に係る半導体装置の製造方法は、半導体基板上の一部の領域にマスク膜を形成する工程と、前記マスク膜を形成した領域及び前記マスク膜を形成していない領域の双方において、前記半導体基板の上方に、マスク部材を形成する工程と、前記マスク部材をマスクとしてエッチングを施すことにより、前記マスク膜及び前記半導体基板の上層部分をパターニングする工程と、前記パターニングされたマスク膜をマスクとしてエッチングを施すことにより、前記パターニングされた半導体基板の上層部分の一部を除去する工程と、を備える。 (もっと読む)


【課題】製造コストの低減、およびプロセス時間の短縮を可能とするfinFETの製造方法を提供する。
【解決手段】finFETは、ソース領域、ドレイン領域、およびソース領域とドレイン領域との間のチャネル領域を有するフィンを備えるように形成される。上記フィンは、半導体ウエハ上でエッチングされる。ゲートスタックは、上記チャネル領域に直接接触する絶縁層と、上記絶縁層に直接接触する導電性のゲート材料とを有するように形成される。上記ソース領域および上記ドレイン領域は、上記フィンの第一領域を露出するためにエッチングされる。次に、上記第一領域の一部が、ドーパントでドーピングされる。 (もっと読む)


【課題】低オン抵抗であって、かつ、ノーマリーオフの電界効果型トランジスタを提供する。
【解決手段】基板10の上に形成された電子走行層11と、電子走行層11の上に、電子走行層11よりもバンドギャップの広い半導体により形成された電子供給層12と、電子供給層12の上に、電子供給層よりもバンドギャップの狭い半導体により形成されたバリア形成層13と、バリア形成層13の上に、不純物のドープされた半導体により形成された上部チャネル層14と、バリア形成層13及び上部チャネル層14を除去することにより形成されたバリア形成層13及び上部チャネル層14の側面と、側面に形成された絶縁膜20と、絶縁膜20を介し形成されたゲート電極21と、上部チャネル層14と接続されるソース電極22と、電子供給層12または電子走行層11と接続されるドレイン電極23と、を有する。 (もっと読む)


【課題】トランジスタの集積度が高い半導体装置及びその製造方法を提供する。
【解決手段】実施形態に係る半導体装置は、第1領域において上面に第1方向に延びる複数本のフィンが形成された半導体基板と、前記第1方向に対して交差した第2方向に延び、前記フィンを跨ぐ第1ゲート電極と、前記フィンと前記第1ゲート電極との間に設けられた第1ゲート絶縁膜と、前記第2領域において前記半導体基板上に設けられた第2ゲート電極と、前記半導体基板と前記第2ゲート電極との間に設けられた第2ゲート絶縁膜と、を備える。そして、前記第1ゲート電極の層構造は、前記第2ゲート電極の層構造とは異なる。 (もっと読む)


【課題】通電領域表面の周辺の強電界の影響がナノワイヤに及び難くして、ホットキャリアの生成やオフリーク電流を低減する。半導体装置を高性能化する。
【解決手段】基板の表面よりも深い位置に配置され互いに対向する2つの側壁を有する導電膜と、導電膜の2つの側壁の側方に形成され互いに同じ導電型の半導体領域である第1及び第2の通電領域と、導電膜を貫通して2つの半導体領域どうしを接続し第1及び第2の通電領域の導電型とは逆導電型の半導体領域であるナノワイヤと、導電膜と前記ナノワイヤとの境界部に形成された絶縁膜と、を有することを特徴とする半導体装置。 (もっと読む)


【課題】ショットキー障壁の高さおよび幅を容易に制御すると共に寄生抵抗が低く、且つ短チャネル効果を効果的に抑制する。
【解決手段】金属ソース・ドレイン電極(ニッケルシリサイド)6とP型シリコン基板1との間に、セシウム含有領域5を形成している。こうして、金属ソース・ドレイン電極6近傍のセシウムをイオン化して正孔に対するエネルギー障壁高さを大きくし、金属ソース・ドレイン電極6とP型シリコン基板1との間のリーク電流を著しく低減する。また、チャネルと金属ソース・ドレイン電極6との間のショットキー障壁の高さおよび幅を実効的に小さくして寄生抵抗を著しく低減する。したがって、金属シリサイドの厚み(深さ)をイオン注入による制約なしに決定でき、極めて浅いソース・ドレインを形成して良好な短チャネル効果特性を得ることができる。 (もっと読む)


【課題】ゲートリーク電流が少なく、かつ電流コラプスが抑えられた半導体装置の提供。
【解決手段】第1の態様においては、窒化物系半導体で形成された半導体層110と、半導体層上に開口を有して設けられ、タンタル酸窒化物を含む第1絶縁膜120と、第1絶縁膜の開口において半導体層上に積層された第2絶縁膜130と、第2絶縁膜上に設けられたゲート電極140と、を備える半導体装置を提供する。ここで、第2絶縁膜は、第1絶縁膜より絶縁性が高い絶縁膜により構成される。 (もっと読む)


【課題】FinFETの特性が均一な集積回路装置及びその製造方法を提供する。
【解決手段】実施形態に係る集積回路装置は、半導体基板の上面に形成され、第1方向に延びる複数本のフィンと、前記フィン間に配置された素子分離絶縁膜と、前記第1方向に対して交差した第2方向に延び、前記素子分離絶縁膜上に設けられたゲート電極と、前記フィンを前記ゲート電極から絶縁する絶縁膜と、を備える。そして、連続して配列された複数本の前記フィンが配置された第1領域においては、前記素子分離絶縁膜の上面は前記フィンの上端よりも下方の第1の位置に位置し、前記第1領域から見て前記第2方向に位置する第2領域においては、前記素子分離絶縁膜の上面は前記フィンの上端よりも上方の第2の位置に位置する。また、前記第2領域においては、前記素子分離絶縁膜が前記フィンの側面の全体を覆っている。 (もっと読む)


【課題】窒化物半導体を用いた電界効果トランジスタで、高いドレイン電流が実現できるようにする。
【解決手段】ドレイン電極107とゲート領域121との間のドレイン領域123の距離は、ソース電極106とゲート領域121との間のソース領域122の距離より長く形成され、加えて、ゲート電極104は、ゲート領域121からソース電極106の側に延在する延在部141を備えて形成されている。ゲート電極104のソース電極106の側への延在部141により、ゲート電極104に対する電圧印加でソース領域122のチャネル層101における電子濃度が増加可能とされている。 (もっと読む)


1 - 20 / 483