説明

Fターム[5F152CE04]の内容

再結晶化技術 (53,633) | 被結晶化層 (7,497) | 材料 (2,848) | 4族 (2,521) | Si (1,874) | 多結晶Si (298)

Fターム[5F152CE04]に分類される特許

61 - 80 / 298


【課題】赤色の光の感度を充分に得ることを可能にする固体撮像素子を提供する。
【解決手段】半導体層3の内部にフォトダイオードを構成する電荷蓄積領域4が形成され、この電荷蓄積領域4の内部又は下に、電荷蓄積領域4を透過した光を反射させて電荷蓄積領域4の中央部に向かわせる反射膜16が設けられている固体撮像素子を構成する。 (もっと読む)


【課題】半導体層とベース基板との密着性を向上させ、貼り合わせ不良を低減することを目的の一とする。
【解決手段】半導体基板上に酸化膜を形成し、酸化膜を介して半導体基板に加速されたイオンを照射することにより、半導体基板の表面から所定の深さの領域に脆化領域を形成し、半導体基板上の酸化膜及びベース基板上に対して、バイアス電圧を印加してプラズマ処理を行い、半導体基板の表面とベース基板の表面とを対向させ、酸化膜の表面とベース基板の表面とを接合させ、酸化膜の表面とベース基板の表面とを接合させた後に熱処理を行い、脆化領域を境として分離することにより、ベース基板上に酸化膜を介して半導体層を形成する。 (もっと読む)


【課題】半導体膜が分離された後の分離ボンド基板を、SOI基板作製に用いることが可能な再生ボンド基板として再生する方法を提供することを課題の一つとする。
【解決手段】ボンド基板の表面から一定の深さにイオンを添加することによって脆化層を形成し、ボンド基板を、絶縁膜を介してガラス基板と貼り合わせ、脆化層においてボンド基板を、ガラス基板上に絶縁膜を介して貼り合わせられた半導体膜と、分離ボンド基板と、に分離し、分離ボンド基板にフッ酸を含む溶液で第1のウェットエッチングを行い、分離ボンド基板に有機アルカリ水溶液で第2のウェットエッチングを行い、分離ボンド基板を酸化雰囲気下でハロゲンを含むガスを添加して熱酸化処理を行って、分離ボンド基板表面に酸化膜を形成し、酸化膜にフッ酸を含む溶液で第3のウェットエッチングを行い、分離ボンド基板に研磨を行って再生ボンド基板を形成する。 (もっと読む)


【課題】半導体基板とベース基板の貼り合わせにおいて、窒素を含有する絶縁膜を接合層として用いる場合であっても、接合強度を向上させ、SOI基板の信頼性を向上させることを目的の一とする。
【解決手段】半導体基板側に酸化膜を設け、ベース基板側に窒素含有層を設け、半導体基板上に形成された酸化膜とベース基板上に形成された窒素含有層を接合する。また、半導体基板上に形成された酸化膜とベース基板上に形成された窒素含有層を接合する前に、酸化膜と窒素含有層の少なくとも一方に対してプラズマ処理を行う。プラズマ処理は、バイアス電圧が印加された状態で行うことができる。 (もっと読む)


【課題】レーザースキャン照射で生じるビーム集光密度のばらつきを抑制する装置を提供する。
【解決手段】連続発振レーザー光を出力する連続発振レーザー光発振源3と、連続発振レーザー光を基板表面でスキャン照射するレーザー光スキャン照射部6と、連続発振レーザー光発振源3とレーザー光スキャン照射部6との間の光路上に配置され、連続発振レーザー光のビーム集光位置を調整するビーム集光位置調整部5と、レーザー光スキャン照射部6とビーム集光位置調整部5とを制御する制御部7とを備えた構成とする。制御部7は、レーザー光のスキャン動作とビーム集光位置調整動作とを同期させ、レーザー光スキャン照射部6による基板表面上におけるレーザー光のスキャン位置に対応させてビーム集光位置調整部5のビーム集光位置調整量を制御することによって、ビーム集光位置を基板表面のスキャン位置に位置合わせを行う。 (もっと読む)


【課題】連続発振レーザー光を用いた結晶化において、集光ビーム位置の高さ変動およびレーザー発振エネルギーの変動を含むビーム集光密度のばらつきを抑制する。
【解決手段】均一エネルギー照射装置は、連続発振レーザー光を出力する連続発振レーザー光発振源と、連続発振レーザー光発振源で出力された連続発振レーザー光を基板ステージ上に載置された被処理基板の基板表面に照射するレーザー照射光学系と、基板表面において連続発振レーザー光の照射によって結晶化された領域の一部を測定領域として可視光域の照明光を照射し、この測定領域で反射される反射光の反射光強度を測定する反射光強度測定部と、連続発振レーザー光発振源とレーザー照射光学系との間の光路上において、連続発振レーザー光のビーム集光位置を調整するビーム集光位置調整部と、反射光強度測定部で測定した反射光強度を入力してビーム集光位置調整部の駆動制御を行う制御部とを備える。 (もっと読む)


【課題】結像レンズがレーザー光を吸収して熱膨張することによる焦点位置の位置ずれを補正する。
【解決手段】基板の高さ変化量を換算して求めた結像レンズの位置ずれ量と、レーザー光の照射積算時間に基づいて求めた結像レンズの焦点の位置ずれ量とを加算して、結像レンズの熱膨張によるビーム集光位置の変動を補正するための補正移動量を算出し、この補正移動量を用いて結像レンズ移動部を駆動して結像レンズを移動することによって焦点位置の位置ずれを補正する。 (もっと読む)


【課題】非晶質半導体薄膜の結晶化と選択的な高濃度不純物拡散をひとつの工程で行うことにより薄膜トランジスタの製造工程を簡単にし,製造コストを低減する。
【解決手段】絶縁基板上の非晶質半導体薄膜上に堆積した不純物を含む皮膜を所定の形状にパターン形成し、外方拡散防止膜で被覆したのち,連続発振レーザを照射することにより該非晶質の結晶化と同時に,該皮膜から不純物を該薄膜に選択的に高濃度に拡散させることにより半導体薄膜トランジスタを製造する。 (もっと読む)


【課題】単結晶半導体層を支持基板上に形成する際に、単結晶半導体層に欠損が生じた領域を、効率的に修復し、かつ該領域のトランジスタ特性を損なわない方法を提供する。
【解決手段】支持基板上に単結晶半導体層を形成した後、前記単結晶半導体層に生じた欠損領域を光学的手段により検出し、前記単結晶半導体層上及び前記欠損領域に非単結晶半導体層を形成し、前記欠損領域の情報と、回路設計情報と、に基づいて前記欠損領域の非単結晶半導体層を選択的に結晶化して結晶質半導体層を形成し、前記結晶質半導体層、あるいは前記単結晶半導体層、を含む半導体素子を形成する処理を行う。 (もっと読む)


【課題】基板の初期伸縮状態が個体毎に異なる要因、およびレーザー光照射で基板が熱膨張する要因による、レーザー光の照射位置の位置ずれを抑制する。
【解決手段】結晶化装置は、レーザー光を照射する照明光学系と、レーザー光を所定の光強度分布の光線に変調する光変調素子と、変調光を基板上に結像させる結像光学系と、基板を支持すると共に基板上の二次元位置を定める基板ステージとを備え、基板に設けられた薄膜を変調光により溶融して結晶化させる。各基板が共通に備える熱膨張による位置ずれ量と各基板に固有の初期伸縮量とを用いて照射位置の座標値を補正する補正手段と、補正手段の補正座標値を用いて、基板ステージ上の照射位置を補正制御する制御手段とを備える。初期伸縮量に基づいてレーザー光の照射位置を位置補正して基板が固有に備える位置ずれを解消し、熱膨張を予測して照射位置毎に位置補正することで熱膨張による位置ずれを解消する。 (もっと読む)


【課題】外部ストレスによる亀裂、ヒビ、カケなど外観上の不良を低減された半導体装置を提供することを課題の一とする。また、薄型化された半導体装置の製造歩留まりを向上させることを課題の一とする。
【解決手段】複数の半導体集積回路が固着された繊維体に有機樹脂が含浸された構造体を有する。複数の半導体集積回路はそれぞれ構造体に形成された開口に設けられ、光電変換素子と、側面に段差を有し幅寸法は段差よりも一方の面に向かう先の部分が小さい透光性基板と、透光性基板の他方の面に設けられた半導体素子層と、透光性基板の一方の面及び側面の一部を覆う有彩色の透光性樹脂層とを含む。複数の半導体集積回路において、有彩色の透光性樹脂層の色が異なる。 (もっと読む)


【課題】信頼性の高い半導体装置を提供する。
【解決手段】ソース領域及びドレイン領域を含む半導体膜と、半導体膜の側面に接して設けられた第1の絶縁膜と、半導体膜及び第1の絶縁膜上に設けられた第2の絶縁膜と、第2の絶縁膜上に設けられたゲート電極と、ゲート電極上に設けられた第3の絶縁膜と、第2の絶縁膜及び前記第3の絶縁膜に設けられ、半導体膜の一部及び前記第1の絶縁膜の一部を露出させる開口と、開口を介して半導体膜に電気的に接続する配線又は電極と、を有し、第1の絶縁膜は、半導体膜の側面に接する部分が一部エッチングされ窪んでおり、配線又は電極は、第1の絶縁膜の窪んだ部分に入り込んでいることを特徴とする。 (もっと読む)


【課題】a−Si膜などの膜厚が変動した場合であっても、一様な結晶化を実現するレーザービーム照射方法を適用すること。
【解決手段】本発明によると、絶縁表面を有する基板上に非単結晶半導体膜を形成し、前記非単結晶半導体膜に350nmよりも長い波長を有するレーザービームを照射して前記非単結晶半導体膜を結晶化する、レーザービーム照射方法であって、前記非単結晶半導体膜は面内において膜厚分布を有しており、前記非単結晶半導体膜の膜厚に対する前記レーザービームの吸収率の微分係数は正であることを特徴とするレーザービーム照射方法が提供される。 (もっと読む)


【課題】表面粗さが低減された半導体結晶の構造体を形成する技術を提供する。
【解決手段】絶縁体基板を供給し、当該絶縁体基板上に半導体層を堆積する。上記半導体層は、当該半導体層を部分的に凝集するステップアンドスキャン方式のレーザアニール処理により露光される。そして、凝集された半導体物質の冷却により、配向されたストライプ状半導体結晶が、絶縁体基板上に形成される。上記ストライプ状半導体結晶は、上記絶縁体基板の上面上に存在する直線状のストライプの軸に概ね沿って整列される。上記ストライプ状半導体結晶のそれぞれの筋は、上記ストライプの軸を囲む連続した複数の輪の断片を含んでいる。上記輪の断片の幅は、上記レーザアニール処理のステップの距離とほぼ同じである。上記ストライプ状半導体結晶の上面は、典型的には、半円柱形状または放物線状形状を有する。 (もっと読む)


【課題】半導体層の電気的あるいは物理的特性の変化を生じることなく半導体層をアニールすることができ、製造効率の向上および大型の製品を製造可能なレーザーアニール方法、およびこの方法により製造された半導体装置を提供する。
【解決手段】この方法は、半導体層上に窒素含有層を形成し(200)、この窒素含有層は少なくとも3×1020原子/ccの窒素濃度を有し、低酸素雰囲気で、前記窒素含有層の第1領域にレーザービームを照射し(202)、低酸素雰囲気で、一部が前記第1領域の一部と重なる前記窒素含有層の第2領域にレーザービームを照射する(204)。 (もっと読む)


【課題】長さが長い線状ビームを照射する際に、線状ビームの長さにわたって被照射物にピントを合わせて処理することを課題とする。
【解決手段】レーザ発振器と、前記レーザ発振器から発振したレーザビームを線状ビームに変える線状光学系と、前記線状ビームが照射される基板を設置するステージと、前記ステージは、ビームプロファイラで調べられた前記線状ビームの焦点位置に沿うように前記基板の表面形状を変形させ、かつ、支持手段を有することを特徴とするレーザ照射装置を用いたレーザ照射方法に関する。さらに、前記基板上に半導体膜を形成し、前記半導体膜を前記線状ビームにより結晶化あるいは活性化する半導体装置の作製方法に関する。 (もっと読む)


【課題】半導体装置の特性を向上させることができる連続発振のレーザ装置を用いた半導体装置の作製方法の提供を課題とする。
【解決手段】絶縁表面上に半導体膜を形成し、半導体膜に希ガスを添加し、希ガス雰囲気中で希ガスが添加された半導体膜にレーザ光を照射し、レーザ光の照射の際に半導体膜に磁場を印加し、半導体膜は数μs以上数十μs以下の間溶融している半導体装置の作製方法を提供する。なお、レーザ光は基本波と高調波を合わせることで効率よく半導体膜を結晶化できる。 (もっと読む)


【課題】半導体層欠損領域の修復の際に作業時間の増大を回避し、より効率的に修復を行うことができる、貼り合わせ法により単結晶半導体層を設けた半導体基板の製造方法の提供。
【解決手段】その製造方法は、支持基板に単結晶半導体層を貼り合わせ、該単結晶半導体層の欠損領域である半導体層欠損領域を欠損検知装置1により検出し、該単結晶半導体層上及び半導体層欠損領域に非単結晶半導体層を形成し、欠損検知装置1により検出された半導体層欠損領域の位置情報22に基づいて半導体層欠損領域の非単結晶半導体層を結晶化する、又は結晶性を高める処理を行い、その後平坦化処理することにより残存する非単結晶半導体層を除去する。 (もっと読む)


【課題】温度係数とそのシート抵抗値とを独立に調整することができる抵抗素子を提供する。
【解決手段】半導体基板1上に第1の多結晶半導体膜3を形成し、その表面から膜厚の途中までの領域に不活性元素をイオン注入することにより、該領域をアモルファス半導体膜3Aに変化させる。次に、アモルファス半導体膜3Aの中にキャリア不純物をイオン注入し、その後に熱処理を行うことにより、アモルファス半導体膜3Aを多結晶化することにより、第2の多結晶半導体膜4を形成する。これにより、第2の多結晶半導体膜4の平均的なグレインサイズは、第1の多結晶半導体膜3の平均的なグレインサイズよりも大きくなる。 (もっと読む)


【課題】
レーザ光を用い、効率よく適度なエネルギーを結晶粒界に与えることにより、基板部分や既に結晶になった部分に影響を与えることなく、多結晶シリコンの結晶粒界を改質する。
【解決手段】
多結晶シリコンにパルスレーザ光を照射して結晶粒界の改質を行う多結晶シリコン結晶粒界改質方法であって、パルスレーザ光は波長400nm以上の可視光であり、パルスレーザ光の照射強度は、多結晶シリコンの結晶粒中心が溶融しないエネルギー密度である。好ましくは、パルスレーザ光の照射強度は、多結晶シリコンの結晶粒界近傍が部分溶解するエネルギー密度である。 (もっと読む)


61 - 80 / 298