説明

国際特許分類[C01G49/06]の内容

国際特許分類[C01G49/06]に分類される特許

41 - 50 / 77


【課題】煩雑で粒径分布コントロールも困難な逆ミセル法を経ることなく、既存の粉末原料を用いてε−Fe23結晶を生成させる手法を提供する。
【解決手段】オキシ水酸化鉄(α−FeOOH)の粒子を水蒸気が混合された水素ガス雰囲気等の弱還元雰囲気下において300〜600℃の範囲の温度で熱処理することにより立方晶酸化鉄を生成させる熱処理工程Aと、熱処理工程Aで得られた粒子を大気等の酸化雰囲気下において700〜1300℃の範囲の温度で熱処理することにより立方晶酸化鉄からε−Fe23結晶を生成させる熱処理工程Bを有するε−Fe23結晶の製法が提供される。上記熱処理工程Aと熱処理工程Bでは、いずれもSi酸化物に覆われた状態の粒子に対して熱処理を施すことが望ましい。 (もっと読む)


【課題】磁気特性、および液中や高分子基材中への分散性が改善されたε−Fe23結晶の粉末を提供する。
【解決手段】ε−Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とする鉄酸化物の粒子からなり、TEM写真により測定される粒子径において、平均粒子径が10〜200nm、かつ、粒子径10nm未満の粒子の個数割合が25%以下である磁性粉末。
ただし、上記鉄酸化物におけるMとFeのモル比をM:Fe=x:(2−x)と表すとき、0≦x<1である。 (もっと読む)


【課題】ε−Fe23結晶に特有な優れた磁気特性がより一層効果的に発揮される磁性材料を提供する。
【解決手段】ε−Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を磁性相にもつ鉄酸化物粒子の充填構造を有し、その充填構造を構成する粒子の磁化容易軸が一方向に沿って配向している磁性材料。ただし、上記鉄酸化物におけるMとFeのモル比をM:Fe=x:(2−x)と表すとき、0≦x<1である。このような磁性材料においては、磁化容易軸の配向方向に対して平行方向の磁場を印加することにより測定される磁気ヒステリシスループにおいて、例えば24kOe(1.91×106A/m)レベルの巨大保磁力が観測されるものが実現できる。 (もっと読む)


【課題】磁気特性、および液中や高分子基材中への分散性が改善されたε−Fe23結晶の粉末を提供する。
【解決手段】ε−Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とする鉄酸化物の表面にSi酸化物を有する複合粒子からなり、Si/(Fe+M)×100で表されるSi含有量が0.1〜30モル%に調整されている磁性粉末。
ただし、上記鉄酸化物におけるMとFeのモル比をM:Fe=x:(2−x)と表すとき、0≦x<1である。 (もっと読む)


【課題】均一な粒径を有する機能性酸化物ナノ粒子を簡便に合成可能な技術を提供する。
【解決手段】ナノ粒子合成装置1は、紫外線レーザー光源2と、レーザー光反射鏡3と、反応容器4と、反応容器4中に投入された金属塩の溶媒溶液5と、を備えている。反応容器4には、金属塩を溶媒に溶かした溶液が納められている。溶媒の適性は、紫外線領域における吸収性能に依存する。硝酸セリウムについては、溶媒としてアルコールを必要としない。但し、塩の種類(例えば鉄系)によってはアルコール溶媒が必要となる。図4は、X線回折図形を用いてセリウム酸化物の粒径、格子定数、収率のレーザー出力依存性を計算した結果である。これより、粒径2nmのセリウム酸化物ナノ粒子が合成され、レーザー出力の増大に伴って粒径を維持したまま収率が向上していくことが分かる。また、格子定数及び粒径は出力にほとんど依存せず一定であることが分かる。 (もっと読む)


本発明の対象は、無機表面変性された超微粒子、それらの製造方法及びそれらの使用である。 (もっと読む)


【課題】本発明はヒ素等の物質を高選択的に、速い吸着速度で、高い吸着容量により吸着することができる吸着材を提供することを目的とする。
【解決手段】本発明は分子インプリント法により多孔質化された物質吸着性マグネタイトを提供する。物質吸着性マグネタイトの製造方法は、鋳型成分の存在下で鉄塩からマグネタイトを調製する工程(A)と、工程(A)から得られたマグネタイトの鋳型成分を除去する工程(B)とを含むことを特徴とする。 (もっと読む)


【課題】常温かつ常圧下にて、一次粒子径がナノメートルオーダである金属酸化物粒子を製造する。
【解決手段】常温かつ常圧下にて、硝酸塩、水酸化物などの金属酸化物の金属元素が水溶液中にイオン状態で存在する金属酸化物の原料に対して、モノエタノールアミン、ジエタノールアミンなどの水溶性アミン類を添加することにより、水溶液のpHを4以上として金属酸化物粒子を生成する。さらに、金属酸化物粒子が生成された水溶液を、pHが1以上4以下に調製した後、超音波を照射することで、当該水溶液中にて金属酸化物粒子を一次粒子に単分散させる。 (もっと読む)


【課題】高感度および低ノイズを発現する磁性粒子およびその製造方法を提供すること。
【解決手段】磁性粒子は、下記一般式(1)で表される基を含む。
【化1】


・・・・・(1)
(式中、RおよびRは独立して、水酸基、下記一般式(2)で表される基、または下記一般式(3)で表される基であり、RおよびRがいずれも水酸基である場合を除く。)
【化2】


・・・・・(2)
(式中、Rは炭素数2〜6の直鎖、分岐、または環状のアルキレン基、あるいはアリーレン基を表す。)
【化3】


・・・・・(3)
(式中、Rは水素原子またはアルキル基を表す。) (もっと読む)


【課題】酸化鉄中に含まれるMnの影響を抑制し、鮮やか赤色を示す塩化鉄系赤色顔料用酸化鉄粉とその有利な製造方法を提案する。
【解決手段】酸化鉄換算で、Mnを0.1〜3mass%、Alを0.03〜3mass%含有し、AlとMnとの質量比(Al/Mn)が0.3〜25である塩化鉄溶液を、550〜800℃の温度で噴霧焙焼し、その後、粉砕することにより、Mnを0.1〜3mass%、Alを0.03〜3mass%含有し、比表面積が6〜14m/gであり、好ましくは、AlとMnとの質量比(Al/Mn)が0.3〜25で、さらに好ましくは、レーザー回折式粒度分布測定装置で測定したD50が0.7μm以下で、2μm以上の凝集粒子が5vol%以下である赤色顔料用酸化鉄粉を得る。 (もっと読む)


41 - 50 / 77