説明

国際特許分類[C21C7/064]の内容

国際特許分類[C21C7/064]に分類される特許

81 - 90 / 112


【課題】スラグ組成、溶鋼の昇熱処理、攪拌処理および取鍋蓋開口部の不活性ガスパージの適正化により、極低硫低窒素高清浄鋼を効率よく安定して溶製できる方法を提供する。
【解決手段】溶鋼を下記の工程1〜3の順序により処理する極低硫高清浄鋼の溶製方法である。工程1:大気圧下において取鍋内溶鋼にCaO系フラックスを添加する、工程2:取鍋蓋を設置し、取鍋内溶鋼中に攪拌ガスを吹き込んで蓋の内側への大気の侵入を抑制しながら攪拌するとともに、溶鋼に酸化性ガスを供給し、生成した酸化物をCaO系フラックスと混合してカバースラグを形成する、工程3:酸化性ガスの供給を停止し、取鍋内溶鋼中に攪拌ガスを吹き込んで脱硫および介在物除去を行う。さらに、蓋の開口部を不活性ガスによりパージするか、工程3の後に工程4として溶鋼のRH真空脱ガス処理に際し、溶鋼中の介在物の低減および脱窒処理などを行ってもよい。 (もっと読む)


【課題】前処理および設備の変更を伴わずに簡便に実施することができ、溶鋼中の硫黄および水素の含有量が少ない取鍋精錬方法を提供する。
【解決手段】取鍋3に受けた前記溶鋼を昇温する前または昇温途中に、MgO≧95%、CaO=0%である第1のフラックスを溶鋼1トンあたり5〜8kg添加し、第1のフラックスの添加後に、生石灰および/またはフッ化カルシウム(CaF2)を有する第2のフラックスを添加し、第1のフラックスおよび第2のフラックスの添加の結果として、精錬後のスラグが下記成分となるように溶鋼の2次処理を行う。
CaO :20〜40mass%
SiO2 :20〜30mass%
CaF2 :10〜20mass%
MgO :20〜25mass%
T.Fe+MnO+Cr23 ≦2.0mass%
(CaO+MgO)/SiO2 :1.5〜3.0 (もっと読む)


【課題】 溶銑や溶鋼などの溶鉄を脱硫処理するに際し、溶鉄の攪拌のためのインジェクション法などを併用せずとも、且つCaF2 を配合しなくとも、金属帯被覆脱硫用ワイヤーによるワイヤーフィーダー法のみで効率良く脱硫処理することのできる金属帯被覆脱硫用ワイヤーを提供するとともに溶鉄の脱硫処理方法を提供する。
【解決手段】 上記課題を解決するための金属帯被覆脱硫用ワイヤーは、CaO系フラックスと、金属Mg及び/またはMgOと、金属Alと、廃トナー粉と、を混合した粒状及び/または粉状の脱硫剤が金属質の帯材で被覆されていることを特徴とし、上記課題を解決するための溶鉄の脱硫処理方法は、前記金属帯被覆脱硫用ワイヤーを溶銑中または溶鋼中に供給して脱硫処理することを特徴とする。 (もっと読む)


【課題】 転炉出鋼時に普通鋼或いは低硫鋼のS含有量が目標S濃度の上限を外れた場合、製造工程に撹乱を生ずることなく、且つ、製造コストの上昇を抑えしかも安定してこれらのS含有量を目標上限以下に低減することのできる脱硫方法を提供する。
【解決手段】 溶銑の脱炭精錬により得た溶鋼を転炉から取鍋に出鋼し、取鍋内溶鋼の湯面上に存在するスラグの還元処理を行った後、溶鋼をRH真空脱ガス装置にて二次精錬するに当たり、RH真空脱ガス装置にて溶鋼中にAlを投入して溶鋼を脱酸した後、RH真空脱ガス装置に設けた上吹きランスから、真空脱ガス槽内の溶鋼湯面に向けてCaOを48〜58mass%、Al23 を42〜52mass%含有し、CaF2 を含有しない脱硫用プリメルトフラックスを吹き付けて溶鋼を脱硫する。その際に、脱硫用プリメルトフラックスを吹き付ける前に、真空脱ガス槽内の溶鋼にMgOを投入することが好ましい。 (もっと読む)


【課題】従来の分割精錬で達成された脱P、脱S工程能力を維持しつつ、大幅な熱裕度の向上をもたらす効果的な精錬方法を提供する。
【解決手段】溶銑から連続鋳造に供する溶鋼を製造する方法であって、高炉から出銑された溶銑をそのまま転炉に装入し、以降の精錬については、脱Si脱P処理を行った後、排滓を行い、その後同一転炉で、引き続き脱C処理を行い、溶鋼を取鍋に出鋼してアーク加熱取鍋精錬装置で昇温を施し、脱Si脱Pは、前記転炉に装入した一連の工程の中でのみ行い、脱S処理は、前記アーク加熱取鍋精錬装置でのみ行うことを特徴とする溶鋼の製造方法。好ましくは、脱C処理の吹き止め%Cを0.07%以上および吹き止め温度を1660℃以下とする。 (もっと読む)


【課題】 高効率の脱硫処理を可能とする、溶鉄との濡れ性を向上させたCaO系脱硫剤を、簡便に且つ安価にしかも安定して製造する。
【解決手段】 上記課題を解決するためのCaO系脱硫剤の製造方法は、主成分をCaO粒子とし、該CaO粒子の表面に炭素質粒子が付着したCaO系脱硫剤の製造方法であって、CaO粒子と、平均粒径が5μm以下である、主成分を炭素とする炭素質粒子とを混合してCaO粒子の表面に炭素質粒子を付着させることを特徴とする。その際に、前記炭素質粒子の平均粒径を1μm以下とする、前記CaO粒子と前記炭素質粒子とを混合した後のCaO粒子の測色計による明度指数L* 値を30以下とすることにより、より高効率のCaO系脱硫剤を安定して製造することが可能となる。 (もっと読む)


【課題】 安価に製造可能で且つ高効率の脱硫処理を可能とする、溶鉄との濡れ性を向上させたCaO系脱硫剤を提供する。
【解決手段】 上記課題を解決するためのCaO系脱硫剤は、主成分がCaO粒子であるCaO系脱硫剤において、平均粒径が5μm以下である、主成分を炭素とする炭素質粒子を、前記CaO粒子と混合させたものである。また、前記炭素質粒子の平均粒径を1μm以下とする、前記CaO粒子の平均粒径を10μm以上とする、前記炭素質粒子の配合率を1質量%以上とすることで、脱硫効率を一層向上させることが可能となる。 (もっと読む)


【課題】少量のNd添加でP化合物を生成させて溶鉄中の溶解P濃度を低減でき、かつ連続鋳造性に優れた清浄度の高い溶鉄を製造できる溶鉄の処理方法を提供する。
【解決手段】P:0.0001%以上0.5%以下、S:0.005%以下、およびO(酸素):0.005%以下を含有する溶鉄にNdを添加して、溶鉄中のP、SおよびO濃度に応じて下記(1)式および(2)式の関係を満足するように溶鉄中のNd濃度を制御した後、溶鉄にCaを添加して、溶鉄中のNd濃度に応じて下記(3)式の関係を満足するように溶鉄中のCa濃度を制御する溶鉄の処理方法である。A=0.24[P]+0.82[S]+0.85[O]・・(1)、 A+0.005≦[Nd]≦A+0.03・・(2)、 1.2×10-2×[Nd]2/3≦[Ca]≦1.6×10-2×[Nd]2/3+0.015・・(3)、 ここで、[P]、[S]、[O]、[Nd]および[Ca]は、溶鉄中における各元素の濃度(質量%)を表す。 (もっと読む)


【課題】Al−Siキルド鋼の昇熱と脱硫とを同時に可能な精錬方法を提供する。
【解決手段】スラグ中のFeO及びMnOの減少速度に基づいて、溶鋼へ酸素が供給される速度である第1酸素供給速度αを求める。溶鋼に吹き付けられる酸素の流量に基づいて、溶鋼へ酸素が供給される速度である第2酸素供給速度βを求める。所謂攪拌動力ε[Watt/ton]が80であるときに、溶鋼中のAl濃度とSi濃度との和に前記攪拌動力εを乗じたものに或る定数Aを乗じたものとしての脱酸元素供給速度δの酸素換算である脱酸元素酸素除去速度γと、前記の第1酸素供給速度α及び第2酸素供給速度βとの和と、がバランスすることを利用して前記定数Aを求める。Al濃度及びSi濃度と攪拌動力εと、求められた前記定数Aと、を用いて前記脱酸元素供給速度δを求める。求められた前記脱酸元素供給速度δと、前記第2酸素供給速度βと、の比δ/βを2以上とする。 (もっと読む)


【課題】石灰石を焼成して得た生石灰を使用しつつも、ポーラス化をさらに高めて反応性を飛躍的に上げること、それによって蛍石の使用を排除できることを実現した石灰系精錬用フラックスを提供する。
【解決手段】石灰石を粉砕し、これを造粒し、NaClを接触させて焼成した後、造滓作用可能サイズに破砕または粉砕された塩焼き生石灰とする。または、石灰石を粉砕し、これを塩水で練って造粒し、造粒物を焼成した後、造滓作用可能サイズに破砕または粉砕された塩焼き生石灰とする。これらは、金属精錬炉内の溶湯に含まれる硫黄分もしくは燐酸分等と反応して、スラグの生成を促進する石灰系フラックスとなる。なお、造粒するときAl2 3 やCやマグネシアを混ぜておいてもよい。生石灰を破砕または粉砕した後に、カルシウム・フェライトをブレンドすることもできる。 (もっと読む)


81 - 90 / 112