説明

ガス発生貯蔵装置

【課題】電解セルを保護した状態で、水素ガスと酸素ガスを生成し、高圧で貯蔵する。
【解決手段】タンク13と14に純水を貯留する。タンク14の純水W1中に電解セル101を設置する。電解セル101の第1の電極部(電極2−1側)にタンク13内の純水W1を通し、第2の電極部(電極2−2側)にタンク14内の純水W2を通す。すると、第1の電極部から酸素ガスが得られ、第2の電極部から水素ガスが得られる。通路L2から排出される純水から酸素ガスを分離し、タンク13の室17に貯蔵する。通路L3から排出される純水から水素ガスを分離し、さらに3:1の分流比で分流し、分流比「1」の水素ガスをタンク13の室18に貯蔵し、分流比「3」の水素ガスをタンク14の貯蔵室23に貯蔵する。室17と18の容積比は2:1、貯蔵室29の容積は室17と18の容積の合計と等しくする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、固体高分子電解質膜を用いて水素ガスや酸素ガスなどのガスを生成し貯蔵するガス発生貯蔵装置に関するものである。
【背景技術】
【0002】
従来より、この種のガス発生貯蔵装置として、純水より水素ガスを生成するHHEG(high-compressed hydrogen energy generator )と呼ばれる装置が考えられている(非特許文献1参照)。このHHEGは、水を電気分解して水素を製造する機能と、発生した水素を圧縮する機能の両方を備えており、圧縮機を用いることなく圧縮水素を取り出せるので、装置コストを安くできるという利点に加え、昇圧するために必要な動力費を低減することができるという利点を有している。
【0003】
なお、上述した非特許文献1には、HHEGにより、100MPa以上の高圧水素を製造することも可能である旨、記載されている。また、このHHEGにより製造された高圧水素を、次世代の燃料電池車へ使用することが示唆されている。
【0004】
〔電解セル〕
図14にこのHHEGに用いられている電解セルの構造を示す。同図において、1はPEMと呼ばれる厚さが0.1mm程度の固体高分子電解質膜(パーフルオロカーボンスルホン酸膜)であり、PEM膜1の両面にはPt(白金)触媒電極2−1,2−2が無電解メッキで形成され、これを多孔質給電体3−1,3−2で挟み込んだ構造とされている。また、多孔質給電体3−1が設けられたPt触媒電極2−1側(第1の電極部側)にセルケース4−1を設け、多孔質給電体3−2が設けられたPt触媒電極2−2側(第2の電極部側)にセルケース4−2を設け、セルケース4−1と4−2とでPEM膜1を挟み込み、この挟まれたPEM膜1の周囲の空間部にシール5を充填している。セルケース4−1には多孔質給電体3−1を介してPt触媒電極2−1に通ずる通路L1とL2が設けられ、セルケース4−2には多孔質給電体3−2を介してPt触媒電極2−2に通ずる通路L3が設けられている。
【0005】
この電解セル100において、Pt触媒電極2−1を陽極とし、Pt触媒電極2−2を陰極とし、このPt触媒電極2−1,2−2間に直流電圧を印加した状態で、通路L1から多孔質給電体3−1を通してPt触媒電極2−1に純水を送ると、Pt触媒電極2−1触媒層で水が電気分解して、酸素(O2 )とプロトン(H+ )と電子が発生する(2H2 O→O2 +4H+ +4e- )。プロトンは、PEM膜1を透過し、Pt触媒電極2−2側に移動する。陽極では、純水が酸化され(電子が引き離され)、酸素が発生する。陰極では、陽子がPEM膜1から引き剥がされ、Pt触媒電極2−2からの電子を得て、水素(H2 )が発生する(4H+ +4e- →2H2 )。これにより、Pt触媒電極2−1で生成された酸素ガス(O2 )を含む純水が通路L2から排出され、Pt触媒電極2−2で生成された水素ガス(H2 )が通路L3から排出される。
【0006】
〔HHEG〕
図15はこの電解セル100を用いたHHEGの構成図である。同図において、6は第1のタンク(高圧容器)、7は第2のタンク(高圧容器)であり、第1のタンク6内に電解セル100を設け、第2のタンク7に純水を貯留している。また、第1のタンク6と第2のタンク7との間にポンプ8を設け、第2のタンク7に貯留されている純水を第1のタンク6内の電解セル100の通路L1へ送り、電解セル100の通路L2から排出される純水と酸素ガスを第2のタンク7に戻すようにしている。
【0007】
これにより、第1のタンク6には、電解セル100の通路L3から排出される水素ガスとともに、PEM膜1を透過した純水が貯まる。なお、第1のタンク6には、そのタンク6内に貯蔵される水素ガスを必要に応じて放出するためのバルブ11が設けられている。また、第2のタンク7には、そのタンク7内に貯まる酸素ガスを放出するためのバルブ12が設けられている。
【0008】
第1のタンク6の底部と第2のタンク7の底部とは、差圧解消センサ9を介してつながれている。差圧解消センサ9には、一方の圧力導入路9−1に、第1のタンク6内の純水を介してタンク6内の水素ガスの圧力Phが与えられ、他方の圧力導入路9−2に、第2のタンク7内の純水を介してタンク7内の酸素ガスの圧力Poが与えられる。差圧解消センサ9は、この水素ガスの圧力Phと酸素ガスの圧力Poとの差に応じた信号(差圧信号)を開閉制御部10へ送る。開閉制御部10は、差圧解消センサ9から送られてくる差圧信号を零とするように、バルブ12の開閉を制御し、第2のタンク7内の酸素ガスの圧力を調整する。
【0009】
これにより、電解セル100のシール部5に加わる圧力と、PEM膜1のPt触媒電極2−1側(第1の電極部側)に加わる圧力と、PEM膜1のPt触媒電極2−2側(第2の電極部側)に加わる圧力とが等しくなり、PEM膜1やシール部5に加わる圧力差がなくなる。したがって、タンク6内に貯蔵される水素ガスが高圧となっても、電解セル100が圧力破損する虞れがなくなる。このようにして、非特許文献1に示されたHHEGでは、電解セル100を保護した状態で、水素ガスが生成され、タンク6内に高圧で貯蔵されて行く。
【0010】
【非特許文献1】NIKKEI ELECTRONICS 2004.10.11、129〜135頁、「高圧水素を水の電気分解だけで製造」、原田宙幸、戸嶋健介。
【発明の開示】
【発明が解決しようとする課題】
【0011】
しかしながら、上述した非特許文献1に示されたガス発生貯蔵装置(HHEG)によると、第2のタンク7内に貯まる酸素ガスを捨てて圧力の調整を行うようにしており、酸素ガスを積極的に貯蔵する構成とはなっていない。また、圧力を調整するために差圧解消センサ9などを必要とし、高コストとなる。
【0012】
本発明は、このような課題を解決するためになされたもので、その目的とするところは、差圧解消センサなどを設けることなく、また生成された酸素ガスを捨てることなく、電解セルを保護した状態で、水素ガスや酸素ガスなどのガスを生成し、高圧で貯蔵することが可能なガス発生貯蔵装置を提供することにある。
【課題を解決するための手段】
【0013】
このような目的を達成するために本発明は、固体高分子電解質膜と、この固体高分子電解質膜を挾んで設けられた第1の電極部および第2の電極部とを有し、第1の電極部と第2の電極部との間に直流電圧を印加した状態で第1の電極部に通される液体から第1のガスと第2のガスを生成し、生成した第1のガスを第1の電極部から、生成した第2のガスを第2の電極部から排出する電解セルと、液体が貯留された第1のタンクと、第1のタンクに貯留された液体と同じ液体が貯留された第2のタンクと、電解セルの第1の電極部に第1のタンクに貯留された液体を通す手段と、電解セルの第2の電極部に第2のタンクに貯留された液体を通す手段と、電解セルの第1の電極部に通された液体に含まれる第1のガスを分離する第1の気液分離手段と、電解セルの第2の電極部に通された液体に含まれる第2のガスを分離する第2の気液分離手段と、第2の気液分離手段によって分離された第2のガスを所定の分流比で分流する分流手段とを設け、第1のタンクは、第1の気液分離手段によって分離された第1のガスが貯蔵される第1の室と、分流手段によって分流された一方の第2のガスが貯蔵される第2の室とを有するものとし、第2のタンクは、分流手段によって分流された他方の第2のガスが貯蔵される貯蔵室を有するものとし、第1のタンクの第1の室と第2の室を、そのタンクに貯留された液体の液面をその室の内壁面の一部とし、その室に貯蔵されるガスが他の室のガスと混ざらないように分離された空間とし、第2のタンクの貯蔵室を、そのタンクに貯留された液体の液面とそのタンクの内壁面とによって囲まれた空間とし、第1のタンクおよび第2のタンクに貯留された液体中の何れか一方に電解セルを設置するようにしたものである。
【0014】
例えば、本発明では、第1のタンクと第2のタンクに純水を貯留し、第1のタンクに貯留された純水中に電解セルを設置する。そして、電解セルの第1の電極部と第2の電極部との間に直流電圧を印加した状態で、第1の電極部に第1のタンクに貯留された純水を通し、第2の電極部に第2のタンクに貯留された純水を通す。すると、電解セルでの電気分解により、第1の電極部から酸素ガスが得られ、第2の電極部から水素ガスが得られる。第1の電極部から得られる酸素ガスは、第1の電極部に通された純水とともに排出され、純水と酸素ガスとに分離され、分離された酸素ガスが第1のタンクの第1の室に貯蔵される。第2の電極部から得られる水素ガスは、第2の電極部に通された純水とともに排出され、純水と水素ガスとに分離され、分離された水素ガスが所定の分流比で分流される。分流された一方の水素ガスは、第1のタンクの第2の室に貯蔵される。分流された他方の水素ガスは、第2のタンクの貯蔵室に貯蔵される。
【0015】
純水を電気分解すると、1モルの酸素ガスに対し、2モルの水素ガスが生成される(2H2 O→2H2 +O2 )。したがって、この発明において、第1のタンクの第1の室に酸素ガスが1モル貯蔵されると、第1のタンクの第2の室と第2のタンクの貯蔵室には合わせて2モルの水素ガスが貯蔵されることになる。
ここで、生成された水素ガスをほゞ3:1の分流比で分流し、分流比「1」の水素ガスを第1のタンクの第2の室へ送り、分流比「3」の水素ガスを第2のタンクの貯蔵室へ送るものとすると、第1のタンクの第1の室に酸素ガスが1モル貯蔵されると、第1のタンクの第2の室には水素ガスが1/2モル貯蔵され、第2のタンクの貯蔵室には水素ガスが3/2モル貯蔵されることになる。
また、第1のタンクの第1の室と第2の室との容積比をほゞ2:1とすると、第1の室に酸素ガスが1モル貯蔵される毎に、第2の室には水素ガスが1/2モルずつ貯蔵されるので、第1の室に貯蔵される酸素ガスの圧力(P1o)と第2の室に貯蔵される水素ガスの圧力(P1h)とがほゞ等しくなり、第1のタンク内の純水に作用するガス圧(第1のタンク内のガス圧)P1はP1≒P1o≒P1hとなる。
また、第2のタンクの貯蔵室の容積を第1のタンクの第1の室と第2の室とを合わせた容積とほゞ等しいものとすると、第1のタンクに酸素ガスと水素ガスとが合わせて3/2モル貯蔵される毎に、第2のタンクの貯蔵室には水素ガスが3/2モルずつ貯蔵されるので、第1のタンク内のガス圧P1と第2のタンクに貯蔵される純水に作用する水素ガスの圧力(第2のタンク内のガス圧)P2とがほゞ等しくなる(P1≒P2)。
これにより、電解セルのシール部に加わる圧力と、固体高分子電解質膜の第1の電極部側に加わる圧力と、固体高分子電解質膜の第2の電極部側に加わる圧力とがほゞ等しくなり、圧力差がなくなる。
なお、第1のタンクに貯留された純水中へ電解セルを設置することによって、電解セルのシール部に加わる圧力と固体高分子電解質膜の第1の電極部側に加わる圧力とが必然的に同じとなる。すなわち、この発明において、第1のタンクに貯留された純水中への電解セルの設置は、電解セルのシール部に加わる圧力と固体高分子電解質膜の第1の電極部側に加わる圧力とを同じとするために、意図的に行われるものである。
【0016】
本発明において、電解セルは、第1のタンクの液体中ではなく、第2のタンクの液体中に設置してもよい。また、第1のタンクにおける第1の室と第2の室とは、第1のタンク内に仕切板を設けることによって実現してもよいし、第1のタンクにこのタンク内の液体と連通する補助タンクを設けることによって実現してもよい。補助タンクを設ける場合、第1のタンク内の液面とそのタンクの内壁面とによって囲まれた空間が第1の室となり、補助タンク内の液面とそのタンクの内壁面とによって囲まれた空間が第2の室となる。また、電解セルを第2のタンクに貯留された液体中に設置することによって、電解セルのシール部に加わる圧力と固体高分子電解質膜の第2の電極部側に加わる圧力とが必然的に同じとなる。すなわち、この発明において、第2のタンクに貯留された液体中への電解セルの設置は、電解セルのシール部に加わる圧力と固体高分子電解質膜の第2の電極部側に加わる圧力とを同じとするために、意図的に行われるものである。
【0017】
また、本発明において、第1のタンク内に仕切板を設け、第1の室と第2の室との容積比をほゞ2:1とし、分流比をほゞ3:1として酸素ガスと水素ガスを生成・貯蔵する場合、第1の室に貯蔵される酸素ガスの圧力P1oと第2の室に貯蔵される水素ガスの圧力P1hはほゞ等しくなり、第1の室における純水の水位と第2の室における純水の水位もほゞ等しくなる。逆に言うと、第1の室における水位と第2の室における水位が等しくなければ、第1の室における酸素ガスの圧力P1oと第2の室における水素ガスの圧力P1hとが異なっていることになる。
したがって、第1の室における水位と第2の室における水位とが等しくなるように、水素ガスの分流比を調整する分流比調整手段を設ければ、第1の室における酸素ガスの圧力P1oと第2の室における水素ガスの圧力P1hを等しくし、第1のタンクにおける酸素ガスと水素ガスとの貯蔵量の比を2:1に保ちながら、また第1のタンクに貯蔵される酸素ガスと水素ガスとの合計量と第2のタンクに貯蔵される水素ガスの貯蔵量との比を1:1に保ちながら、すなわち第1のタンク内のガス圧P1と第2のタンク内のガス圧P2とを等しく保ちながら、酸素ガスと水素ガスを生成・貯蔵して行くことが可能となる。
【0018】
本発明では、第1のタンクの第1の室や第2の室、第2のタンクの貯蔵室にガスが貯蔵されて行くが、ガス圧が高圧となると、そのガスがタンク内の液体中に溶け込んで行く虞れがある。この場合、生成したガスが無駄となるし、水素ガスが液体中に溶け込むと、水素脆性による金属の腐食などの問題も生じる。そこで、本発明では、第1の室の液面にこの液面とともに上下動する第1の蓋を被せ、第2の室の液面にこの液面とともに上下動する第2の蓋を被せ、貯蔵室の液面にこの液面とともに上下動する第3の蓋を被せる。例えば、第1の室の液面に、この液面の全面を覆うように第1の蓋を浮かばせ、第2の室の液面に、この液面の全面を覆うように第2の蓋を浮かばせ、貯蔵室の液面に、この液面の全面を覆うように第3の蓋を浮かばせる。これにより、第1の蓋を介して第1の室の液面が押し下げられ、第2の蓋を介して第2の室の液面が押し下げられ、第3の蓋を介して貯蔵室の液面が押し下げられ、第1の室に貯蔵されるガスが第1の室の液面と直接接触しなくなり、また第2の室に貯蔵されるガスが第2の室の液面と直接接触しなくなり、貯蔵室に貯蔵されるガスが貯蔵室の液面と直接接触しなくなり、貯留された液体中へのガスの溶け込みが防止される。
【0019】
なお、第1の室の液面に第1の蓋を被せたり、第2の室の液面に第2の蓋を被せたり、貯蔵室の液面に第3の蓋を被せる代わりに、第1の室にこの室の内壁面を覆う第1の膜を設けたり、第2の室にこの室の内壁面を覆う第2の膜を設けたり、貯蔵室にこの室の内壁面を覆う第3の膜を設けたりしてもよい。第1の膜や第2の膜、第3の膜は、例えばポリエチレンの膜とし、第1の膜で囲まれた内部空間に第1の室へのガス(酸素ガス)を貯蔵し、第2の膜で囲まれた内部空間に第2の室へのガス(水素ガス)を貯蔵し、第3の膜で囲まれた内部空間に貯蔵室へのガス(水素ガス)を貯蔵する。これにより、第1の室に貯蔵されるガスが第1の室の内壁面(液面を含む)と直接接触しなくなり、第2の室に貯蔵されるガスが第2の室の内壁面(液面を含む)と直接接触しなくなり、貯蔵室に貯蔵されるガスが貯蔵室の内壁面(液面を含む)と直接接触しなくなり、貯留された液体中へのガスの溶け込みが防止される。
また、本発明においては、第1の電極部と第2の電極部との間に直流電圧を印加するが、この直流電圧は半波整流したものであってもよいし、全波整流したものであってもよい。
【発明の効果】
【0020】
本発明によれば、電解セルを第1のタンクに貯留された液体中あるいは第2のタンクに貯留された液体中に設置し、この電解セルの第1の電極部に第1のタンクに貯留された液体を通し、第2の電極部に第2のタンクに貯留された液体を通し、第1の電極部から第1のガス(例えば、酸素ガス)を、第2の電極部から第2のガス(例えば、水素ガス)を得るようにし、第1の電極部に通された液体に含まれる第1のガスを分離して第1のタンクの第1の室に貯蔵するようにし、第2の電極部に通された液体に含まれる第2のガスを分離し、この分離した第2のガスを所定の分流比で分流し、分流した一方の第2のガスを第1のタンクの第2の室に貯蔵するようにし、分流した他方の第2のガスを第2のタンクの貯蔵室に貯蔵するようにしたので、差圧解消センサなどを設けることなく、また生成された第1のガスを捨てることなく、電解セルのシール部に加わる圧力と固体高分子電解質膜の第1の電極部側に加わる圧力とを意図的に同じとしたうえ、あるいは電解セルのシール部に加わる圧力と固体高分子電解質膜の第2の電極部側に加わる圧力とを意図的に同じとしたうえ、電解セルのシール部に加わる圧力と、固体高分子電解質膜の第1の電極部側に加わる圧力と、固体高分子電解質膜の第2の電極部側に加わる圧力とをほゞ等しくし、電解セルを保護した状態で、酸素ガスや水素ガスなどのガスを生成し、高圧で貯蔵することが可能となる。
【発明を実施するための最良の形態】
【0021】
以下、本発明を図面に基づいて詳細に説明する。
〔実施の形態1〕
図1はこの発明の一実施の形態を示すガス発生貯蔵装置の構成図である。
同図において、13は第1のタンク(高圧容器)、14は第2のタンク(高圧容器)であり、第1のタンク13と第2のタンク14とはその容積が同じとされている。また、第1のタンク13には純水W1が貯留され、第2のタンク14には純水W2が貯留されている。第1のタンク13に貯留された純水W1と第2のタンク14に貯留された純水W2は同じ量とされている。
【0022】
第1のタンク13の純水W1中には電解セル101が設置されている。また、第1のタンク13の純水W1の液面とこのタンク13の内壁面とで囲まれた空間15は、仕切板16によって第1の室17と第2の室18とに分けられている。
【0023】
図2に図1における第1のタンク13をA方向から見た図を示す。この図からも分かるように、タンク13内を径方向に2つに分割する仕切板16が設けられており、この仕切板16の下端面よりも純水W1の液面を上方に位置させることによって、純水W1の液面をその室の内壁面の一部とし、その室に貯蔵されるガスが他の室のガスと混ざらないように分離された第1の室17と第2の室18とがタンク13内に形成されている。本実施の形態において、第1の室17と第2の室18とは、仕切板16の位置によって、その容積比が2:1とされている。
【0024】
図3は第1のタンク13の純水W1中に設置された電解セル101の構造を示す図である。この電解セル101は、図14に示した従来の電解セル100とその基本構造は同じであるが、Pt触媒電極2−2への純水の供給路として通路L4をセルケース4−2に設けている点が異なる。なお、図3には、図1における電解セル101の配置に合わせ、図14に示した電解セル100とはその構造を左右反対として示している。
【0025】
また、この構造において、PEM膜1を挟んで向かい合う第1の電極部における純水の通路(この例では、多孔質給電体3−1)と第2の電極部における純水の通路(この例では、多孔質給電体3−2)は、その向かい合う面の形状および位置が同一とされている。すなわち、多孔質給電体3−1の長さLG1と多孔質給電体3−2の長さLG2とを同一とし、この同一長さの多孔質給電体3−1と3−2とを正対させている。なお、この例において、多孔質給電体3−1,3−2は直方体とされているが、必ずしも直方体でなくてもよい。
【0026】
電解セル101の通路L1には、ポンプPM1につながれたパイプPL1を介してタンク13内の純水W1を送るようにしている。また、電解セル101の通路L4にパイプPL2をつなげてタンク13の外に出し、このパイプPL2よりタンク14に貯留された純水W2をポンプPM2を介して通路L4に送るようにしている。なお、ポンプPM1,P2のポンプ圧は、電解セル101内を通過する純水の流れができればよく、最小限のポンプ圧とすることが望まれる。このポンプ圧を高くすると、純水W1の圧力と純水W2の圧力の均衡が崩れ、PEM膜1に圧力差が生じる虞れがある。
【0027】
電解セル101の通路L2に対しては、パイプPL3を介して気液分離器20を設けており、通路L2から排出される純水に含まれる酸素を気液分離器20で分離し、分離した酸素ガスをパイプPL5を介して第1の室17へ送る一方、酸素ガスが分離された純水をタンク13内の純水W1に戻すようにしている。
【0028】
また、電解セル101の通路L3に対しては、パイプPL4を介して気液分離器21を設けており、通路L3から排出される純水に含まれる水素ガスを気液分離器21で分離し、分離した水素ガスをパイプPL6を介して水素ガス分流器22へ送る一方、水素ガスが分離された純水をパイプPL7を介して第2のタンク14内の純水W2に戻すようにしている。
【0029】
水素ガス分流器22は、気液分離器21からパイプPL6を介して送られてくる水素ガスを所定の分流比で分流する。本実施の形態において、水素ガス分流器22における分流比は3:1に設定されており、分流比「1」の水素ガスがパイプPL8を介して第1のタンク13の第2の室18へ送られ、分流比「3」の水素ガスがパイプPL9を介して第2のタンク14の貯蔵室23へ送られるようになっている。
【0030】
第2のタンク14の貯蔵室23は、このタンク14に貯留された純水W2の液面とタンク14の内壁面とによって囲まれた空間とされ、貯蔵室23の容積は第1のタンク13の第1の室17と第2の室18とを合わせた容積と等しくされている。
【0031】
このガス発生貯蔵装置200では、次のようにして酸素ガスと水素ガスが生成され、生成された酸素ガスが第1のタンク13の第1の室17に、生成された水素ガスが第1のタンク13の第2の室18と第2のタンク14の貯蔵室23に貯蔵されて行く。
【0032】
なお、図示してはいないが、本実施の形態では、第1のタンク13内の純水W1、第2のタンク14内の純水W2、第1のタンク13の第1の室17に貯蔵される酸素ガス、第1のタンク13の第2の室18と第2のタンク14の貯蔵室23に貯蔵される水素ガスの温度をほゞ同じ温度にするような工夫がされている。
【0033】
〔ガスの生成〕
Pt触媒電極2−1を陽極とし、Pt触媒電極2−2を陰極とし、このPt触媒電極2−1,2−2間に直流電圧を印加する。そして、ポンプPM1,P2を駆動し、第1のタンク13内の純水W1を通路L1から多孔質給電体3−1を通してPt触媒電極2−1に送り、第2のタンク14内の純水W2を通路L4から多孔質給電体3−2を通してPt触媒電極2−2に送る。
【0034】
電解セル101内では、Pt触媒電極2−1を陽極とし、Pt触媒電極2−2を陰極とし、このPt触媒電極2−1,2−2間に直流電圧を印加した状態で、通路L1から多孔質給電体3−1を通してPt触媒電極2−1に純水を送ると、Pt触媒電極2−1の触媒層で水が電気分解して、酸素(O2 )とプロトン(H+ )と電子が発生する(2H2 O→O2 +4H+ +4e- )。プロトンは、PEM膜1を透過し、Pt触媒電極2−2側に移動する。陽極では、純水が酸化され(電子が引き離され)、酸素が発生する。陰極では、陽子がPEM膜1から引き剥がされ、Pt触媒電極2−2からの電子を得て、水素(H2 )が発生する(4H+ +4e- →2H2 )。これにより、Pt触媒電極2−1で生成された酸素ガス(O2 )を含む純水が通路L2から排出され、Pt触媒電極2−2で生成された水素ガス(H2 )を含む純水が通路L3から排出される。
【0035】
〔ガスの貯蔵〕
通路L2から排出された酸素ガスを含む純水はパイプPL3を介して気液分離器20へ送られる。気液分離器20は、送られてくる純水から酸素ガスを分離し、分離した酸素ガスをパイプPL5を介して第1の室17へ送る。また、酸素ガスが分離された純水をタンク13内の純水W1に戻す。
【0036】
通路L3から排出された水素ガスを含む純水はパイプPL4を介して気液分離器21へ送られる。気液分離器21は、その純水から水素ガスを分離し、分離した水素ガスをパイプPL6を介して水素ガス分流器22へ送る。また、水素ガスが分離された純水をパイプPL7を介して第2のタンク14内の純水W2に戻す。
【0037】
水素ガス分流器22は、気液分離器21からパイプPL6を介して送られてくる水素ガスを3:1の分流比で分流し、分流比「1」の水素ガスをパイプPL8を介して第1のタンク13の第2の室18へ送り、分流比「3」の水素ガスをパイプPL9を介して第2のタンク14の貯蔵室23へ送る。
【0038】
純水を電気分解すると、1モルの酸素ガスに対し、2モルの水素ガスが生成される(2H2 O→2H2 +O2 )。すなわち、本実施の形態において、第1のタンク13の第1の室17に酸素ガスが1モル貯蔵されると、第1のタンク13の第2の室18と第2のタンク14の貯蔵室23とには合わせて2モルの水素ガスが貯蔵されることになる。
【0039】
ここで、本実施の形態では、生成された水素ガスを水素ガス分流器22により3:1の分流比で分流し、分流比「1」の水素ガスを第1のタンク13の第2の室18へ送り、分流比「3」の水素ガスを第2のタンク14の貯蔵室23へ送るようにしているので、第1のタンク13の第1の室17に酸素ガスが1モル貯蔵されると、第1のタンク13の第2の室18には水素ガスが1/2モル貯蔵され、第2のタンク14の貯蔵室23には水素ガスが3/2モル貯蔵されることになる。
【0040】
また、本実施の形態では、第1のタンク13の第1の室17と第2の室18との容積比を2:1としており、容積比が「2」とされた第1の室17に酸素ガスが1モル貯蔵される毎に、容積比が「1」とされた第2の室18に水素ガスが1/2モルずつ貯蔵されるので、第1の室17に貯蔵される酸素ガスの圧力P1oと第2の室18に貯蔵される水素ガスの圧力P1hとが等しくなり、第1のタンク13内の純水W1に作用するガス圧(第1のタンク内のガス圧)P1はP1=P1o=P1hとなる。
【0041】
また、本実施の形態では、第2のタンク14の貯蔵室23の容積を第1のタンク13の第1の室17と第2の室18とを合わせた容積と等しくしており、第1のタンク13に酸素ガスと水素ガスとが合わせて3/2モル貯蔵される毎に、第2のタンク14の貯蔵室23に水素ガスが3/2モルずつ貯蔵されるので、第1のタンク13内のガス圧P1と第2のタンク14に貯蔵される純水W2に作用する水素ガスの圧力(第2のタンク内のガス圧)P2とが等しくなる(P1=P2)。
【0042】
これにより、第1のタンク13の純水W1中に設置された電解セル101のシール部5に加わる圧力と、PEM膜1のPt触媒電極2−1側(第1の電極部側)に加わる圧力と、PEM膜1のPt触媒電極2−2側(第2の電極部側)に加わる圧力とが等しくなり、圧力差がなくなる。したがって、タンク13内のガス圧P1が高圧となっても、電解セル101が圧力破損する虞れがない。このようにして、本実施の形態では、差圧解消センサなどを設けることなく、また生成された酸素ガスを捨てることなく、電解セル101を保護した状態で、水素ガスと酸素ガスを生成し、高圧で貯蔵して行くことができるようになる。
【0043】
なお、この構成において、電解セル101のシール部5に加わる圧力とPEM膜1のPt触媒電極2−1側(第1の電極部側)に加わる圧力とは必然的に同じとなる。すなわち、この構成において、第1のタンク13に貯留された純水W1中への電解セル101の設置は、電解セル101のシール部5に加わる圧力とPEM膜1のPt触媒電極2−1側(第1の電極部側)に加わる圧力とを同じとするために、意図的に行われているものである。
【0044】
また、この構成において、多孔質給電体3−1の長さLG1と多孔質給電体3−2の長さLG2とは同一とされ、この同一長さの多孔質給電体3−1と3−2とが正対している。すなわち、第1の電極部における純水W1の通路と第2の電極部における純水W1の通路は、PEM膜1を挟んで向かい合う面の形状および位置が同一とされている。したがって、第1の電極部における純水W1の通路に面するPEM膜1の膜面と第2の電極部における純水W1の通路に面するPEM膜1の膜面の全てにおいて、その膜面間の圧力差が零となり、PEM膜1の膜面間にアンバランスな圧力が加わることがない。
【0045】
なお、多孔質給電体3−1は、その内部にポンプPM1からの純水W1が染み渡るので、通路L1,L2の位置に拘わらず、第1の電極部における純水W1の通路となる。多孔質給電体3−2も同様に、その内部にポンプPM2からの純水W2が染み渡るので、通路L3,L4の位置に拘わらず、第2の電極部における純水W2の通路となる。
【0046】
〔貯蔵した酸素ガス、水素ガスの取り出し〕
タンク13や14に高圧で貯蔵した酸素や水素を燃料などとして使用する場合、このタンク13や14に貯蔵された酸素や水素を取り出すが、この場合には注意を必要とする。すなわち、タンク13内のガス圧P1とタンク14内のガス圧P2とを同じ値にして取り出すために、タンク13とタンク14に分離して貯蔵した水素を合流して取り出す必要がある。また、合流水素ガスとタンク13の酸素ガスとのモル比は、2:1の比率を保った状態で取り出さなければならない。この条件下で、タンク13内のガス圧P1とタンク14内のガス圧P2とが同じ値となる。
【0047】
このような取り出し方をするために、図4に示すガス発生貯蔵装置201では、第1のタンク13の第2の室18からの水素ガスと第2のタンク14の貯蔵室23からの水素ガスとを合流する水素ガス合流器24を設け、この水素ガス合流器24により合流された水素ガスを気体圧力調整弁25を介して取り出すようにし、第1のタンク13の第1の室17に貯蔵された酸素ガスを気体圧力調整弁26を介して取り出すようにしている。
【0048】
このガス発生貯蔵装置201では、例えば水素ガスと酸素ガスを燃料電池に供給するような場合、第1のタンク13内のガス圧P1と第2のタンク14内のガス圧P2とが同じになるように、水素ガス合流器24における水素ガスの合流比と気体圧力調整弁25,26の弁開度を制御するようにする。
【0049】
〔実施の形態2〕
実施の形態1では、第1のタンク13の純水W1中に電解セル101を設置するようにしたが、図5に示すガス発生貯蔵装置202のように、第2のタンク14の純水W2中に電解セル101を設置するようにしてもよい。
なお、このガス発生貯蔵装置202では、気液分離器21を第2のタンク14の純水W2中に設け、この気液分離器21で分離した水素をパイプPL6を介して貯蔵室23中に設けた水素ガス分流器22へ送り、水素ガス分流器22で分流した分流比「1」の水素ガスをパイプPL8を介して第1のタンク13の第2の室18へ送るようにしている。また、水素ガス分流器22で分流した分流比「3」の水素ガスをパイプPL9を介して第2のタンク14の貯蔵室23へ送るようにしている。
このような構成としても、実施の形態1と全く同じ原理で、電解セル101を保護した状態で、第1のタンク13の第1の室17に酸素ガスが、第1のタンク14の第2の室18と第2のタンク14の貯蔵室23に水素ガスが、高圧で貯蔵されて行く。
【0050】
なお、この構成において、電解セル101のシール部5に加わる圧力とPEM膜1のPt触媒電極2−2側(第2の電極部側)に加わる圧力とは必然的に同じとなる。すなわち、この構成において、第2のタンク14に貯留された純水W2中への電解セル101の設置は、電解セル101のシール部5に加わる圧力とPEM膜1のPt触媒電極2−2側(第2の電極部側)に加わる圧力とを同じとするために、意図的に行われているものである。
【0051】
〔実施の形態3〕
なお、上述した実施の形態1や2では、第1のタンク13内に仕切板16を設けることによって第1の室17と第2の室18を作るようにしたが、例えば図6に示すガス発生貯蔵装置203のように、第1のタンク13に対して補助タンク27を設け、この補助タンク27に水素ガス分流器22からの分流比「1」の水素ガスを送るようにしてもよい。
【0052】
この場合、第1のタンク13内の純水W1の液面とそのタンク13の内壁面とによって囲まれた空間15が第1のタンク13の第1の室となり、補助タンク27内の純水W1の液面とそのタンク27の内壁面とによって囲まれた空間28が第1のタンク13の第2の室となる。
【0053】
なお、このガス発生貯蔵装置203では、第1の室15と第2の室28との容積比を2:1とする。また、第2のタンク14の貯蔵室23の容積を、第1のタンク13の第1の室15と第2の室28とを合わせた容積と等しくする。
【0054】
〔実施の形態4〕
また、上述した実施の形態1では、第1のタンク13の第1の室17と第2の室18との容積比を2:1とする位置に仕切板16を設けたが、必ずしも第1の室17と第2の室18との容積比を2:1とする位置に設けなくてもよい。例えば、第1の室17と第2の室18との容積比を1:1とする位置に設けるなどとしてもよい。
【0055】
この場合、水素ガス分流器22における分流比を変えたり、第2のタンク14の貯蔵室23の容積を変えるなどして、第1のタンク13内のガス圧P1と第2のタンク14内のガス圧P2とが等しくなるようにする。なお、この場合、第1のタンク13内のガス圧P1と第2のタンク14内のガス圧P2とが等しくなればよく、第1の室17における純水W1の水位と第2の室18における純水W1の水位とは必ずしも同水位とならなくてもよい。
【0056】
〔実施の形態5〕
実施の形態1の構成(図1)では、第1の室17に貯蔵される酸素ガスの圧力P1oと第2の室18に貯蔵される水素ガスの圧力P1hとが等しい場合、第1の室17における純水W1の水位と第2の室18における純水W1の水位は等しくなる。逆に言うと、第1の室17における水位と第2の室18における水位が等しくなければ、第1の室17の酸素ガスの圧力P1oと第2の室18の水素ガスの圧力P1hとが異なっていることになる。
【0057】
したがって、第1の室17における水位と第2の室18における水位とが等しくなるように、水素ガス分流器22における水素ガスの分流比を調整するようにすれば、第1の室17の酸素ガスの圧力P1oと第2の室18の水素ガスの圧力P1hを等しくし、第1のタンク13における酸素ガスと水素ガスとの貯蔵量の比を2:1に保ちながら、また第1のタンク13に貯蔵される酸素ガスと水素ガスとの合計量と第2のタンク14に貯蔵される水素ガスの貯蔵量との比を1:1に保ちながら、すなわち第1のタンク13内のガス圧P1と第2のタンク14内のガス圧P2とを常に等しく保ちながら、酸素ガスと水素ガスを生成・貯蔵して行くことが可能となる。
【0058】
図7にこの場合の構成例を示す。このガス発生貯蔵装置204では、第1のタンク13の第1の室17に水位計29を設け、第2の室18に水位計30を設け、水位計29が検出する第1の室17における純水W1の水位および水位計30が検出する第2の室18における純水W1の水位を分流比調整部31へ送るようにしている。分流比調整部31は、水位計29が検出する第1の室17における水位と水位計30が検出する第2の室18における水位を監視し、両者が等しくなるように、水素ガス分流器22における水素ガスの分流比を調整する。
【0059】
上述した実施の形態1では、第1のタンク13の第1の室17と第2の室18との容積比を2:1とし、第2のタンク14の貯蔵室23の容積を第1のタンク13の第1の室17と第2の室18とを合わせた容積と等しくし、水素ガス分流器22における水素ガスの分流比を3:1としたが、多少の誤差があってもよいことは言うまでもない。他の実施の形態でも同様のことが言える。
【0060】
〔実施の形態6〕
実施の形態1では、第1の室17に酸素ガスが、第2の室18および貯蔵室23に水素ガスが貯蔵されて行くが、ガス圧が高圧となると、そのガスがタンク内の純水中に溶け込んで行く虞れがある。この場合、生成した酸素ガスや水素ガスが無駄となるし、水素ガスが純水中に溶け込むと、水素脆性による金属の腐食などの問題も生じる。
【0061】
そこで、実施の形態6では、図8に示すように、第1の室17の液面にこの液面とともに上下動する第1の蓋32−1を被せ、第2の室18の液面にこの液面とともに上下動する第2の蓋32−2を被せ、貯蔵室23の液面にこの液面とともに上下動する第3の蓋32−3を被せている。すなわち、第1の室17の液面に、この液面の全面を覆うように第1の蓋32−1を浮かばせ、第2の室18の液面に、この液面の全面を覆うように第2の蓋32−2を浮かばせ、貯蔵室23の液面に、この液面の全面を覆うように第3の蓋32−3を浮かばせている。
【0062】
これにより、第1の蓋32−1を介して第1の室17の液面が押し下げられ、第2の蓋32−2を介して第2の室18の液面が押し下げられ、第3の蓋32−3を介して貯蔵室23の液面が押し下げられ、第1の室17内の酸素ガスが第1の室17の液面と直接接触しなくなり、第2の室18内の水素ガスが第2の室18の液面と直接接触しなくなり、貯蔵室23内の水素ガスが貯蔵室23の液面と直接接触しなくなり、貯留された純水W1,W2中への酸素ガスや水素ガスの溶け込みが防止される。なお、第1の蓋32−1、第2の蓋32−2および第3の蓋32−3は、高圧の酸素ガスや水素ガスを通さなければよく、金属製に限らず、樹脂製としてもよい。
【0063】
なお、蓋32−1〜32−3を設けた場合、蓋32−1が第1の室17の内壁面の一部をなし、蓋32−2が第2の室18の内壁面の一部をなし、蓋32−3が貯蔵室23の内壁面の一部をなすが、本発明では、タンクに貯留された液体の液面の定義として、この液体の液面に浮かばせた蓋も含むものとする。
【0064】
〔実施の形態7〕
実施の形態6では、第1の室17の液面に第1の蓋32−1を被せたり、第2の室18の液面に第2の蓋32−2を被せたり、貯蔵室23の液面に第3の蓋32−3を被せたりしたが、図9に示すように、第1の室17にその室の内壁面を覆う第1の膜33−1を設けたり、第2の室18にその室の内壁面を覆う第2の膜33−2を設けたり、貯蔵室23にその室の内壁面を覆う第3の膜33−3を設けたりしてもよい。この実施の形態7では、膜33−1〜33−3をポリエチレンの膜とし、第1の膜33−1で囲まれた内部空間に第1の室17への酸素ガスを貯蔵するようにし、第2の膜33−2で囲まれた内部空間に第2の室18への水素ガスを貯蔵するようにし、第3の膜33−3で囲まれた内部空間に貯蔵室23への水素ガスを貯蔵するようにしている。
【0065】
これにより、第1の室17に貯蔵される酸素ガスが第1の室17の内壁面(液面を含む)と直接接触しなくなり、第2の室18に貯蔵される水素ガスが第2の室18の内壁面(液面を含む)と直接接触しなくなり、貯蔵室23に貯蔵される水素ガスが貯蔵室23の内壁面(液面を含む)と直接接触しなくなり、貯留された純水W1,W2中への酸素ガスや水素ガスの溶け込みが防止される。なお、膜33−1〜33−3は、高圧の酸素ガスや水素ガスを通さず、かつ伸縮性があればよく、ポリエチレンに限らす、ゴムなどの膜としてもよい。
【0066】
〔実施の形態8〕
また、上述した実施の形態1〜7では、タンク13に貯留された純水W1中あるいはタンク14に貯留された純水W2中に電解セル101を1つだけ設置するものとしたが、複数の電解セル101を設置するようにしてもよい。例えば、実施の形態1〜7において、図10(a)に示すように、電解セル101−1〜101−nを縦方向(水深方法)に積み重ね、これら電解セル101−1〜101−nから水素ガスと酸素ガスとを得るようにしてもよい。
【0067】
この場合、電解セル101−1〜101−n毎に、独立して純水の供給および酸素ガス,水素ガスの取り出しを行うようにしてもよいが、図10(b)に示すように、隣接する電解セル101の通路L1とL2、通路L3とL4とを継ぎ、最下段の電解セル101−1の通路L1から純水を供給することにより最上段の電解セル101−nの通路L2から酸素ガスを取り出すようにし、最下段の電解セル101−1の通路L4から純水を供給することにより最上段の電解セル101−nの通路L3から水素ガスを取り出すようにしてもよい。
【0068】
また、図11(a)に示すように円筒状の電解セルとしたり、図11(b)に示すように半円柱状の電解セルとしたり、図11(c)に示すように半円柱状の電解セルを積み重ねたりするなどとしてもよい。なお、図11において、太線はPEM膜を示している。
【0069】
また、上述した実施の形態1〜8では、電解セル101を用いて純水から水素ガスと酸素ガスを生成するようにしたが、同様の原理で他の液体から他のガスを生成できるような場合にも適用することが可能である。すなわち、本発明において、液体は純水に限られるものではなく、生成するガスも水素ガスや酸素ガスに限られるものではない。また、取り出した水素ガスや酸素ガスは、燃料電池用としての使用に限られるものではなく、生成した酸素を医療用として使用するようにしてもよい。
【0070】
〔ガス発生貯蔵装置の応用例〕
本発明に係るガス発生貯蔵装置の応用として新エネルギー(風量発電や太陽光発電)とのハイブリット化を考えることができる。
【0071】
〔応用例1:パラレル的なハイブリット化〕
風力発電は、風量に依存するので、定常的な発電は望めない。そこで、図12に示すように、風力発電機303によって余剰に発電した電気(余剰発電量)を本発明に係るガス発生貯蔵装置200に与え、酸素ガスと水素ガスとして高圧で貯蔵する。ガス発生貯蔵装置200の後段には燃料電池400を接続し、風力発電量が少なくなった時に、加算器500により燃料電池による発電を風力発電による発電に加算することで、風力発電の安定化を図る。
【0072】
〔応用例2:シリアル的なハイブリット化〕
風力発電は、風量に依存するので、定常的な発電は望めない。そこで、図13に示すように、風力発電機300によって発電した電気を本発明に係るガス発生貯蔵装置200に与え、酸素ガスと水素ガスとして高圧で貯蔵する。ガス発生貯蔵装置200の後段には燃料電池400を接続し、必要に応じてガス発生貯蔵装置200から燃料電池500へ水素と酸素を供給し、発電を行う。
【0073】
この構成では、風量発電がメインではなく、燃料電池500による発電が主となる。風力発電から見ると、パラレル的なハイブリッド化ではなく、シリアル的なハイブリット化となる。なお、燃料電池500において生じる排熱は、給湯などに使用することができる。また、ガス発生貯蔵装置200における酸素ガスと水素ガスとの貯蔵には、風力発電機300からの電力に加え、夜間電力を利用するようにしてもよい。
【図面の簡単な説明】
【0074】
【図1】本発明の一実施の形態(実施の形態1)を示すガス発生貯蔵装置の構成図である。
【図2】図1における第1のタンクをA方向から見た図である。
【図3】このガス発生貯蔵装置に用いる電解セルの構造図である。
【図4】酸素ガスと水素ガスの取り出し方に工夫を加えたガス発生貯蔵装置の構成図である。
【図5】本発明の他の実施の形態(実施の形態2)を示すガス発生貯蔵装置の構成図である。
【図6】本発明の他の実施の形態(実施の形態3)を示すガス発生貯蔵装置の構成図である。
【図7】本発明の他の実施の形態(実施の形態5)を示すガス発生貯蔵装置の構成図である。
【図8】本発明の他の実施の形態(実施の形態6)を示すガス発生貯蔵装置の構成図である。
【図9】本発明の他の実施の形態(実施の形態7)を示すガス発生貯蔵装置の構成図である。
【図10】電解セルを縦方向(水深方向)に積み重ねた例を示す図である。
【図11】電解セルの他の例を示す図である。
【図12】本発明に係るガス発生貯蔵装置の応用例1を示す図である。
【図13】本発明に係るガス発生貯蔵装置の応用例2を示す図である。
【図14】従来のガス発生貯蔵装置(HHEG)に用いられている電解セルの構造図である。
【図15】従来のガス発生貯蔵装置(HHEG)の構成図である。
【符号の説明】
【0075】
1…PEM膜(固体高分子電解質膜)、2−1,2−2…Pt触媒電極、3−1,3−2…多孔質給電体、4−1,4−2…セルケース、5…シール、L1〜L4…通路、13…第1のタンク、14…第2のタンク、16…仕切板、17…第1の室、18…第2の室、PL1〜PL9…パイプ、20,21…気液分離器、22…水素ガス分流器、23…貯蔵室、24…水素ガス合流器、25,26…気体圧力調整弁、27…補助タンク、15…空間(第1の室)、28…第2の室、29,30…水位計、31…分流比調整部、32−1…第1の蓋、32−3…第2の蓋、32−3…第3の蓋、33−1…第1の膜、33−2…第2の膜、33−3…第3の膜、101(101−1〜101−n)…電解セル、200〜206…ガス発生貯蔵装置。


【特許請求の範囲】
【請求項1】
固体高分子電解質膜と、この固体高分子電解質膜を挾んで設けられた第1の電極部および第2の電極部とを有し、前記第1の電極部と前記第2の電極部との間に直流電圧を印加した状態で前記第1の電極部に通される液体から第1のガスと第2のガスを生成し、生成した第1のガスを前記第1の電極部から、生成した第2のガスを前記第2の電極部から排出する電解セルと、
前記液体が貯留された第1のタンクと、
前記第1のタンクに貯留された液体と同じ液体が貯留された第2のタンクと、
前記電解セルの第1の電極部に前記第1のタンクに貯留された液体を通す手段と、
前記電解セルの第2の電極部に前記第2のタンクに貯留された液体を通す手段と、
前記電解セルの第1の電極部に通された液体に含まれる前記第1のガスを分離する第1の気液分離手段と、
前記電解セルの第2の電極部に通された液体に含まれる前記第2のガスを分離する第2の気液分離手段と、
前記第2の気液分離手段によって分離された前記第2のガスを所定の分流比で分流する分流手段とを備え、
前記第1のタンクは、
前記第1の気液分離手段によって分離された第1のガスが貯蔵される第1の室と、
前記分流手段によって分流された一方の第2のガスが貯蔵される第2の室とを有し、
前記第2のタンクは、
前記分流手段によって分流された他方の第2のガスが貯蔵される貯蔵室を有し、
前記第1のタンクの第1の室と第2の室は、そのタンクに貯留された液体の液面をその室の内壁面の一部とし、その室に貯蔵されるガスが他の室のガスと混ざらないように分離された空間とされ、
前記第2のタンクの貯蔵室は、そのタンクに貯留された液体の液面とそのタンクの内壁面とによって囲まれた空間とされ、
前記電解セルは、前記第1のタンクおよび前記第2のタンクに貯留された液体中の何れか一方に設置されている
ことを特徴とするガス発生貯蔵蔵置。
【請求項2】
固体高分子電解質膜と、この固体高分子電解質膜を挾んで設けられた第1の電極部および第2の電極部とを有し、前記第1の電極部と前記第2の電極部との間に直流電圧を印加した状態で前記第1の電極部に通される純水から酸素ガスと水素ガスを生成し、生成した酸素ガスを前記第1の電極部から、生成した水素ガスを前記第2の電極部から排出する電解セルと、
純水が貯留された第1および第2のタンクと、
前記電解セルの第1の電極部に前記第1のタンクに貯留された純水を通す手段と、
前記電解セルの第2の電極部に前記第2のタンクに貯留された純水を通す手段と、
前記電解セルの第1の電極部に通された純水に含まれる前記酸素ガスを分離する第1の気液分離手段と、
前記電解セルの第2の電極部に通された純水に含まれる前記水素ガスを分離する第2の気液分離手段と、
前記第2の気液分離手段によって分離された前記水素ガスを所定の分流比で分流する分流手段とを備え、
前記第1のタンクは、
前記第1の気液分離手段によって分離された酸素ガスが貯蔵される第1の室と、
前記分流手段によって分流された一方の水素ガスが貯蔵される第2の室とを有し、
前記第2のタンクは、
前記分流手段によって分流された他方の水素ガスが貯蔵される貯蔵室を有し、
前記第1のタンクの第1の室と第2の室は、そのタンクに貯留された純水の液面をその室の内壁面の一部とし、その室に貯蔵されるガスが他の室のガスと混ざらないように分離された空間とされ、
前記第2のタンクの貯蔵室は、そのタンクに貯留された純水の液面とそのタンクの内壁面とによって囲まれた空間とされ、
前記電解セルは、前記第1のタンクおよび前記第2のタンクに貯留された純水中の何れか一方に設置されている
ことを特徴とするガス発生貯蔵蔵置。
【請求項3】
請求項2に記載されたガス発生貯蔵装置において、
前記第1のタンクの第1の室と第2の室とはその容積比がほゞ2:1とされ、
前記第2のタンクの貯蔵室の容積は、前記第1のタンクの第1の室と第2の室とを合わせた容積とほゞ等しく、
前記分流手段は、前記水素ガスをほゞ3:1の分流比で分流し、分流比「1」の水素ガスを前記第1のタンクの第2の室へ送り、分流比「3」の水素ガスを前記第2のタンクの貯蔵室へ送る
ことを特徴とするガス発生貯蔵装置。
【請求項4】
請求項3に記載されたガス発生貯蔵装置において、
前記第1のタンクの第1の室における純水の水位と、前記第1のタンクの第2の室における純水の水位とが等しくなるように、前記分流手段における前記水素ガスの分流比を調整する分流比調整手段
を備えたことを特徴とするガス発生貯蔵装置。
【請求項5】
請求項1〜4の何れか1項に記載されたガス発生貯蔵装置において、
前記第1の室の液面にこの液面とともに上下動する第1の蓋が被せられ、
前記第2の室の液面にこの液面とともに上下動する第2の蓋が被せられ、
前記第3の室の液面にこの液面とともに上下動する第3の蓋が被せられている
ことを特徴とするガス発生貯蔵蔵置。
【請求項6】
請求項1〜4の何れか1項に記載されたガス発生貯蔵装置において、
前記第1の室にこの室の内壁面を覆う第1の膜が設けられ、
前記第2の室にこの室の内壁面を覆う第2の膜が設けられ、
前記貯蔵室にこの室の内壁面を覆う第3の膜が設けられ、
前記第1の膜で囲まれた内部空間に前記第1の室へのガスが貯蔵され、
前記第2の膜で囲まれた内部空間に前記第2の室へのガスが貯蔵され、
前記第3の膜で囲まれた内部空間に前記貯蔵室へのガスが貯蔵される
ことを特徴とするガス発生貯蔵蔵置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2006−348325(P2006−348325A)
【公開日】平成18年12月28日(2006.12.28)
【国際特許分類】
【出願番号】特願2005−173430(P2005−173430)
【出願日】平成17年6月14日(2005.6.14)
【出願人】(000006666)株式会社山武 (1,808)
【Fターム(参考)】