説明

アトムプローブ装置及びアトムプローブ分析方法

【課題】本発明が解決しようとする課題は、デバイスの分析したいところを局所的に切出して針状突起にする試料予備加工の技術を提示すると共に、後述する事情の中で小さな蒸発電界の元素層を含む多層構造の試料であっても順次の安定したイオン蒸発を可能とし、原子レベルのSAP分析を可能とする技術を提供することにある。
【解決手段】本発明のアトムプローブ装置用試料の予備加工は、FIB装置を用いて試料所望観察部位をブロック状に切り出すステップと、該ブロック状の切り出し試料を試料基板上に移送して固定するステップと、該試料基板上に固定されたブロック状の試料をFIBエッチング加工によって針先形状に加工するステップとからなる。また、針先形状に加工された試料は多層構造の層方向が針の長手方向に平行となるように形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、中空円錐状のイオン引出電極を備えたアトムプローブ装置における試料配置と針状試料の予備加工方法とに関する。
【背景技術】
【0002】
電子のトンネル現象を利用した最初の高分解能顕微鏡は、図3に示すように鋭い針先から電子を放射させ、拡大投映させた放射電子像を観察する電界放射顕微鏡FEM(Field Emission Microscope)であった。この顕微鏡は真空状態の下で強電界をかけると、量子力学的トンネル効果により金属導体表面から表面ポテンシャルの障壁を越えて電子が放出される電界放射現象を利用したもので、針状に形成された金属の先端表面から強電界の作用で蛍光体が塗布されたスクリーンに向けて電子放射がなされように構成することで、蛍光スクリーン上に放出金属表面の拡大像を映し出させるというものである。FEMの分解能は約1nmと低いので原子は見えないが、針に印加した負電圧と放射電流のI−V特性から針先の半球面上の微細な結晶面の仕事関数が求まる。針への印加電圧を負から正に切り替え、鏡体内に低圧の不活性ガスを導入すると、FEMは電界イオン顕微鏡FIM(Field Ion Microscope)として作動し、針先の原子配列を直接観察できるようになる。FIMには、電界蒸発現象により針先の表面原子を陽イオンとして順序正しく脱離させることができる特性がある。この現象は走査型トンネル顕微鏡STM(Scanning Tunneling Microscope)による原子操作にも利用されている。脱離イオンを逐一検出同定すると針先の組成を原子レベルで解析できる。この発想にもとづいて、単一イオンを検出できる質量分析器とFIMとの複合器アトムプローブAP(Atom Probe)が開発された。APは、針先の電子状態・原子配列・組成分布を解析できる唯一の装置である。電界蒸発は表面第1層から原子層ごと順序正しく進行するので、APによって層ごとの組成や界面の組成分布、さらには電子状態変化をしらべることができる。
【0003】
ただし、このAPには試料の作製と形状に厳しい制約があり、その特性を生かせる分野は限られていた。この制約を打破するために考案されたのが走査型アトムプローブ(SAP:Scanning Atom Probe )である。密集配列した針から特定の針を選びその先端をしらべるには、針先に電界を局在化させなければならない。そこで、接地された微細な漏斗型の引出電極をAPの鏡体内に取り付け、微細な針が密集配列している平面状試料に正電圧を印加する。すると、引出電極先端の直径が数μmから数十μmの孔の真下にある単一の針先に高電界が発生するとともに、電界は孔と針先との間のきわめて狭い空間に局在化する。コンピュータによる電界分布計算によると、針先の頂角で90°、先端曲率半径が50nmであっても、針先には電界放射や電界蒸発に求められる高電界が発生する。このことは、平らな試料面上に数μm程度の凹凸があれば、その突起の先端を分析できることを示している。平滑処理が施されていない表面や腐食した表面、高効率の触媒の表面等は、通常凹凸に富んでいるので、これらの表面があるがままにしらべられることになる。図4にSAPの基本構造を示す。左端の試料は密集配列型電界放射電子源を模式的に示したものである。漏斗型の引出電極の先端の孔が試料面上の針先または突起の先端に近づくと、先端と電極間のきわめて狭い領域に高電界が発生し、針先から放射された電子がスクリーンにFEM像を映し出す。また、鏡体内にヘリウムのような不活性映像ガスを導入し、試料に正電圧を印加すると、スクリーンには高分解能のFIM像が映し出される。さらに定常電圧の上にパルス電圧を上乗せするかパルスレーザー光を試料面に照射して表面原子を電界蒸発させると、陽イオンとして蒸発した表面原子はスクリーン中央の探査孔を通り抜けて質量分析器であるリフレクトロンに入り、逐一検出される。分析される領域は探査孔に対応した突起先端の直径数ナノから数十ナノの領域である。分析を続けると、この領域の深さ方向の組成変化を1原子層の分解能でしらべることができる。
【0004】
この文献では、表面に凹凸のある試料を分析対象としており、特に凸の部分を探し出し引出電極と対向させて試料突起部を上層原子から順に電界蒸発させてイオンとして引出し、上記引出電極の後方に配置されたイオン検出器(二次元検出タイプ)で検出すると、各イオンの飛行時間計測により元素分析が出来ること。位置情報も得られるので原子レベルの三次元組成分析が可能であることを示している。
【0005】
一方、強い分析ニーズのある半導体ウェハ、GMR或いはTMRと呼ばれる薄膜磁気ヘッドウェハ等の分析対象試料を試料とする場合には、複雑なパターンを積重ねた多層構造となっていることが多く、分析したい部分の構造は多種多様である。APを用いてこのような分析対象を分析するためには、分析したいところを局所的に切出して電極となる針状突起の先に微細な切片として切り出して固定しなくてはならないが、従来は金属材料等の試料を針状にする旧来の方法のみが存在していたにすぎず、微細な特定部位をAPで分析することは非常に困難であった。そのため、これに代わる手法として試料自体を針状に加工する予備加工技術の開発が必須となる。原子レベルの分析である関係上、分析対象寸法は 100nm立方程度となるので、分析対象部をピンポイントで針状試料に作製する技術が極めて重要となる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2004−361139号公報
【非特許文献】
【0007】
【非特許文献1】森田清三編著「走査型プローブ顕微鏡基礎と未来予測」平成12年2月10日丸善発行 2.7走査型アトムプローブ(SAP) 70〜73頁
【非特許文献2】西川治編著「走査型プローブ顕微鏡STMからSPMへ」 平成10年3月30日丸善発行 8頁の記載及び、表1-2 各種元素の蒸発電界強度
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明が解決しようとする課題は、SAP分析対象試料が微小凹凸を備えている突起部に限定されることなく、デバイスの分析したいところを局所的に切出して針状突起にする試料予備加工の技術を提示すると共に、後述する事情の中で蒸発電界が大きく異なる元素層を含む多層構造の試料であっても順次の安定したイオン蒸発を可能とし、原子レベルのSAP分析を可能とする技術を提供することにある。
【課題を解決するための手段】
【0009】
本発明のアトムプローブ装置は、多層構造からなる試料の各層の端部に引き出し電界を印加する引き出し電極と、多層構造の各層の蒸発電界の強度を記憶する記憶手段と、イオンを検出するためのスクリーン上の到着位置を検知する手段とを備え、多層構造の各層の蒸発電界強度と到達位置から特定する層の端部位置を特定する機能を有する。
【0010】
また、本発明のアトムプローブ分析方法は、多層構造の各層の界面の方向が針の長手方向に平行となる針先形状の試料の各層の端部に電界を印加して蒸発したイオンがスクリーンに到達した位置を検出し試料を構成する元素について分析するアトムプローブ分析方法において、試料に印加する電界強度を徐々に上げる工程と、各層の蒸発電界強度を記憶する工程と、各層の蒸発電界強度を用いてスクリーンにイオンが到達した位置から試料の構成元素の位置を補正する工程とを含む。
【発明の効果】
【0011】
本発明のアトムプローブ装置用試料の予備加工方法は、FIB装置を用いて試料所望分析部位をブロック状に切り出すステップと、該ブロック状の切り出し試料を試料基板上に移送して固定するステップと、該試料基板上に固定されたブロック状の試料をFIBエッチング加工によって針先形状に加工するステップとからなるものであるから、分析所望箇所を切り出して、アトムプローブ装置用の試料として好適な先鋭な針先形状に形成することができる。
【0012】
また、本発明のアトムプローブ装置用試料の予備加工方法は、ブロック状の切り出し試料を試料基板上に固定する手法としてFIB−CVDによって仮接着するステップと、ブロック状の試料の基部と試料基板とにかけてFIBエッチングで切り込みを入れるステップと、その上で該切り込み部分にFIB−CVDを施すようにしたものであるから、試料基板とブロック状試料とを堅固に接着固定することができた。これによってアトムプローブ装置による試験を安定して行うことができる。
【0013】
ブロック状の試料をFIBエッチング加工によって針先形状に加工する仕上加工では、加速電圧10kV以下で行うことにより、照射イオンが試料内に残留するダメージを極力抑えることができる。
【0014】
また、仕上加工を加速電圧10kV以下で行った後、さらに低加速Arイオンミリング等でそのダメージ層を除去することができる。
【0015】
本発明のアトムプローブ装置用試料は、針先形状に加工された試料は多層構造の層方向が針の長手方向に平行となるように形成されているので、多層構造内に蒸発電圧が異なる元素の層があってもその境界面で剥離してしまうようなことが無く、アトムプローブ装置による試験を安定して行うことができる。
【0016】
本発明のアトムプローブ装置用試料は、どの元素の層が先に蒸発するかなどの情報を蓄積した記憶手段と、イオン検出器となるスクリーンへの到着位置を検知する手段を備えるものであるから、その情報を元に特定する元素の層の端部位置を割り出すことができる。
【0017】
本発明のアトムプローブ装置は、混在してイオン蒸発する異なる元素をそれぞれ分別して分析することを可能とした。
【図面の簡単な説明】
【0018】
【図1】SAP用の針状試料を予備加工する本発明の手法を説明する図である。
【図2】多層構造試料の層を針の軸方向にしてSAP用の針状試料に予備加工する本発明の手法を説明する図である。
【図3】電界放射顕微鏡FEMの基本構成を説明する図である。
【図4】走査型アトムプローブSAPの基本構造を示す図である。
【発明を実施するための形態】
【0019】
本発明者等は複雑なパターンを積重ねた多層構造となっているデバイスをAPの技術で原子層毎の分析を行うべく試料の予備加工とそれを用いた分析を試みた。まず、試料の予備加工としてデバイスの一部を集束イオンビーム(FIB)装置を用いてブロック状に切り出して、試料基板上に移送固定し、更にFIB装置を用いて針状試料に仕上げる加工方法をとった。その手順は例えばウェハ状の大きな試料からFIB装置の走査型イオン顕微鏡(SIM)機能を用いてデバイスの観察所望箇所を特定し、その表面にFIB−CVDによって保護膜を形成する。ここで、APで分析したい領域が試料表面に存在する場合には、FIB照射によるGaイオン注入などのダメージを避けるために、FIB照射前に保護膜を付けるようにする。保護膜は、真空蒸着装置、あるいはスパッタ成膜装置を用いる方法で成膜出来る。なお、場所出し後に所望位置に保護膜を付けることが可能という点で好適な方法について以下に述べる。FIBと同一点を照射するように配置したSEMを備えた装置を使用し、このSEMによって概略の位置出しした後に、EB−CVDで少なくともFIBの進入深さより厚い50nm程度の保護膜を付ける。もっと厚い膜が必要な場合は高速成膜が可能なFIB−CVDで追加成膜しても良い。続いて図1のAに示すように観察所望箇所の四方周辺をFIBエッチングにより穴掘り加工を行い、大きな穴を開けた方向からFIB照射ができるように試料ステージをチルトしFIBエッチングによるボトムカットをしてデバイスから切り離す。切り離されたブロック状の観察試料片1を図1のBに示すようにマニピュレータによって操作される微細なプローブ3で固定基板2上に移送しFIB−CVDによって仮固定する。このときの切り出された試料片1はチルト角方向からのFIBによってボトムカットされるため、底部は表面に対し傾斜角をもつことになり、固定試料台2への固定は図示されたように傾斜部分を埋めるようにして固定する。以上のプロセスは本発明者グループが先に開発し特願2003−157120号として出願した透過型電子顕微鏡用試料に関する「ピックアップ試料の垂直位置出し方法と垂直方向を示す印をもつ試料」明細書(特許文献1)に開示した手法に準じたものである。
【0020】
観察したい個所を特定してFIBエッチングによって固定基板上に切り出されたブロック状の試料片1が仮固定(5仮固定部)されたなら、試料ステージをチルトしてブロック状の試料片1の基部と固定基板2とにかけてFIBエッチングで切り込みを入れる。そうした上でその切り込み部分にFIB−CVDを施し、試料基板とブロック状試料とを接着本固定(6本固定部)する。この状態を図1のDに示す。この本固定を複数箇所施すことによりブロック試料片1を固定基板2に堅固に固着する。最後にこのブロック状の試料片1はFIBエッチングで針形状に成形加工される。このようにして予備加工された針状試料1aを図1のEに示す。ここでは、図1のBに示すように、固定基板2は切り出した試料片1より大きな平板としたが、場合によっては図1のCに示すように固定基板2に先端を平坦にした針状突起を設けておき、その上に切り出した試料片1を固定して全体が大きな針状になるように加工しても良い。試料針先に電界を集中させるために、針の長さをイオン引出電極の径の数倍にする必要があるからである。上記のように固定基板に突起を設けておくことにより、APのイオン引出電極の径が大きい場合にも対応できるようになる。FIB加工によって、ガリウムなどの照射イオンが試料内に打ち込まれるダメージの及ぶ深さは、加速電圧を低くすれば浅く出来るので仕上加工を加速電圧5〜10kV以下で行えばダメージ層の厚さを10nm以下に出来る。試料針の先端径は200nm程度なので外周部の一部を除く大部分の領域の分析が可能となる。さらに低加速Arイオンミリング等でダメージ層を除去する工程を含めることも有効である。
【0021】
このようにして加工された試料は針の先端から基部方向にかけて異なる素材が多重に積層された形態となっている。この試料をSAPにセットし試料基板と中空円錐状の引出電極間に電圧を印加し、試料先端部分から原子層毎にイオン蒸発させて、イオン検出器で元素分析を行うことになるが、その際電界蒸発に必要な電界強度が元素によって大きく異なることは公知の技術事項である。非特許文献2には各元素について理論式から求められる蒸発電界と蒸発電界実験値の値が一覧表で示されている。そのために、多層薄膜試料のAP分析においては、各層毎に印加電界強度を適切な値に迅速に切り換え、分析を進める必要がある。蒸発電界が特に大きい元素の層の下に、界面付着強度の小さな層がある場合などに、付着力が静電引力に負けてその弱い界面で剥離を起こしてその層以上の試料が飛んでしまうという問題が発生する。
【0022】
そこで、本発明者等は更に試料の多層構造中に剥離しやすい界面が存在しても、その元素の層の部分で剥離してしまうようなことが無く安定したイオン蒸発を可能とし、原子レベルの分析を可能とするアトムプローブ装置を提供することを更なる課題として研究を進めた。
【0023】
この課題を解決する第1の方法として薄膜試料中に、付着強度が小さい界面を挟んで蒸発電界が大きい層と小さい層がある場合には、蒸発電界が小さい層が表面側になるように、試料方向を切出して試料基板上に接着する。このように配置することで当初は低い電圧印加で蒸発電界が小さい層の原子をイオン蒸発させ、その原子層が蒸発した後で電界を強くして蒸発電界が大きい層の原子をイオン蒸発させるようにすることで原子レベルの分析が可能となる。
【0024】
多層薄膜試料で中間層に界面付着強度が小さい層が存在する場合にはこの方法が採れないので、本発明では各層の界面の方向が試料針の長手方向となるように試料構造を加工することに想到した。この場合の試料の予備加工は図2に示すように進められる。試料加工の仕上がりとして針形状の長手方向に積層面が来るように、FIBエッチングによるブロック切り出し加工を行う。一般に半導体素子の積層構造は層面が表面と並行となっているので、図2のAに示すように長方形のエリアを浅く切り出すことになるが、その前に分析箇所を位置出しし、FIBによるダメージを受けないようにその領域の表面に第1の保護膜4aを形成しておく。この辺については、加速電圧10kV以下で行い、ダメージ層を浅くする方法を用いるのが好適である。次に、FIBエッチングによって観察領域を含む切り出し試料片1として切り出し、図2のBに示すようにマニピュレータを操作して微細なプローブ3でこの切り出し試料片1を固定する基板2上に移送し、FIB−CVDによって仮固定(5仮固定部)する。このとき試料片1の向きは針形状を形成するものであるから長手方向を試料基板2と直交する方向に固定することになる。仮固定がすんだところで本固定(6本固定部)を施すことになるが、その際図2のCに示すようにFIB照射によるダメージを防止するため試料先端部にFIB−CVDによって第2の保護膜4bを形成する。この保護膜4aを形成する前に観察領域となる多層構造部分の位置情報はSIMによって検知しておくことが必要である。ブロック状の切り出し試料片1を試料固定基板2上に本固定する手法は試料ステージをチルトしてFIBをブロック状の試料片1の基部と試料基板2とにかけて斜め上方から照射させ、FIBエッチングで切り込みを入れ、その上でガス銃からフェナントレンなどの原料ガスを噴射しつつ該切り込み部分にFIBを照射してCVDを施し、試料基板とブロック状試料とを接着固定する。このような接着加工を複数箇所に施し、ブロック試料を試料基板に堅固に固着する。
【0025】
固定基板2に固定された柱状の試料片1に対し上方からのFIB照射をおこなってエッチングし、針形状を形成する。この際、柱状の試料片1のどの部分に観察領域があるかを先に検出し記憶してある位置情報を基にエッチング加工を施す。このようにして加工された状態を図2のDに示してある。先端径は0.2μmφ程度に加工する。
【0026】
層厚がnm或いはサブナノオーダーまである多層試料をこのように針形状に作製すると、各層の端部が同時に引出電界にさらされることになるので、各層の原子が同時にイオン化蒸発を始めることになるが、中でも小さな蒸発電界の元素の層から先にイオン化して飛び出す。すると相対的に大きな蒸発電界の層が取り残されるので、その層が凸となり電界が集中する一方で、蒸発した層は凹となり、図2のEに示すように元素の蒸発電界の差によって先端部の位置に段差を生じることとなる。低い蒸発電界の層の端部は低くなるがそうなると引出電極との間に形成される電界強度が下がることになる。その結果として、印加電圧が一定なら蒸発電界の小さな層のイオン化がスローダウンする。そこで、イオン化レートが分析可能な範囲で一定となるように引出電界を設定すれば、時間のずれがあってもバランスするようになり、ついには全ての層が電界蒸発するに至る。これにより、特定の層が高速で蒸発してしまい各層の分析が出来なくなるという不具合を解決出来るのである。
【0027】
SAPによってこの試料を分析する際、abcd各層の蒸発電界の値には違いがあるので、電界強度を徐々に上げてゆくとまず最も低い値の元素をスクリーン上で検出でき、順次蒸発電界の値の低いものが検出できる。これを時系列的にトレースしていけば蒸発速度の違いによって先端部の位置が変わっても対応関係はとれ、位置の補正が可能である。すなわち、蒸発表面側に凹凸が出来ると、イオンの飛行方向が単純な針先の場合と変化することになるが、各層の端部と引出電極との位置関係から、イオン発生場所と検出器となるスクリーンへの到着位置との対応はつくので、位置補正が可能である。これらの多様な分析により、従来困難であった超薄寸法の多層構造試料の原子レベル組成分析が可能になった。
【符号の説明】
【0028】
1… 切り出し試料片
1a… 針状試料
2… 試料固定基板
3… プローブ
4、4a、4b… 保護膜
5… 仮固定部
6… 本固定部

【特許請求の範囲】
【請求項1】
多層構造からなる試料の各層の端部に引き出し電界を印加する引き出し電極と、
前記多層構造の各層の蒸発電界の強度を記憶する記憶手段と、
イオンを検出するためのスクリーン上の到着位置を検知する手段とを備え、
前記多層構造の各層の蒸発電界強度と前記到達位置から特定する層の端部位置を特定する機能を有するアトムプローブ装置。
【請求項2】
多層構造の各層の界面の方向が針の長手方向に平行となる針先形状の試料の前記各層の端部に電界を印加して蒸発したイオンがスクリーンに到達した位置を検出し前記試料を構成する元素について分析するアトムプローブ分析方法において、
前記試料に印加する電界強度を徐々に上げる工程と、
前記各層の蒸発電界強度を記憶する工程と、
前記各層の蒸発電界強度を用いて前記スクリーンにイオンが到達した位置から前記試料の構成元素の位置を補正する工程と、
を含むアトムプローブ分析方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2009−294235(P2009−294235A)
【公開日】平成21年12月17日(2009.12.17)
【国際特許分類】
【出願番号】特願2009−220844(P2009−220844)
【出願日】平成21年9月25日(2009.9.25)
【分割の表示】特願2004−75873(P2004−75873)の分割
【原出願日】平成16年3月17日(2004.3.17)
【出願人】(503460323)エスアイアイ・ナノテクノロジー株式会社 (330)
【Fターム(参考)】