説明

Fターム[5F172NS26]の内容

レーザ (22,729) | 温度調節・冷却・温度制御 (959) | 直接的対象 (518) | レーザ共通構成要素 (221) | 光学装置・光素子 (184) | 非線形光学素子 (80)

Fターム[5F172NS26]に分類される特許

1 - 20 / 80


【課題】大きなエネルギーを持ったパルスレーザを出力することなく温度チューニングを行う。
【解決手段】温度チューニング中は、まず、RF信号制御機構10が音響光学素子4に十分なパワーのRF信号を与えて共振器20のロスを十分に大きくし、固体レーザ媒質2を高ゲインの状態にする。次に、RF信号制御機構10がRF信号のパワーを急速に小さくして共振器20のロスを例えば半分にして共振器20でレーザ発振可能とし、パルスレーザを出力する。このパルスレーザの出力エネルギーを検出して温度チューニングする。
【効果】共振器20のロスを実働時のような最小値にしないため、パルスレーザの出力エネルギーは実働中に比べて小さくなる。従って、温度チューニング中に大きなエネルギーのレーザパルスがレーザ照射対象物などに不要に照射されてしまうことを回避できる。 (もっと読む)


【課題】大きなエネルギーを持ったレーザを出力することなく且つ高精度に温度チューニングを行う。
【解決手段】温度チューニング中は、まず、第二高調波発生素子(4)の温度を最適温度近傍から外した温度にした状態で第三高調波発生素子(5)の温度をスイープして第三高調波発生素子(5)の最適温度Ttpを求める。次に、第三高調波発生素子(5)の温度を最適温度近傍から外した温度にした状態で第二高調波発生素子(4)の温度をスイープして第二高調波発生素子(4)の最適温度Tspを求める。
【効果】温度チューニング中に大きなエネルギーのレーザがレーザ照射対象物などに不要に照射されてしまうことがなくなる。温度チューニング中の出力の変化範囲を大きくすることが出来るため、精度の高い温度チューニングを行うことが出来る。 (もっと読む)


【課題】安定したレーザ光を得る。
【解決手段】波長変換装置は、入射する第1のレーザ光を第2のレーザ光に波長変換して出力する波長変換部と、前記波長変換部を当該波長変換部の少なくとも1つの面側から冷却する冷却機構と、を備えてもよい。 (もっと読む)


【課題】本来用いられるべき装置から取り外された場合、単独動作時には出力を低下させるようにし、その一方で、本来用いられるべき装置に組み込まれた状態にある場合は、緑色レーザ光が正常に発光されるよう構成されたレーザ光源装置と、そのレーザ光源装置を搭載し緑色レーザ光を発光させることが可能な画像表示装置を提供する。
【解決手段】励起用レーザ光を出力する半導体レーザ31と、その励起用レーザ光により励起されて基本レーザ光を出力する固体レーザ素子34と、半導体レーザおよび固体レーザ素子34を支持する基台38と、を備え、固体レーザ素子34は略直方体の形状を有し、半導体レーザ31からの励起用レーザ光の入射面および基本レーザ光の出射面を除く4つ面のうち、少なくとも互いに隣接する2つの面のそれぞれにおいて、その表面積よりも小さな接触面積により基台38と当接したことを特徴とする。 (もっと読む)


【課題】セラミック導波路に用いられるクラッドを簡単な製造工法で形成させることができ、またセラミック導波路を取り扱いやすいフレキシブルなものにさせることができるレーザ光源装置を提供することを目的とする。
【解決手段】半導体レーザから出力される励起用レーザ光により基本波長の赤外レーザ光を出力するセラミック導波路である固体レーザ素子34をスラブ形状に形成し、その固体レーザ素子34の相対する上下両面に金属薄膜のクラッド100を設けた。 (もっと読む)


【課題】光ノイズが小さく安定したSHG光を出力し、且つ、消費電力が抑制された半導体レーザ励起固体レーザ装置及びレーザ光の出力方法を提供する。
【解決手段】設定温度において、モードホップを生じることなく一定の波長の単一縦モードの励起光を、設定出力値で出射する半導体レーザと、半導体レーザを駆動する駆動装置と、設定温度において出力効率が最大であり、光ノイズが一定値以下の、且つ励起光の出力値が設定出力値である場合に所定の出力値である出力光を、励起光から生成する固体レーザモジュールと、半導体レーザの温度と固体レーザモジュールの温度を調整する単一の温度調整装置と、出力光が所定の出力値であるように駆動装置を制御し、且つ、半導体レーザ及び固体レーザモジュールの温度が設定温度であるように温度調整装置を制御する制御装置とを備える。 (もっと読む)


【課題】高効率でしかも出力パワーが大きい広帯域光源装置を提供する。
【解決手段】ドメイン反転構造を備えた非線形光学結晶1及びレーザ結晶6を光共振器に配置する。レーザ結晶はレーザ発振波長λ(狭帯域)を生成する。非線形光学結晶の結晶端面を、波長λの周辺波長(広帯域)において高透過率を有しかつ波長λの半波長において高反射率を有する薄膜2および3で被覆する。光共振器は後方ミラー4および前方ミラー5によって形成される。後方ミラーは、λの周辺波長(広帯域)において高反射率を有する一方、前方ミラーは、波長λ(狭帯域)において高反射率を有している。レーザ結晶の結晶端面を、λ(狭帯域)において高透過率を有するフィルム7および8で被覆する。λ(狭帯域)において高出力の光を放射するポンプレーザダイオード9を使用してレーザ結晶をポンピングする。 (もっと読む)


【課題】波長変換部から高出力で出力光を出射する際に、出力される高調波のビーム径の変動の少ないレーザ光源装置を提供する。
【解決手段】直線偏光されたレーザ光を出力する基本波レーザ光源と前記レーザ光を波長変換して高調波レーザ光を出力する周期的分極反転構造を有する波長変換部とを備えるレーザ光源装置において、前記直線偏光されたレーザ光のうち前記波長変換部の分極反転方向に垂直な方向と一致する偏光成分のみを通過するように、前記基本波レーザ光源と前記波長変換部との間に前記偏光分離素子を配置するレーザ光源装置。 (もっと読む)


【課題】変換効率の良い波長変換装置及び紫外光生成レーザ装置を提供すること。
【解決手段】光入射面と、光出射面とを備え、前記光入射面から入射した光の第2高調波光を発生する波長変換素子と、前記波長変換素子に入射する光が通る入射部と、前記波長変換素子から出射した光が通る出射部とを備える液体セルと、前記波長変換素子と共に前記液体セル内に収容されて、かつ前記波長変換素子が少なくとも前記光出射面が液体と接するように浸漬される浸漬液と、を備えてもよい。 (もっと読む)


【課題】 治療レーザ光のサージパルスを抑制した装置を提供する。
【解決手段】 基本波レーザ光を出射するレーザ光源と、レーザ光源への印加電流を制御して、設定されたパルス幅の基本波レーザ光を出射させるようにレーザ光源をパルス駆動するレーザ光源駆動手段と、らの基本波レーザ光を第2高調波レーザ光に変換する波長変換素子と、第2高調波レーザ光の出力の設定信号を入力する出力設定手段と、第2高調波レーザ光を患者眼に照射する照射光学系と、を備えるレーザ治療装置で、波長変換効率を変更するために波長変換素子の温度を調節する温度調節ユニットと、基本波レーザ光の出力範囲の下限を所定の出力閾値とするように前記レーザ光源駆動手段の駆動を制御すると共に、出力設定手段で設定された出力の第2高調波レーザ光が得られるように温度調節ユニットの駆動を制御する制御手段と、を備える。 (もっと読む)


【課題】レーザ光の光軸に対する波長変換素子の位置および角度を調整してレーザ光の出力を高めることができるようにする。
【解決手段】波長変換素子35を保持する波長変換素子ホルダ58を、基台38に対して、波長変換素子の分極反転領域の深さ方向に移動可能に、且つ光軸方向に対して略直交する軸周りに回動可能に設ける。特に基台に、光軸方向に対して直交する平面である第1の基準面91,92を設けると共に、波長変換素子ホルダに、第1の基準面に当接する軸部93,94を、光軸方向および分極反転領域の深さ方向に対して略直交する方向に設ける。 (もっと読む)


【課題】高出力の波長変換レーザ光源において高調波のビーム径を一定に保つレーザ光源を提供する。
【解決手段】基本波を生成するレーザ発振器と、前記基本波を高調波に変換する波長変換素子と、前記波長変換素子の温度を一定値に保つ素子温度保持部と、前記高調波のビーム径を検出するビーム径検出部と、前記素子温度保持部の温度を前記ビーム径検出部による検出値に応じて制御する温度制御部と、前記高調波のビーム径を設定するビーム径設定部をさらに備え、前記ビーム径検出部での検出値と前記ビーム径設定部で設定されたビーム径との差分値が最小になるように前記素子温度保持部の温度を制御する温度制御部とからなるレーザ光源。 (もっと読む)


【課題】半導体レーザの光出力を安定化させるため出力光をモニタリングしているが、出力光を直接ビームスプリッタで分岐させ検出したり、出力光の一部の光路を変更し光学フィルタを通して検出したりしている。ここでの、部品点数が増えて小型化の妨げになったり、光軸を合わせるのが難しいと言う問題を解決する。
【解決手段】基本波を出射する半導体レーザ素子1と、基本波の入射を受け、基本波の波長を変換した波長変換光を出射する変換素子2と、波長変換光の所望の波長領域である波長領域光を選択的に透過させるフィルタ4と、フィルタを透過した前記波長領域光の入射を受け、波長領域光の一部を正反射し波長領域光の残部を実質的に透過する透光部材6を有するとともに、半導体レーザ素子を封止する封止部材5と、透光部材から正反射した正反射光を受光する受光素子3と、を有した構成とする。 (もっと読む)


【課題】放熱性を維持しつつ、温度変化による位置ずれを低減する光学素子およびそれを用いたレーザ光源モジュール、画像表示装置を提供することを目的とする。
【解決手段】レーザ光の波長を非線形光学結晶により変換するSHG素子48と、SHG素子48を固定する金属製のホルダ50と、SHG素子素子の光入出力面とは異なる面との間に形成された隙間に充填された金属の充填剤52とを備え、SHG素子48の膨張率をX、SHG素子48の使用温度範囲をTとすると、充填剤52の膨張率Zは以下の式で表されることを特徴とする光学素子。
Z<(0.002/T)−X (もっと読む)


【課題】半導体レーザを用いたレーザ光源装置において、装置のコストアップや大型化を防止しつつ、固体レーザ結晶の発熱が、相対的に温度特性の悪い波長変換素子へ熱伝達してしまうことを防止し、この結果、常に安定した半導体レーザを供給することができるレーザ光源装置を得ることを目的とする。
【解決手段】励起光を出射する半導体レーザと、この半導体レーザにより出射される励起光により基本波光を発振する固体レーザ結晶と、前記基本波光を波長変換して高調波光を発生させる分極反転部を含む波長変換素子を備えたレーザ光源装置において、前記固体レーザ結晶と、波長変換素子と接合部に、固体レーザ結晶と波長変換素子を断熱する断熱部材があることを特徴とする。 (もっと読む)


【課題】温度変動が生じても高い効率で安定したパワー出力を実現できるレーザ光源装置を得ること。
【解決手段】レーザ素子11と、前記レーザ素子11の温度を計測するレーザ素子用温度測定手段12と、前記レーザ素子11が出力するレーザ光の波長変換を行う高調波発生素子15と、前記高調波発生素子15の温度を計測する高調波発生素子温度測定手段13と、前記高調波発生素子15の温度を調節する高調波発生素子温度調節手段14と、前記レーザ素子11の温度と前記高調波発生素子15が出力するレーザ光のパワーが最大となる前記高調波発生素子15の目標温度との関係を保持する記憶手段と、前記レーザ素子用温度測定手段13によって計測された前記レーザ素子11の温度から前記関係に従って求めた目標温度に前記高調波発生素子15の温度が調節されるように、前記高調波発生素子温度調節手段14を制御する制御手段20とを備える。 (もっと読む)


【課題】半導体レーザ励起固体レーザ装置に関し、光共振器内にエタロンなどを挿入しない構成で、1064.4nm近傍のシングルモード発振を実現する。
【解決手段】Nd:YAGの端面であって光共振器の端部となる端面に波長1064.4nm近傍に対するHRコートを施すと共に、Nd:YAGの光透過方向の厚みを、1064.4nm近傍に反射ピークが存在し且つ1061.8nm近傍に反射ピークが存在しないような厚みとする。 (もっと読む)


【課題】調整の容易化、組立作業の簡略化を図ることのできる平面導波路型レーザ装置および平面導波路型レーザ装置の製造方法を得る。
【解決手段】導波路構造を有するレーザ媒質(3c)を含む導波路型固体レーザ素子(3)と、導波路構造を有する非線形材料(4c)を含む導波路型光学素子(4)と、両素子(3、4)を実装するために一体構成されたヒートシンク(1)とを備え、導波路型固体レーザ素子(3)の励起光入射側の端面方向を規定する第1の当て面および第2の当て面と、導波路型固体レーザ素子の励起光入射側の端面方向と平行になるように導波路型光学素子(4)のレーザ光出射側の端面方向を規定する第3の当て面および第4の当て面とをヒートシンク(1)上に形成するステップと、当て面を用いて導波路型固体レーザ素子および導波路型光学素子を配置するステップとを備える。 (もっと読む)


光学材料におけるレーザー誘起損傷は、光吸収が最小化される状態を作り出すことによって緩和されうる。具体的には、光学材料においてバンドギャップの欠陥エネルギーをポピュレートする電子は、一般にブリーチングと呼ばれるプロセスにおいて、伝導帯へと推進されうる。こうしたブリーチングは、材料内への最小限のエネルギー蓄積を保証する既定の波長を用いて達成されうるものであり、理想的には、電子を伝導帯のちょうど内側へと推進する。ある場合には、フォノン(すなわち、熱)励起も、高いデポピュレーションレートを達成するために用いられることが可能である。一実施形態において、レーザービームの波長よりも長い波長を有するブリーチング光ビームが、バンドギャップにおける欠陥エネルギー準位をデポピュレートするために、レーザービームと合成されうる。ブリーチング光ビームは、レーザービームと同じ方向、又は交差する方向で伝播されうる。
(もっと読む)


コンパクトで、光学的にポンピングされる固体マイクロチップレーザ装置は、低コストの緑色及び青色レーザ光源を得るため、効率的な非線形キャビティ内周波数変換を使用する。レーザは、Nd:YVOなどの固体ゲイン媒質および非線形結晶を含む。非線形結晶は、周期的に分極されたニオブ酸リチウムまたは周期的に分極されたリチウム・タンタル酸塩で形成され、その結晶は、高い信頼性を確実にするために、MgOでドープされたか、ZnOでドープされたか、または、ストイキオメトリックである。非線形結晶は、赤外線ポンプレーザ・ビームから可視波長範囲へエネルギーを転換するため、効率的な周波数倍増を提供する。レーザ装置は、出力ビームのための出力開口を有するパッケージに組み付けされ、レーザアセンブリを収容する光学台と一体化される。パッケージは、半導体ダイオード・ポンプレーザ、マイクロチップレーザ・キャビティ・アセンブリ、光学台プラットフォームおよび電気リードに囲み、ヒートシンクを提供する。 (もっと読む)


1 - 20 / 80