説明

国際特許分類[B22F9/22]の内容

国際特許分類[B22F9/22]に分類される特許

41 - 50 / 101


【課題】微細で均一な粒径を持ったニッケル粉を大量に低コストで製造する方法の提供。
【解決手段】アルカリ土類金属を含む水酸化ニッケル粉を焙焼処理して酸化ニッケル粉とし、この酸化ニッケル粉を還元処理してニッケル粉とするニッケル粉の製造方法において、ニッケル塩を含む水溶液を中和晶析してアルカリ土類金属を0.002〜1質量%含む水酸化ニッケル粉の形成工程(工程A)と、粒度分布調整された水酸化ニッケル粉を300〜1000℃の非還元性ガス中に分散した状態で酸化ニッケル粉へと焙焼処理すると共に、非還元性ガスおよび酸化ニッケル粉の焙焼処理により生じる水蒸気を水酸化ニッケル粉1gに対して0.2リットル/分以上の速度で排気する水酸化ニッケル粉の酸化ニッケル粉への焙焼工程(工程B)と、その酸化ニッケル粉を300〜500℃の温度で還元処理してニッケル粉を形成する還元工程(工程C)とを含むニッケル粉の製造方法。 (もっと読む)


【課題】還元・窒化に要する時間を短縮し、磁気特性に優れた窒化鉄系磁性微粒子を効率良く製造する方法を提供する。
【解決手段】本発明の窒化鉄系磁性微粒子の製造方法では、まず、酸化鉄微粒子を用意する(第1工程)。次に、水素を含むプラズマによって前記酸化鉄微粒子に対する還元処理を行い、前記酸化鉄微粒子からα−Fe金属微粒子を形成する(第2工程)。更に、窒素を含むプラズマによってα−Fe金属微粒子に対する窒化処理を行い、α−Fe金属微粒子からFe162化合物微粒子を形成する(第3工程)。第2工程と第3工程との間において前記α−Fe金属微粒子を大気に暴露しない、窒化鉄系磁性微粒子の製造方法。 (もっと読む)


【課題】製品となる金属粒子の微粉歩留を向上し、より低コストで生産性を高くすることができる球状金属粒子の製造装置および製造方法を提供する。
【解決手段】原料に粉状の金属あるいは金属化合物を用いて、外気と遮断した球状化炉内において還元性火炎を形成するバーナにより加熱して金属粒子を製造する際、バーナとして、中心から順に燃料流体をキャリアガスとして原料を供給する原料供給管1と、その周囲に形成した一次支燃性ガスを供給する一次支燃性ガス供給管2と、その周囲に形成した二次支燃性ガスを供給する二次支燃性ガス供給路3Aとを有し、原料供給管から噴出される原料の噴出孔1Bを複数とし、噴出孔の噴出角度を中心軸に対して15〜50度外側へ向けたバーナを用いる。原料の噴出速度を15m/s以下にすることも好ましい。 (もっと読む)


【課題】水素還元熱処理することによってFeの粗大化部分の形成が抑制されて個々の粒子が孤立したFePd/Fe磁性ナノ粒子を与え得るPd/Feナノ粒子、その製造方法、およびFeの粗大化部分の形成が抑制されて個々の粒子が孤立しているFePd/Fe磁性ナノ粒子を提供する。
【解決手段】TEM像、HAADF像およびEDXによる元素分析の少なくとも1つで評価してコア/シェル構造が確認できるPdコア相とFeシェル相とからなり、EDXで求めた平均のPd組成比率が50atm%以下であるコア/シェル型のPd/Feナノ粒子、そのコア/シェル型のPd/Feナノ粒子の製造方法、コア/シェル型Pd/Feナノ粒子を水素還元熱処理してなるFePd/Feナノ粒子。 (もっと読む)


【課題】 イオン化傾向の高い金属を含むコア成分と、該コア成分を被覆するよりイオン化傾向の低い金属を含むシェルとを有するコアシェル型金属ナノ粒子を得る。
【解決手段】 よりイオン化傾向の高い金属Aを含むコア成分と、該コア成分を被覆するよりイオン化傾向の低い金属Bを含むシェルとを有するコアシェル型金属ナノ粒子の製造方法であって、脱酸素した高沸点溶媒中で、金属Aイオンを還元して金属Aの微粒子を形成する工程(1)と、前記工程(1)により得た金属Aの微粒子を含む高沸点溶媒溶液を、金属Bイオンが1分間で80%以上金属Bに還元される温度以上に維持した状態で、金属Bイオンを含む溶液を添加する工程(2)を有することを特徴とする、コアシェル型金属ナノ粒子の製造方法。 (もっと読む)


【課題】食品及び飼料の添加剤として適切であり、コスト的に効率よく製造することのできる鉄粉を提供することである。
【解決手段】本発明は、食品強化用鉄粉に関する。該鉄粉は、不規則の形状の粒子を有する還元鉄粉末から本質的に成り、しかも、該鉄粉は、0.3未満のAD:PD比(式中、ADはg/cm単位の見かけ密度であり、PDはg/cm単位の粒子密度である)を有している。BET法によって測定されるそれら粉末粒子の比表面積は、300m/kgを超えており、しかも、その平均粒径は5〜45μmの間である。 (もっと読む)


【課題】 電子部品材料用として分散性が十分に確保され、不純物品位が低いニッケル粉とその簡潔な製造方法を提供する。
【解決手段】 ニッケル塩水溶液をアルカリ水溶液で中和して水酸化ニッケルの沈殿を生成させる工程(A)と、該水酸化ニッケルを空気中で熱処理して酸化ニッケルを生成させる工程(B)と、該酸化ニッケル粉表面を水溶性のアルカリ金属ハロゲン化物で被覆あるいは付着させる工程(C)と、該水溶性のアルカリ金属ハロゲン化物で表面を被覆あるいは付着させた酸化ニッケルを還元ガス雰囲気中で還元してニッケル粉とする工程(D)と、前記アルカリ金属ハロゲン化物を洗浄除去する工程(E)とを備えた製造方法とした。
本方法により得られるニッケル粉は、粒度分布D90が1.0μm以下、比表面積が4.6m/g以下、塩素、ナトリウム、カリウム品位が100質量ppm以下となる。 (もっと読む)


【課題】平均長軸径が5〜100nmの微粒子でありながら、粒度が均斉であると共に、超微細な粒子の存在割合が低減された、良好な粉体の保磁力分布SFDを有する強磁性金属粒子粉末を提供する。
【解決手段】炭酸水素アルカリ水溶液又は炭酸アルカリ水溶液と水酸化アルカリ水溶液との混合アルカリ水溶液と第一鉄塩水溶液とを反応させて得られる第一鉄含有沈殿物を含む水懸濁液を非酸化性雰囲気下において熟成させた後に、酸化剤によってゲータイト核晶粒子を生成させ、次いで、該核晶粒子表面にゲータイト層を成長させ、得られたゲータイト粒子粉末を100〜250℃で加熱処理し、300〜650℃、水蒸気が90vol%以上で加熱処理してヘマタイト粒子粉末とし、更に、加熱還元する。 (もっと読む)


【課題】Ni−W合金微粒子中におけるWの含有量を所望の値にすることが可能であるNi−W合金(もしくはNi−W系合金)微粒子の製造方法を提供すること。
【解決手段】合金微粒子製造用材料としてのNi(もしくはNiを主成分とする材料)粒子および酸化W粒子を分散させて熱プラズマ炎中に供給し、前記合金微粒子製造用材料粒子を蒸発させ気相状態の合金を含む混合物とし、この混合物を冷却し、任意に規定される粒径での分級を実施し、前記混合物中からNi−W合金(もしくはNi−W系合金)微粒子を回収することを特徴とする。 (もっと読む)


【課題】 遷移金属元素を強制固溶し、超硬合金原料や触媒用原料に用いるのに適したタングステン合金粉末を提供する。
【解決手段】 コバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属元素がタングステン格子中に固溶されてなり、X線回折図形にbccタングステン相ピークが認められることを特徴とし、式[1]で示される遷移金属固溶タングステン合金粉末にある。
式[1]:M−W(但し、MはCo、Fe、MnまたはNiから選ばれる1種以上を示す)
このタングステン合金粉末を用いると、炭化タングステンの骨格内に、コバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属元素とタングステンと炭素との固溶体相が含まれている遷移金属固溶タングステン炭化物、及びタングステン炭化物分散超硬合金を提供することができる。 (もっと読む)


41 - 50 / 101