説明

Fターム[5H420NB13]の内容

電気的変量の制御(交流、直流、電力等) (13,664) | 出力部 (2,015) | 出力制御形式 (392) | 並列型 (68)

Fターム[5H420NB13]に分類される特許

1 - 20 / 68


【課題】駆動用のMOSトランジスタのオン抵抗が小さく、リーク電流の発生を防ぎ、しかも小型化、低消費電力化に適した昇降圧回路を提供する。
【解決手段】入力電圧IN2が入力される入力端子104、入力電圧IN2に基づいてVCCまたはGNDを出力するMOSトランジスタ201、203、入力電圧IN2に基づいて2VCCまたはGNDを出力するMOSトランジスタ202、204、MOSトランジスタ201、202に一端が接続され、他端がMOSトランジスタ202、204に接続される容量素子206、ソース・ドレイン端子の一方に2VCCが供給され、ソース・ドレイン端子の他方にVCCが供給され、2VCCまたはGNDがゲート端子に供給され、2VCCまたはGNDによってオン、オフされるMOSトランジスタ205と、によって昇圧回路を構成する。 (もっと読む)


【課題】付加する起動回路を小面積とし、高電源電圧でも低消費電流を実現した定電流回路を提供すること。
【解決手段】PNP型のトランジスタQ1,Q2からなる第1のカレントミラー回路と、NPN型のトランジスタQ3,Q4、抵抗R1からなる第2のカレントミラー回路より構成された起動回路において、PNP型のバイポーラトランジスタQ5とN型のJFETトランジスタJ1からなる起動回路を設けた。 (もっと読む)


【課題】高温時でもエンハンスメント型Nチャネルトランジスタが弱反転状態で動作できる定電流回路を提供する。
【解決手段】カレントミラー回路と定電流生成ブロック回路とオフリーク回路を備えた定電流回路において、オフリーク回路は、ゲートとソースが接地端子に接続され、ドレインが定電流回路の出力に接続される第一のエンハンスメント型Nチャネルトランジスタで構成される。これにより、定電流を生成するエンハンスメント型Nチャネルトランジスタのゲート−ソース間電圧の上昇を抑えることで、弱反転状態での動作を保つ。 (もっと読む)


【課題】クランプ電圧を正確な値に設定できる半導体集積回路を提供することを目的とする。
【解決手段】第1の電圧である電源を供給されて定電流を発生する定電流部60と、定電流部60で発生された定電流を供給されて第1の電圧より低い第2の電圧を発生し、第1の電圧の電源を第2の電圧にクランプするクランプ部71と、クランプ部71でクランプされた電源を供給されて基準電圧を発生する基準電圧発生部72とを有し、クランプ部71は、ゲートとドレインに接続され縦型接続された複数段のMOSトランジスタM11−1〜M11−nである。 (もっと読む)


【課題】基準電圧立ち上がり時間の短縮が図れ、起動時間の遅延を防止することができるバンドギャップ基準電圧装置の提供。
【解決手段】バンドギャップ基準電圧装置は、出力端子300aより所定の基準電圧VREFを出力するバンドギャップ回路10と、バンドギャップ回路10に電流を供給して該バンドギャップ回路10を起動させる定電流源11と、バンドギャップ回路10の起動時に、出力端子300aからバンドギャップ回路10に電流を供給する電流供給部と、を備えたことを特徴とする。 (もっと読む)


【課題】負荷回路の温度依存性を低減することができる電流源回路及びその調整方法を提供すること。
【解決手段】本発明の一態様である電流源回路100は、出力端子3、端子5、NチャネルMOSトランジスタNM1〜NMn、抵抗R1及び選択回路1を有する。NチャネルMOSトランジスタNM1〜NMnは、出力端子3及び端子5間に並列に接続され、ゲートに定電圧Viが印加され、それぞれ異なるディメンジョンを有する。抵抗R1は、NチャネルMOSトランジスタNM1〜NMnと端子5との間に接続される。選択回路1は、抵抗R1と出力端子3との間でNチャネルMOSトランジスタNM1〜NMnと直列に接続され、NチャネルMOSトランジスタNM1〜NMnと直列に接続され、NチャネルMOSトランジスタNM1〜NMnいずれかに選択的に出力電流を出力させる。 (もっと読む)


【課題】ロジック回路の動作時の貫通電流が、ロジック回路を構成するP型トランジスタとN型トランジスタの閾値電圧ばらつきの影響により過大とならず、消費電流を抑えることが可能な、内部電源電圧生成回路の提供。
【解決手段】内部電源端子の内部電源電圧を生成し、前記内部電源電圧をロジック回路に供給する内部電源電圧生成回路であって、ゲートに与えられる電圧をソースフォロワ出力するトランジスタを有し、内部電源電圧の値が、N型トランジスタの閾値電圧と、P型トランジスタの閾値電圧の絶対値の和に基づいて与えられ、前記N型トランジスタは、前記ロジック回路内部のN型トランジスタと同一の製造プロセスで形成され、前記P型トランジスタは、前記ロジック回路内部のP型トランジスタと同一の製造プロセスで形成される、内部電源電圧生成回路、とした。 (もっと読む)


【課題】 ツェナーダイオードと同等の動作を行える回路ないしは半導体装置を提供することを目的とする。
【解決手段】 実施形態の基準電圧発生回路は、第1のFETと、第2のFETと、一方を電源に接続し他方を前記第1のFETのドレインに接続した第1の抵抗と、前記第1のFETのドレイン−ゲート間に接続した第2の抵抗とを有し、前記第2のFETのゲート−ソース間を接続し、前記第2のFETのドレインを前記第1のFETのゲートに接続し、前記第1のFETのドレインが基準電圧を出力し、前記第1のFETのソースと前記第1のFETのソースがグランド又は他の回路と接続していることを特徴とする。 (もっと読む)


【課題】より十分な出力電流を流せる出力回路を提供する。
【解決手段】PMOSトランジスタ12のドレイン電流が大きい場合、PMOSトランジスタ13は非飽和領域で動作する。このときNMOSトランジスタ14及び17のゲート電圧は電源端子電圧付近まで上昇している。このため、NMOSトランジスタ17のゲート・ソース間電圧は大きくなり、十分な出力電流が流れる。 (もっと読む)


【課題】低電源電圧動作によって電流ミラー精度の高いカスコード型のカレントミラー回路を有する基準電流生成回路を提供すること。
【解決手段】基準電流生成回路は、基準電流Irefを出力するカスコード型のカレントミラー回路1と、カレントミラー回路1が出力するミラー電流I1を電圧V1に変換する電流電圧変換回路2と、カレントミラー回路1が出力するミラー電流I2を電圧V2に変換する電流電圧変換回路3と、第1の入力端子に電圧V1が入力され、第2の入力端子に電圧V2が入力される差動増幅器4と、差動増幅器4が出力する電圧V3を電流I3、I4に変換して出力する電圧電流変換回路5と、電流I3を電圧V4に変換して出力する電流電圧変換回路6と、を有する。なお、電流電圧変換回路6が出力する電圧V4は、カスコード型のカレントミラー回路が有するカスコード接続を構成するトランジスタのゲートに入力される電圧である。 (もっと読む)


【課題】大きな抵抗を使わずに消費電力の少ない基準電圧を発生する。
【解決手段】PチャネルトランジスタM3のドレイン電流をI1とし、PチャネルトランジスタM4のドレイン電流をI2とすると、接合D1に生ずる電圧VD1と接合D2に生ずる電圧VD2の関係はVD1−VD2=(k×T÷q)×ln(10×I1÷I2)となり、絶対温度Tに比例する電圧が得られる。Nチャネルトランジスタ差動対M6及びM7と、Pチャネルトランジスタの能動負荷M1及びM2なる差動アンプで、負帰還をかけることにより、PチャネルトランジスタM10のゲート・バックゲート間電圧がVD1−VD2と等しくなる。PチャネルトランジスタM4とM5の電流を等しく設定すると、PチャネルトランジスタM11〜M20のそれぞれのゲート・バックゲート間の電圧はPチャネルトランジスタM10と等しくなり、Voutは温度係数がほぼゼロの基準電圧となる。 (もっと読む)


【課題】正の2次温度係数を有する基準電流を生成する基準電流発生回路を提供する。
【解決手段】第1基準電流発生回路11は、第1電流電圧変換回路14と、第2電流電圧変換回路15と、第1および第2電流電圧変換回路14、15に等しい電流を供給する第1電流供給回路16とを備え、負の2次温度係数a12を有する第1基準電流I1を発生する。第2基準電流発生回路12は、第3電流電圧変換回路24と、第4電流電圧変換回路25と、第5電流電圧変換回路26と、第4電流電圧変換回路25に供給する電流に等しい電流を第3および第5電流電圧変換回路24、26に一定の比率で分流して供給する第2電流供給回路27とを備え、絶対値が負の2次温度係数a12と略等しい正の2次温度係数a22を有する第2基準電流I2を発生する。電流出力回路13は、第1基準電流I1と第2基準電流I2を加算した第3基準電流I3を出力する。 (もっと読む)


【課題】トリミングデータによって調整可能な基準電圧発生回路を備えた半導体装置において、電源が立上がるまでの基準電圧のばらつきの影響を受けないようにする。
【解決手段】半導体装置10において、基準電圧生成部1は、外部電源電圧VCCに基づいて、トリミングデータTRM1に応じて調整された第1の基準電圧V1*およびこのトリミングデータTRM1に依存しない第2の基準電圧V2を生成する。不揮発性メモリ3は、第1の基準電圧V1*に基づく電圧によって動作し、上記のトリミングデータTRM1を記憶する。パワーオンリセット回路5は、電源立上げ時に外部電源電圧VCCが第2の基準電圧V2の定数倍に達したときにリセット信号の論理レベルを切替える。制御回路6は、リセット信号の論理レベルの切替に応答して、不揮発性メモリ3に記憶された上記のトリミングデータTRM1を基準電圧生成部1に読込ませる。 (もっと読む)


【課題】耐圧の高いキャパシタや過電圧検出回路を用いることなく、負荷がオープン状態となる故障時にもキャパシタの破損を防止可能な定電流発生回路を提供する。
【解決手段】定電流発生回路10は、負荷4に定電流を供給する定電流電源1と、負荷4と並列に接続された出力キャパシタ2と、負荷4と並列に接続されたサイリスタ3とを備える。また、サイリスタ3は、ブレークオーバ電圧が出力キャパシタ2の耐圧より低く、且つ保持電流が定電流電源1の定格出力電流より小さく、且つ定格電流が定電流電源1の定格出力電流より大きい。 (もっと読む)


【課題】小さな回路面積で安定した出力電流が得られる電流源回路を提供する。
【解決手段】入力側トランジスタに流れる入力電流に比例する出力電流が流れるように複数の入力側トランジスタMiと複数の出力側トランジスタMoとがカレントミラー接続されている電流源回路11にて、切り替え制御部13が、活性化する入力側トランジスタを順次切り替えて複数の入力トランジスタの一部を活性化し、かつ常に一定数の入力側トランジスタを活性化するようにして、各入力側トランジスタがもつ特性ばらつきを平均化し、プロセス相対ばらつきによる入力側トランジスタの特性ばらつきを低減し、出力電流の安定性を向上させる。 (もっと読む)


【課題】温度依存性を有する電流を生成可能な電流生成回路を提供する。
【解決手段】第1電流源42は、正の温度特性を有する第1電流I1を生成する。第2電流源44は、第2電流I2を生成する。第1カレントミラー回路46は、第2電流I2の経路上に設けられた、NPN型バイポーラトランジスタである補償用トランジスタQ5のベース電流Ibを第1係数(K1)倍して第3電流I3を生成する。第2カレントミラー回路48は、第1電流I1と第3電流I3の差に比例した第4電流I4’を生成する。電流生成回路40は、ベース電流Ibと比例した第5電流I5と第4電流I4’の合計電流を出力する。 (もっと読む)


【課題】内部電源電圧を供給されるロジック回路の貫通電流が電源電圧に依存しない内部電源電圧生成回路を提供する。
【解決手段】電流源1の定電流に基づき、基準電圧VREFは電源電圧VDDに依存しないで生成され、基準電圧VREFに基づき、ソースフォロアによって内部電源電圧DVDDが電源電圧VDDに依存しないで生成される。内部電源電圧DVDDに基づき、ロジック回路9の貫通電流が流れる。よって、ロジック回路9の貫通電流は電源電圧VDDに依存しない。また、内部電源電圧DVDDは、ロジック回路9が仕様上動作できる最低のロジック回路9用の電源電圧である。よって、ロジック回路9の貫通電流は少ない。 (もっと読む)


【課題】安定した電流を簡単な回路構成で供給する電流源回路を提供する。
【解決手段】電流源回路は、基準電流源回路と、基準電圧源回路と、第1および第2トランジスタと、電流源と、第3トランジスタとを具備し、差分電流に基づいて出力電流を供給する。基準電流源回路は、第1電源電圧と第2電源電圧とに基づいて、基準電流を生成する。基準電圧源回路は、基準電流に基づいて、熱電圧に比例する電圧を生成する。第1トランジスタは、基準電圧源回路と第2電源電圧との間に接続されて第1電流が流れる。第2トランジスタは、基準電圧源回路が生成する電圧と第1トランジスタのドレイン・ソース間電圧とを加算した電圧をゲートに印加され、第2電流が流れる。電流源は、第1電流に比例する電流値の第3電流を供給する。第3トランジスタには、第2電流と第3電流との差分電流が流れる。 (もっと読む)


【課題】低電源電圧で動作するバンドギャップ基準電圧発生回路は、分流パスを設けるため消費電流が多くなってしまう。公知技術の消費電流は、従来の低電源電圧動作のバンドギャップ回路から電流を削減したとはいえ、未だ多い。本発明では、低電源電圧で動作し、かつ、消費電流のさらに少ないバンドギャップ基準電圧発生回路を提供する。
【解決手段】本発明の基準電圧発生回路では、低電源電圧動作の本質を維持したまま、さらに分流パスを共通化することで、消費電流を削減する。 (もっと読む)


【課題】電源起動時に起動・零安定を繰り返して発振状態になることを防ぎ、低消費電流で動作可能な定電流回路を提供する。
【解決手段】電源起動時、ノードAが起動状態に到達するまでの期間、ノードBへの励起電流の供給を継続することによって、起動・零安定を繰り返すことなく、定電流回路を短時間で確実に起動させる。 (もっと読む)


1 - 20 / 68