説明

コリオリ流量計を用いて行うフラクチャリング流体に混合されたプロパントの量の測定

ここに開示したのは、コリオリ流量計(222)と制御システム(224)とを備えた測定システム(200)である。先ず、コリオリ流量計にベース流体(250)を流す。コリオリ流量計は、そのベース流体の密度を測定して、ベース流体密度測定値を制御システムへ送出する。次に、そのベース流体にプロパント(252)を添加してフラクチャリング流体(202)を調製する。続いて、コリオリ流量計にそのフラクチャリング流体を流す。コリオリ流量計は、そのフラクチャリング流体の密度を測定して、フラクチャリング流体密度測定値を制御システムへ送出する。制御システムは、ベース流体密度測定値と、フラクチャリング流体密度測定値と、プロパントの密度とに基づいて、フラクチャリング流体に含まれるプロパントの含有量を求める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定システムの分野に関するものであり、より詳しくは、コリオリ流量計で測定して得られた測定値に基づいて、フラクチャリング流体に含まれるプロパント(Proppant)の含有量を求めるシステム及び方法に関するものである。
【背景技術】
【0002】
石油やガスなどの地下資源は、坑井を掘削して採取する。ある程度の深さまで坑井を掘削したならば、セメントでケーシングを形成する。坑井は、地中の幾つもの層を貫いて掘削され、掘削技術者は、それら層のうちの所望の層にタップを設ける。ある所望の層にタップを設ける際に、掘削技術者は、その層内のケーシングの一部を破砕してフラクチャー(破断口)を形成する。フラクチャーを形成するために用いられる方法には、水圧式フラクチャリング(水圧破砕法)や、空圧式フラクチャリング(空圧破砕法)があり、更にその他の破砕法が用いられることもある。ケーシングにフラクチャーを形成したならば、続いて、掘削技術者は、ポンプを用いてそのフラクチャーの中へフラクチャリング流体を注入し、それによって、そのフラクチャーを開いた状態に維持する。フラクチャリング流体は、フラクチャーが閉じるのを防止しつつ、しかも、そのフラクチャーを通過して流体が流れ得る状態を維持するものである。これによって、石油やガスが、より容易に、そのフラクチャーを通過して坑井内へ流動できるようになる。
【0003】
フラクチャリング流体は、ベース流体とプロパントとから成る。ベース流体を調製するには、大容量タンクの中の水に、グアーゴムを投入する。タンクに装備したミキサがグアーゴムと水を連続的に攪拌して混合し、それによってベース流体が調製される。攪拌され混合されたベース流体は、糖蜜のような粘稠性を有する液体である。
【0004】
プロパントは、例えば砂などであり、これをタンクの中のベース流体に混合することによって、フラクチャリング流体が調製される。砂の混合量は、土の種類や、土の状態、及びその他の要因によって決まるものである。タンクに装備したミキサがベース流体と砂を攪拌して混合し、それによってフラクチャリング流体が調製される。続いて、フラクチャーを開いた状態に維持するために、ポンプを用いてそのフラクチャリング流体を坑井内へ注入する。フラクチャリング流体に含まれる砂の含有量が、そのフラクチャリング流体がどれほど良好にフラクチャーを開いた状態に維持できるかを決める要因となる。
【0005】
従って、フラクチャリング流体に含まれる砂の含有量は重要であり、そのため掘削技術者は、砂の添加量を測定することを必要としている。ところが、これは容易なことではなく、なぜならば、フラクチャリング流体の調製はバッチ方式で行われるのではなく、フラクチャリング流体は連続的に攪拌されているからである。そのため掘削技術者は、フラクチャリング流体に含まれる砂の含有量を求めるために、ニュークリア・デンシトメータ(核放射線式密度計)を用いて、ポンプにより坑井内へ注入されているフラクチャリング流体の密度を測定するようにしている。そして、ニュークリア・デンシトメータによって得られた密度測定値をコントローラへ供給して、フラクチャリング流体に添加された砂の量を算出させる。これによって、掘削技術者は、砂の量を所望レベルに調節することが可能となる。図1は、このようなフラクチャリング流体の供給システムの具体例を示したものであり、これについては後に詳述する。
【0006】
しかしながら、ニュークリア・デンシトメータを使用することには多くの問題が付随している。例えば、核関連技術を取り巻く数々の法令が存在するため、州境ないし国境を越えてニュークリア・デンシトメータを輸送することは必ずしも容易ではない。また、ニュークリア・デンシトメータの操作及び輸送には、安全上の懸念がつきまとうということがある。更に、ニュークリア・デンシトメータのオペレータは、監督当局による資格認定ないし免許付与を受ける必要がある。これらの要因が、ニュークリア・デンシトメータを使用することを不都合なものにしている。
【0007】
コリオリ流量計は、流体の質量流量や密度、及びその他のデータを測定して得るために用いられている。コリオリ流量計の具体例は、米国特許第4,109,524号公報(1978年8月29日発行)、米国特許第4,491,025号公報(1985年1月1日発行)、それに米国再発行特許第31,450号公報(1982年2月11日発行)に開示されており、これら特許はいずれもJ. E. スミスらを発明者とするものである。コリオリ流量計は、直管または屈曲管で構成された1本または複数本の流管を備えている。コリオリ流量計の各流管は複数の固有振動モードを有し、それら固有振動モードは、単純曲げ振動、単純ひねり振動、単純ねじり振動などであることもあり、それらの複合振動であることもある。各流管は、その複数の固有振動モードのうちの1つの固有振動モードの、共振周波数で振動するように駆動される。流体は、流量計の流入口側に接続された管路から、流量計の中へ流入する。流体は流管の中を流れて、流量計の流出側から流出する。流管の質量と流管の中を流れている流体の質量とを合わせた合計質量が、流体が中を流れている振動系の固有振動モードを決定する要因の1つとなる。
【0008】
流体が流管の中を流れ始めると、コリオリの力のために、流管に沿った夫々の位置が、互いに異なった位相を持つようになる。流管の流入側の位相は、通常、駆動装置の位相よりも遅れ、一方、流管の流出側の位相は、駆動装置の位相よりも先行する。流管に取付けられた複数のピックオフが、流管の運動を測定し、そして、測定した流管の運動を表すピックオフ信号を夫々に発生する。
【0009】
流量計に接続されている流量計電子回路ないし補助電子回路が、それらピックオフ信号を受取る。流量計電子回路は、それらピックオフ信号に処理を施して、それらピックオフ信号の間の位相差を求める。2つのピックオフの間の位相差は、流管を通過して流れている流体の質量流量に比例する。流量計電子回路は更に、それらピックオフ信号の一方または両方に処理を施して、その流体の密度を求めることもある。
【0010】
しかしながら、これまでコリオリ流量計は、フラクチャリング流体の密度を測定するためには用いられていなかった。その第1の理由は、フラクチャリング流体をポンプで坑井内へ注入する際に用いられる配管が、通常、例えば8インチ管などの大口径管であるということがある。8インチ管の中の流れを測定できるだけの大寸法のコリオリ流量計は、これまで製作されていない。また第2の理由として、コリオリ流量計の殆どは、その流管が屈曲管で構成されているということがある。屈曲管で構成された流管の中を流れる砂は、強力な侵蝕性を発揮するため、屈曲管形コリオリ流量計を使用することは、実用性を有する選択肢とはなり得なかったのである。もし、屈曲管で構成された流管の中に砂を流したならば、その流管は数時間もしないうちに損傷してしまうであろう。これらの理由から、フラクチャリング流体の測定にこりは使用されておらず、ニュークリア・デンシトメータが使われ続けていたのである。
【発明の開示】
【課題を解決するための手段】
【0011】
本発明は、コリオリ流量計と制御システムとを備えた測定システムによって、上述した諸問題の解決を促進するものである。先ず、コリオリ流量計にベース流体を流す。コリオリ流量計は、そのベース流体の密度を測定して、ベース流体密度測定値を制御システムへ送出する。次に、そのベース流体にプロパントを添加してフラクチャリング流体を調製する。続いて、コリオリ流量計にそのフラクチャリング流体を流す。コリオリ流量計は、そのフラクチャリング流体の密度を測定して、フラクチャリング流体密度測定値を制御システムへ送出する。制御システムは、ベース流体密度測定値と、フラクチャリング流体密度測定値と、プロパントの密度とに基づいて、フラクチャリング流体に含まれるプロパントの含有量を求める。
【0012】
かかる測定システムによれば、核関連技術を用いずに、コリオリ技術によってだいたいすることを好適に可能にするものである。コリオリ流量計を使用することによって、高精度の密度測定値を得ることができ、しかも、放射線源及び放射線機器の操作及び輸送に関わる問題を払拭することができる。コリオリ流量計は更に、ニュークリア・デンシトメータに本来的に付随する安全上の懸念とも無縁である。
【0013】
本発明の別の実施例においては、コリオリ流量計に、物質のスリップ・ストリームが流入するようにしている。スリップ・ストリームを流入させるために、測定システムは、第1管路及び第2管路を更に備えている。第1管路は、第1端がコリオリ流量計の流入口に接続し、第2端がタンクの吐出部に接続している。第2管路は、第1端がコリオリ流量計の流出口に接続し第2端がタンクに接続している。第1管路には、タンクの吐出部から吐出された物質のスリップ・ストリームが流入する。このスリップ・ストリームは前記第1管路を通過し、前記コリオリ流量計を通過し、前記第2管路を通過して前記タンクへ還流する。スリップ・ストリームを測定するようにしたため、測定流量を小さくすることができ、例えば測定対象の流れを1インチ管の中の流れとすることも可能である。
【0014】
本発明のその他の実施の形態について開示すると、次の通りである。
【0015】
以下の記載は本発明の様々な局面を列挙したものである。本発明の1つの局面として、コリオリ流量計と制御システムとを備えた測定システムがあり、この測定システムにおいては、
前記コリオリ流量計は、該コリオリ流量計を通過して流れるベース流体(250)の密度を測定してベース流体密度測定値を生成し、該ベース流体密度測定値を送出するように構成されるとともに、前記ベース流体とプロパント(252)との混合物から成り該コリオリ流量計を通過して流れるフラクチャリング流体(202)の密度を測定してフラクチャリング流体密度測定値を生成し、該フラクチャリング流体密度測定値を送出するように構成されており、
前記制御システムは、前記ベース流体密度測定値と前記フラクチャリング流体密度測定値とを受取り、前記ベース流体密度測定値と、前記フラクチャリング流体密度測定値と、前記プロパントの密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの含有量を求めるように構成されている、
ことを特徴とする。
【0016】
前記コリオリ流量計は、直管形コリオリ流量計から成るものとすることが好ましい。
【0017】
前記コリオリ流量計は、前記フラクチャリング流体のスリップ・ストリームが該コリオリ流量計へ流入することによって、該コリオリ流量計が前記フラクチャリング流体の密度を測定するようにしたものとすることが好ましい。
【0018】
前記測定システムは、
第1端が前記コリオリ流量計の流入口に接続し第2端がタンクの吐出部に接続した第1管路と、
第1端が前記コリオリ流量計の流出口に接続し第2端が前記タンクに接続した第2管路とを更に備え、
前記タンクの前記吐出部から吐出された物質のスリップ・ストリームが前記第1管路へ流入し、前記第1管路を通過し、前記コリオリ流量計を通過し、前記第2管路を通過して前記タンクに還流するようにしたものとすることが好ましい。
【0019】
前記制御システムが、前記プロパントの密度を求めるように構成されているものとすることが好ましい。
【0020】
前記制御システムが、前記プロパントの前記含有量をユーザに提示するように構成されたディスプレイ・システムを備えているものとすることが好ましい。
【0021】
前記制御システムが、前記プロパントの前記含有量を表す信号を補助システムへ送信するように構成された補助インターフェースを備えているものとすることが好ましい。
【0022】
前記制御システムが、ユーザが入力した前記プロパントの前記密度を受取るように構成されたユーザ・インターフェースを備えているものとすることが好ましい。
【0023】
前記制御システムが、
前記フラクチャリング流体の流速を算出し、
前記フラクチャリング流体の前記流速がスレショルド値を超えているか否かを判定し、
前記フラクチャリング流体の前記流速が前記スレショルド値をを超えていたならばそのことを表示する、
ように構成されているものとすることが好ましい。
【0024】
前記制御システムが、
前記コリオリ流量計で測定された複数の前記ベース流体密度測定値に基づいて前記ベース流体の平均密度を算出し、
前記ベース流体の前記平均密度と、前記フラクチャリング流体密度測定値と、前記プロパントの前記密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの前記含有量を求める、
ように構成されているものとすることが好ましい。
【0025】
前記コリオリ流量計が、前記フラクチャリング流体の質量流量を測定して、前記フラクチャリング流体の前記質量流量と該コリオリ流量計の駆動利得との少なくとも一方を前記制御システムへ供給するように構成されており、
前記制御システムが、前記フラクチャリング流体の前記質量流量と前記コリオリ流量計の前記駆動利得との少なくとも一方をユーザへ提示するように構成されている、
ものとすることが好ましい。
【0026】
本発明の別の1つの局面として、フラクチャリング流体に含まれるプロパントの含有量を測定する方法であって、前記プロパントの密度を求めるステップを含む方法があり、この方法においては、
ベース流体の密度をコリオリ流量計で測定してベース流体密度測定値を生成するステップと、
前記ベース流体とプロパントとの混合物から成るフラクチャリング流体の密度を前記コリオリ流量計で測定してフラクチャリング流体密度測定値を生成するステップと、
前記ベース流体密度測定値と、前記フラクチャリング流体密度測定値と、前記プロパントの密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの含有量を求めるステップと、
を含むことを特徴とする。
【0027】
前記フラクチャリング流体の密度を前記コリオリ流量計で測定する前記ステップが、
前記フラクチャリング流体の前記密度を直管形コリオリ流量計で測定するステップから成る、
ものとすることが好ましい。
【0028】
前記フラクチャリング流体の密度を前記コリオリ流量計で測定する前記ステップが、
前記フラクチャリング流体のスリップ・ストリームを前記コリオリ流量計へ流入させて前記フラクチャリング流体の前記密度を測定するステップから成る、
ものとすることが好ましい。
【0029】
前記方法が、
第1管路の第1端を前記コリオリ流量計の流入口に接続するステップと、
前記第1管路の第2端をタンクの吐出部に接続するステップと、
第2管路の第1端を前記コリオリ流量計の流出口に接続するステップと、
前記第2管路の第2端を前記タンクに接続するステップとを更に含み、
前記タンクの前記吐出部から吐出された物質のスリップ・ストリームが前記第1管路へ流入し、前記第1管路を通過し、前記コリオリ流量計を通過し、前記第2管路を通過して前記タンクに還流するようにする、
ものとすることが好ましい。
【0030】
前記方法が、前記プロパントの前記含有量をユーザに提示するステップを更に含むものとすることが好ましい。
【0031】
前記方法が、前記プロパントの前記含有量を表す信号を補助システムへ送信するステップを更に含むものとすることが好ましい。
【0032】
前記方法が、ユーザから前記プロパントの前記密度を受取るステップを更に含むものとすることが好ましい。
【0033】
前記方法が、
前記フラクチャリング流体の流速を算出するステップと、
前記フラクチャリング流体の前記流速がスレショルド値を超えているか否かを判定するステップと、
前記フラクチャリング流体の前記流速が前記スレショルド値をを超えていたならばそのことを表示するステップと、
を更に含むものとすることが好ましい。
【0034】
前記方法が、
前記コリオリ流量計で測定された複数の前記ベース流体密度測定値に基づいて前記ベース流体の平均密度を算出するステップと、
前記ベース流体の前記平均密度と、前記フラクチャリング流体密度測定値と、前記プロパントの前記密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの含有量を求めるステップと、
を更に含むものとすることが好ましい。
【0035】
前記方法が、
前記フラクチャリング流体の質量流量を前記コリオリ流量計で測定するステップと、
前記フラクチャリング流体の前記質量流量と前記コリオリ流量計の前記駆動利得との少なくとも一方をユーザへ提示するステップと、
を更に含むものとすることが好ましい。
【発明を実施するための最良の形態】
【0036】
図1は、本発明を理解し易くするために提示する、坑井内へフラクチャリング流体を供給する従来の供給システムを示した図である。図2〜図5並びに以下の説明は、本発明の最良の形態の製作法及び使用法を当業者に教示することを目的として提示する、本発明の具体的な実施例を図示し説明したものである。本発明の原理を教示することを旨として、本発明の特徴のうち、従来から存在する特徴については、説明を簡略化したものもあり、また、省略したものもある。当業者であれば、以下に説明する実施例に基づいて、本発明の範囲に含まれるその他の様々な変更例にも想到し得ることは当然である。従って、本発明は、以下に説明する具体的な実施例に限定されるのではなく、特許請求の範囲に記載されたもの、並びにその均等物に相当するものに限定されるものである。
【0037】
フラクチャリング流体を供給するための従来のシステム−図1
図1は、坑井内へフラクチャリング流体102を供給するための従来のフラクチャリング流体システム100を示した図である。フラクチャリング流体システム100は、タンク/ミキサ110、還流管111、供給管112、吐出管118、バルブ113、ポンプ123、ニュークリア・デンシトメータ114、及びコントローラ116を備えている。吐出管118は、一端がタンク/ミキサ110に接続され、他端がバルブ113の一端に接続されている。ポンプ128及びニュークリア・デンシトメータ114は、吐出管118に接続されている。還流管111は、一端がバルブ113に接続され、他端がタンク/ミキサ110に接続されている。供給管112はバルブ113に接続されており、また、この供給管112は、フラクチャリング流体102を坑井内へ供給するように構成されている。バルブ113は、フラクチャリング流体102の流れを、還流管111と供給管112とのいずれか一方へ流すように機能するものである。供給管112、還流管111、及び吐出管118は、いずれも直径が8インチ以上の配管である。コントローラ116はニュークリア・デンシトメータ114に接続されている。
【0038】
動作について説明すると、タンク/ミキサ110へは、水120、ガム122、及び砂124が投入される。タンク/ミキサ110は、水120、グアーゴム122、及び砂124を攪拌して混合し、それによってフラクチャリング流体102が調製される。フラクチャリング流体102を調製するために、水120及びガム122に対して混合する砂の量は、土の種類や、土の状態などをはじめとする、様々な要因によって決まるものである。フラクチャリング流体システム100を操作するオペレータは、ニュークリア・デンシトメータ114及びコントローラ116を使用して、フラクチャリング流体102に含まれる砂の量を測定する。
【0039】
フラクチャリング流体102の流れの全体が吐出管118内を流れ、ニュークリア・デンシトメータ114は、そのフラクチャリング流体102の密度を測定する。ニュークリア・デンシトメータ114は、フラクチャリング流体102の密度測定値をコントローラ116へ送出する。コントローラ116は、砂124の密度、水120の密度、及びガム122の密度の値を、既知の値として保持している。これらの値は、例えば、オペレータがコントローラ116に入力するものである。コントローラ116は、フラクチャリング流体102の密度測定値と、既知の値である砂124、水120、及びガム122の密度の値とに基づいて、フラクチャリング流体102に含まれる砂の含有量を算出する。コントローラ116はディスプレイ136を備えている。コントローラ116は、フラクチャリング流体102に含まれる砂の含有量を、ディスプレイ136を使用してオペレータに提示する。
【0040】
既述のごとくニュークリア・デンシトメータ114を使用することには多くの問題が付随している。例えば、州境ないし国境を越えてニュークリア・デンシトメータを輸送する際には面倒な手続きを要求されることがあり、ニュークリア・デンシトメータの操作及び輸送には、安全上の懸念がつきまとい、また、ニュークリア・デンシトメータのオペレータは、監督当局による資格認定ないし免許付与を受ける必要がある。これらの要因が、ニュークリア・デンシトメータを使用することを不都合なものにしている。
【0041】
測定システム及びその動作−図2
図2は、本発明の実施の形態における測定システム200を示した図である。測定システム200は、坑井(不図示)内へフラクチャリング流体202を供給するフラクチャリング流体システム201を動作させるように構成されている。フラクチャリング流体システム201は、タンク/ミキサ210、吐出管218、バルブ213、還流管211、供給管212、ポンプ228、及び測定システム200を備えている。吐出管218は、一端がタンク/ミキサ210に接続され、他端がバルブ213に接続されている。吐出管218には更に、ポンプ228も接続されている。還流管211は、一端がバルブ213に接続され、他端がタンク/ミキサ210に接続されている。供給管212はバルブ213に接続されていて、フラクチャリング流体202を坑井内へ輸送するように構成されている。バルブ213は、流体を還流管211と供給管212との一方へ流すものである。フラクチャリング流体システム201は、以上の他にも、多くの構成要素を備え得るものであるが、それら構成要素は図の見やすさを考慮して不図示とした。
【0042】
測定システム200は、コリオリ流量計222と制御システム224とを備えている。更に、測定システム200が管路226〜227を備えているようにしてもよく、ここでは、それら管路226〜227によって、吐出管218からのスリップ・ストリームが形成されるようにしている。管路226〜227としては、例えば直径1インチのゴム管などを用いることができる。管路226の両端部を引用符号271と272とで示した。端部271はコリオリ流量計222の流入端に接続しており、端部272は吐出管218に接続している。端部272を吐出管218に接続する位置は、吐出管218のエルボの部分とすれば、最も良好な結果が得られる。管路227の両端部を引用符号281と282とで示した。端部281はコリオリ流量計222の流出端に接続しており、端部282はタンク/ミキサ210に接続している。管路226、コリオリ流量計222、それに管路227は、物質のスリップ・ストリーム280がこれらに流入するように構成してある。スリップ・ストリーム280は、管路226へ流入し、この管路226を通過し、コリオリ流量計222を通過し、管路227を通過して、タンク/ミキサ210へ還流する。
【0043】
本発明の理解が容易なように、以下に幾つかの用語の定義を記しておく。コリオリ流量計とは、コリオリの原理に基づいて物質の密度を測定するように構成された測定用機器のことをいう。コリオリ流量計の具体例を挙げるならば、米国、コロラド州、Boulderに所在のMicro Motion社が製造している「T-100型」直管式流量計などがある。また、フラクチャリング流体とは、坑井内のフラクチャーが閉じてしまうのを防止して、流体が通過できる隙間を確保するために用いる、流体、物質、ないし混合物のことをいう。プロパントとは、フラクチャーを開いた状態に維持し易くするために、フラクチャリング流体に配合する、物質ないし添加材料のことをいう。プロパントの具体例としては砂がある。ベース流体とは、プロパントが混合されることによってフラクチャリング流体となる、物質ないし添加材料のことをいう。また、管路とは、ホース、チューブ、配管、パイプ、等々から成るものをいう。
【0044】
動作について説明すると、先ず、タンク/ミキサ210へ、ベース流体250を投入して攪拌させておく。また、バルブ213の切替位置は循環側に設定し、ポンプ228が、吐出管218及び還流管211を介してベース流体250を循環させるようにしておく。循環が行われているとき、管路226へは、ベース流体250のスリップ・ストリーム280が流入している。流入したベース流体250のスリップ・ストリーム280は、管路226を通過し、コリオリ流量計222を通過し、管路227を通過して、タンク/ミキサ210へ還流する。ベース流体250がコリオリ流量計222を通過する際に、コリオリ流量計222が、そのベース流体250の密度を測定する。コリオリ流量計222は、ベース流体密度測定値を制御システム224へ送出する。
【0045】
この状態で、タンク/ミキサ210にプロパント252を投入すると、タンク/ミキサ210が、そのプロパント252とベース流体250とを混合し、それによってフラクチャリング流体202が調製される。また、バルブ213の切替位置は循環側に設定し、ポンプ228が、吐出管218及び還流管211を介してフラクチャリング流体202を循環させるようにしておく。循環が行われているとき、管路226へは、フラクチャリング流体202のスリップ・ストリーム280が流入している。流入したフラクチャリング流体202のスリップ・ストリーム280は、管路226を通過し、コリオリ流量計222を通過し、管路227を通過して、タンク/ミキサ210へ還流する。フラクチャリング流体202がコリオリ流量計222を通過する際に、コリオリ流量計222が、そのフラクチャリング流体202の密度を測定する。コリオリ流量計222は、フラクチャリング流体密度測定値を制御システム224へ送出する。
【0046】
以上によって、制御システム224へ、ベース流体密度測定値と、フラクチャリング流体密度測定値とが供給される。更に、制御システム224へは、プロパント252の密度の値も供給される。制御システム224へ供給されるプロパント252の密度の値は、オペレータに入力させるようにしてもよく、メモリから読み出すようにしてもよく、或いはその他のデータ供給源から受信するようにしてもよい。制御システム224は、これらのベース流体密度測定値と、フラクチャリング流体密度測定値と、プロパント252の密度とに基づいて、フラクチャリング流体202に含まれるプロパント252の含有量を求める。フラクチャリング流体システム201のオペレータは、制御システム224が求めたフラクチャリング流体202に含まれるプロパント252の含有量の値を見て、フラクチャリング流体202へ添加するプロパント252の添加量を調整することができる。尚、当業者であれば、在来の測定システムにいかなる改変を加えれば測定システム200となしうるかは自明のことである。
【0047】
フラクチャリング流体202に含まれるプロパント252の含有量が適当な量に達したならば、バルブ213を切換えて、フラクチャリング流体202をポンプによって、供給管212を介して坑井内へ注入する。尚、供給管212に、フラクチャリング流体202をポンプによって坑井内へ注入するための、例えば大型ポンプなどのその他のデバイスないしシステムを接続するようにしてもよい。
【0048】
制御システム−図3
図3は本発明の実施の形態における制御システム224の具体例を示した図である。制御システム224は、ディスプレイ302、ユーザ・インターフェース304、及び補助インターフェース306を備えている。制御システム224の具体例を挙げるならば、例えば「Daniel FloBoss 407型(Danielは登録商標、FloBossは商標である)」などである。ディスプレイ302は、オペレータに関連データを表示するように構成したものである。ディスプレイ302の具体例を挙げるならば、例えば、液晶ディスプレイ(LCD)などである。ユーザ・インターフェース304は、オペレータが制御システム224へ情報を入力できるように構成したものである。インターフェース304の具体例を挙げるならば、例えば、キーパッドなどである。補助インターフェース306は、補助システム(不図示)との間で情報の送受信を行うように構成したものである。補助インターフェース306の具体例を挙げるならば、例えば、シリアル・データ・ポートなどである。
【0049】
更に、制御システム224が、プロセッサと、記憶媒体とを備えているようにしてもよい。その場合、その記憶媒体に格納した命令によって、制御システム224の動作を制御するようにすることができる。その命令は、プロセッサによって取出され、実行される。命令の具体例を挙げるならば、例えば、ソフトウェア、プログラムコード、それにファームウェアなどである。記憶媒体の具体例を挙げるならば、例えば、メモリ・デバイス、テープ、ディスク、集積回路、それにサーバなどである。命令は、プロセッサにより実行されるとき、動作命令として機能するものであって、プロセッサを本発明に従って動作させるものである。「プロセッサ」という用語は、ただ1個の処理装置を意味することもあれば、相互に関連して動作する処理装置群を意味することもある。プロセッサの具体例を挙げるならば、例えば、コンピュータ、集積回路、それに論理回路などである。尚、当業者であれば、命令、プロセッサ、並びに記憶媒体については熟知していて当然である。
【0050】
コリオリ流量計−図4
図4は本発明の実施の形態におけるコリオリ流量計400の具体例を示した図である。図4のコリオリ流量計400は、図2に示したコリオリ流量計222として使用し得るものである。コリオリ流量計400は、コリオリ・センサ402と、流量計電子回路404とを備えている。流量計電子回路404は、導線406を介してコリオリ・センサ402に接続されている。流量計電子回路404は、導線408を介して密度、質量流量、体積流量、合計質量流量、等々の情報を送出するように構成されている。
【0051】
コリオリ・センサ402は、流管410、バランス・バー412、2個のプロセス接続部材414〜415、2個のピックオフ424〜425、それに温度センサ426を備えている。流管410は、その左端部分を引用符号410Lで表し、その右端部分を引用符号410Rで表してある。流管410と、その左端部分410Lと、その右端部分410Rとは、コリオリ・センサ402の全長に亘って延在しており、即ち、流管410の流入端から、この流管410の流出端までが、コリオリ・センサ402の全長をなしている。バランス・バー412は、その両端が、夫々の取付バー416を介して流管410に取付けられている。
【0052】
左端部分410Lには、流入側プロセス接続部材414が取付けられており、右端部分410Rには、流出側プロセス接続部材415が取付けられている。それら流入側プロセス接続部材414及び流出側プロセス接続部材415は、コリオリ・センサ402を配管(不図示)に接続するための部材である。
【0053】
駆動装置422と、左側ピックオフ424と、右側ピックオフ425とは、一般的な取付方式によって、流管410及びバランス・バー412に取付けられている。流量計電子回路404は、導線432を介して駆動装置422に駆動信号を供給する。駆動装置422は、この駆動信号に応答して、流管410とバランス・バー412とを互いに逆位相で振動させ、その振動周波数は、内部に流体が充填されている流管410の共振周波数である。振動している流管410の、その振動には、周知のごとく、流管410のコリオリ撓みによる振動分が含まれている。ピックオフ424及び425は、そのコリオリ撓みを検出し、そして、検出したコリオリ撓みを表すピックオフ信号を、夫々、導線434と導線345とを介して送出する。
【0054】
温度センサ426は流管410に取付けられている。温度センサ426は、流管410の中を流れている流体の温度を検出する。温度センサ426は、温度信号を生成し、その温度信号を、導線436を介して流量計電子回路404へ送出する。
【0055】
測定システムの動作例−図5
図5に示したのは、本発明の実施の形態における測定システム200の動作例500を示したフローチャートである。先ず、オペレータが、制御システム224及びコリオリ流量計222に電源を投入する。制御システム224へは、この制御システム224のメモリをクリアするよう命じるクリア命令が供給される。これは、オペレータが、ユーザ・インターフェース304を操作して「クリア」命令を入力することによって行われる。ステップ504では、制御システム224が、オペレータにプロンプトを出して、プロパント252の密度を入力するよう促す。これは、制御システム224が、ディスプレイ302に「プロパントの密度を入力してください」という表示を出すことによって行われる。オペレータは、ユーザ・インターフェース304を操作して、プロパント252の密度を、例えばポンド/ガロンの単位で入力する。プロパント252が砂である場合には、その密度は、例えば22.1ポンド/ガロン(約2.65キログラム/リットル)である。ステップ506では、オペレータが入力したプロパント252の密度を、制御システム224が受取っている。尚、プロパントの密度は、オペレータに入力させる以外にも、メモリから読み出すようにしてもよく、他のシステムから受信するようにしてもよい。
【0056】
このときタンク/ミキサ210は、プロパント252を含まないベース流体250だけを攪拌している。また、このときバルブ213の切替位置は循環側に設定されており、ポンプ228がベース流体250を、吐出管218及び還流管211を介して循環させている。また、このベース流体250のスリップ・ストリーム280が、管路226へ流入している。ベース流体250のスリップ・ストリーム280は、管路226を通過し、コリオリ流量計222を通過し、管路227を通過して、タンク/ミキサ210へ還流している。ステップ508では、ベース流体250がコリオリ流量計222の中を流れており、コリオリ流量計222は、そのベース流体250の密度を測定する。コリオリ流量計222は、ベース流体密度測定値を制御システム224へ送出する。ステップ510では、制御システム224が、そのベース流体密度測定値をオペレータへ表示する。尚、ステップ508では、コリオリ流量計222が、ベース流体250の質量流量やベース流体250の温度などのその他のパラメータを併せて測定するようにしてもよい。また更に、その場合には、ステップ510において、制御システム224が、質量流量や温度などのその他のパラメータを併せてオペレータへ表示するようにしてもよい。複数のパラメータを表示するときには、オペレータが、それらパラメータをスクロールして、所望のパラメータを見ることができるようにしておくとよい。
【0057】
ステップ512では、制御システム224がベース流体250の平均密度を算出する。この平均密度を算出するために、制御システム224は、ベース流体250の10個の密度測定値の平均値を取る。別法として、この平均密度を算出するために、制御システム224が、5秒間に測定された密度測定値の平均値を取るようにしてもよい。また、平均密度を算出している間、制御システム224がオペレータへ「ベース流体が安定するのを待っています」と表示するようにしてもよい。或いはまた、オペレータが算出命令に発したときに、その命令に応答して制御システム224が平均密度の算出を実行するようにしてもよい。その場合には、例えば、オペレータが、制御システム224に表示されている密度の測定値及び温度の測定値を監視して、それら測定値が安定したか否かを判断する。そして、オペレータは、それら測定値が安定した後に、制御システム224に対して、平均密度を算出するよう命令を発すればよい。
【0058】
ステップ514では、制御システム224が、算出したばかりの平均密度の値が安定した値であるか否かを判定する。この判定を行うには、例えば、最近の5秒間に平均密度の値が1%以上の変動を生じていたならば、平均密度の値が安定していないと判定するようにすればよい。そして、そのような変動を生じていた場合には、制御システム224がオペレータへ「密度が安定していません」と表示して、ステップ512へ戻るようにする。一方、最近の5秒間に平均密度の値が1%以上の変動を生じていなかったならば、その平均密度の値は安定しており、使用可能な値である。ステップ516では、制御システム224が、ベース流体250の平均密度の安定した値をオペレータへ表示する。
【0059】
この時点で、タンク/ミキサ210が、フラクチャリング流体202を調製するためにベース流体250にプロパント252を添加しはじめる。バルブ213の切替位置は循環側に設定されているため、ポンプ328が、吐出管218及び還流管211を介してフラクチャリング流体202を循環させる。ポンプ328によって、フラクチャリング流体を循環させるようにしているのは、フラクチャリング流体202を連続的に攪拌して、フラクチャリング流体の特性を適切なものにするためである。また、このとき、フラクチャリング流体202のスリップ・ストリーム280が管路226へ流入している。フラクチャリング流体202のスリップ・ストリーム280は、管路226を通過し、コリオリ流量計222を通過し、管路227を通過して、タンク/ミキサ210へ還流している。ステップ518では、フラクチャリング流体202が、コリオリ流量計222の中を流れており、コリオリ流量計222はそのフラクチャリング流体202の密度を測定する。コリオリ流量計222は、そのフラクチャリング流体の密度の測定値を制御システム224へ送出する。
【0060】
続いて、制御システム224は、フラクチャリング流体202へ混入した砂の重量を算出する。この砂の混入量を算出するために、制御システム224は、以下に示す一連の数式を使用する。ステップ520では、制御システム224が、下の式〔1〕を用いて、フラクチャリング流体202に含まれている固形物の含有率(%S)を算出する。
【0061】
%S = (ρfrac fluidbase fluid) / (ρproppantbase fluid) 式〔1〕
この式〔1〕において、ρfrac fluidはフラクチャリング流体202の密度、ρbase fluidはベース流体250の密度、ρproppantはプロパント252の密度である。
【0062】
ステップ522では、制御システム224が、下の式〔2〕を用いて、プロパントによる置換容積(P.D.)を算出する。
【0063】
P.D. = 231 /ρproppant 式〔2〕
この式〔2〕において、ρproppantはプロパント252の密度である。
【0064】
ステップ524では、制御システム224が、下の式〔3〕を用いて、フラクチャリング流体202に添加された砂の重量である砂添加重量(P.S.A.)を算出する。
【0065】
P.S.A. = (%S * 231) / ((1 - %S) + P.D.) 式〔3〕
尚、砂添加重量(P.S.A.)は、プロパント添加重量(P.P.A.)と呼ばれることもある。
【0066】
制御システム224が、以上の式〔1〕〜式〔3〕を用いる替わりに、下の式〔4〕を用いて、砂添加重量を求めるようにしてもよい。
【0067】
P.S.A. = (ρfrac fluidbase fluid) / ((1 - (ρfrac fluidproppant)) 式〔4〕
この式〔4〕において、ρfrac fluidはフラクチャリング流体202の密度、ρbase fluidはベース流体250の密度、ρproppantはプロパント252の密度である。
【0068】
ステップ526では、制御システム224が、フラクチャリング流体202に添加された砂の重量である砂添加重量を表示する。制御システム224が砂添加重量を表示する際の単位は、水1ガロンあたりの添加された砂の重量をポンドを単位として表したものである。制御システム224は更に、砂添加重量を表す信号を生成する。この信号は、補助システム(不図示)へ送出される信号であり、4mA〜20mAの信号である。尚、ステップ518では、コリオリ流量計222が、フラクチャリング流体202の質量流量やフラクチャリング流体202の温度などのその他のパラメータを併せて測定するようにしてもよい。またその場合には、ステップ526において、制御システム224が、質量流量や温度などのその他のパラメータを併せてオペレータへ表示するようにしてもよい。複数のパラメータを表示するときには、オペレータが、それらパラメータをスクロールして、所望のパラメータを見ることができるようにしておくとよい。この後、制御システム224はステップ518へ戻る。
【0069】
この方法500が更に、ステップ528及びステップ530を含むようにしてもよい。ステップ528では、制御システム224が、フラクチャリング流体202の流速をスレショルド値と比較する。制御システム224は、下の式〔5〕を用いて、フラクチャリング流体202の流速(velocity material)を算出する。
【0070】
velocity material = flow rate material * A.F. 式〔5〕
この式〔5〕において、A.F.は断面係数であり、flow rate materialは物質の流量である。断面係数(A.F.)は、オペレータに入力させるようにしてもよく、メモリから読み出すようにしてもよく、他のシステムから受信するようにしてもよい。フラクチャリング流体202の流速がスレショルド値を超えていたならば、制御システム224は、ステップ530において、流速がスレショルド値を超えていることを表示する。例えば、フラクチャリング流体202の流速が 12 ft/sec(約3.6 m/秒)を超えていたならば、制御システム224が警報を発するようにしておいてもよい。フラクチャリング流体202の流速がスレショルド値を超えていなかったならば、制御システム224はステップ518へ戻る。
【0071】
制御システム224は、フラクチャリング流体202へ添加された砂の重量である砂添加重量を連続して算出し続けることができる。また、タンク/ミキサ210は、攪拌及び混合をバッチ式に実行するシステムではなく、連続的に攪拌及び混合を実行し続けるシステムである。そのため、オペレータは、タンク/ミキサ210が、フラクチャリング流体202を坑井内へ供給し続けている間も、制御システム224に砂添加重量の測定を行わせておくことができる。
【図面の簡単な説明】
【0072】
【図1】坑井内へフラクチャリング流体を供給するための従来の供給システムを示した図である。
【図2】本発明の実施の形態における測定システムを示した図である。
【図3】本発明の実施の形態における制御システムの具体例を示した図である。
【図4】本発明の実施の形態におけるコリオリ流量計の具体例を示した図である。本発明の1つの実施の形態に係る発泡剤注入アセンブリを示した図である。
【図5】本発明の実施の形態における測定システムの動作例を示したフローチャートである。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定システムの分野に関するものであり、より詳しくは、コリオリ流量計で測定して得られた測定値に基づいて、フラクチャリング流体に含まれるプロパント(Proppant)の含有量を求めるシステム及び方法に関するものである。
【背景技術】
【0002】
石油やガスなどの地下資源は、坑井を掘削して採取する。ある程度の深さまで坑井を掘削したならば、セメントでケーシングを形成する。坑井は、地中の幾つもの層を貫いて掘削され、掘削技術者は、それら層のうちの所望の層にタップを設ける。ある所望の層にタップを設ける際に、掘削技術者は、その層内のケーシングの一部を破砕してフラクチャー(破断口)を形成する。フラクチャーを形成するために用いられる方法には、水圧式フラクチャリング(水圧破砕法)や、空圧式フラクチャリング(空圧破砕法)があり、更にその他の破砕法が用いられることもある。ケーシングにフラクチャーを形成したならば、続いて、掘削技術者は、ポンプを用いてそのフラクチャーの中へフラクチャリング流体を注入し、それによって、そのフラクチャーを開いた状態に維持する。フラクチャリング流体は、フラクチャーが閉じるのを防止しつつ、しかも、そのフラクチャーを通過して流体が流れ得る状態を維持するものである。これによって、石油やガスが、より容易に、そのフラクチャーを通過して坑井内へ流動できるようになる。
【0003】
フラクチャリング流体は、ベース流体とプロパントとから成る。ベース流体を調製するには、大容量タンクの中の水に、グアーゴムを投入する。タンクに装備したミキサがグアーゴムと水を連続的に攪拌して混合し、それによってベース流体が調製される。攪拌され混合されたベース流体は、糖蜜のような粘稠性を有する液体である。
【0004】
プロパントは、例えば砂などであり、これをタンクの中のベース流体に混合することによって、フラクチャリング流体が調製される。砂の混合量は、土の種類や、土の状態、及びその他の要因によって決まるものである。タンクに装備したミキサがベース流体と砂を攪拌して混合し、それによってフラクチャリング流体が調製される。続いて、フラクチャーを開いた状態に維持するために、ポンプを用いてそのフラクチャリング流体を坑井内へ注入する。フラクチャリング流体に含まれる砂の含有量が、そのフラクチャリング流体がどれほど良好にフラクチャーを開いた状態に維持できるかを決める要因となる。
【0005】
従って、フラクチャリング流体に含まれる砂の含有量は重要であり、そのため掘削技術者は、砂の添加量を測定することを必要としている。ところが、これは容易なことではなく、なぜならば、フラクチャリング流体の調製はバッチ方式で行われるのではなく、フラクチャリング流体は連続的に攪拌されているからである。そのため掘削技術者は、フラクチャリング流体に含まれる砂の含有量を求めるために、ニュークリア・デンシトメータ(核放射線式密度計)を用いて、ポンプにより坑井内へ注入されているフラクチャリング流体の密度を測定するようにしている。そして、ニュークリア・デンシトメータによって得られた密度測定値をコントローラへ供給して、フラクチャリング流体に添加された砂の量を算出させる。これによって、掘削技術者は、砂の量を所望レベルに調節することが可能となる。図1は、このようなフラクチャリング流体の供給システムの具体例を示したものであり、これについては後に詳述する。
【0006】
しかしながら、ニュークリア・デンシトメータを使用することには多くの問題が付随している。例えば、核関連技術を取り巻く数々の法令が存在するため、州境ないし国境を越えてニュークリア・デンシトメータを輸送することは必ずしも容易ではない。また、ニュークリア・デンシトメータの操作及び輸送には、安全上の懸念がつきまとうということがある。更に、ニュークリア・デンシトメータのオペレータは、監督当局による資格認定ないし免許付与を受ける必要がある。これらの要因が、ニュークリア・デンシトメータを使用することを不都合なものにしている。
【0007】
コリオリ流量計は、流体の質量流量や密度、及びその他のデータを測定して得るために用いられている。コリオリ流量計の具体例は、米国特許第4,109,524号公報(1978年8月29日発行)、米国特許第4,491,025号公報(1985年1月1日発行)、それに米国再発行特許第31,450号公報(1982年2月11日発行)に開示されており、これら特許はいずれもJ. E. スミスらを発明者とするものである。コリオリ流量計は、直管または屈曲管で構成された1本または複数本の流管を備えている。コリオリ流量計の各流管は複数の固有振動モードを有し、それら固有振動モードは、単純曲げ振動、単純ひねり振動、単純ねじり振動などであることもあり、それらの複合振動であることもある。各流管は、その複数の固有振動モードのうちの1つの固有振動モードの、共振周波数で振動するように駆動される。流体は、流量計の流入口側に接続された管路から、流量計の中へ流入する。流体は流管の中を流れて、流量計の流出側から流出する。流管の質量と流管の中を流れている流体の質量とを合わせた合計質量が、流体が中を流れている振動系の固有振動モードを決定する要因の1つとなる。
【0008】
流体が流管の中を流れ始めると、コリオリの力のために、流管に沿った夫々の位置が、互いに異なった位相を持つようになる。流管の流入側の位相は、通常、駆動装置の位相よりも遅れ、一方、流管の流出側の位相は、駆動装置の位相よりも先行する。流管に取付けられた複数のピックオフが、流管の運動を測定し、そして、測定した流管の運動を表すピックオフ信号を夫々に発生する。
【0009】
流量計に接続されている流量計電子回路ないし補助電子回路が、それらピックオフ信号を受取る。流量計電子回路は、それらピックオフ信号に処理を施して、それらピックオフ信号の間の位相差を求める。2つのピックオフの間の位相差は、流管を通過して流れている流体の質量流量に比例する。流量計電子回路は更に、それらピックオフ信号の一方または両方に処理を施して、その流体の密度を求めることもある。
【0010】
しかしながら、これまでコリオリ流量計は、フラクチャリング流体の密度を測定するためには用いられていなかった。その第1の理由は、フラクチャリング流体をポンプで坑井内へ注入する際に用いられる配管が、通常、例えば8インチ管などの大口径管であるということがある。8インチ管の中の流れを測定できるだけの大寸法のコリオリ流量計は、これまで製作されていない。また第2の理由として、コリオリ流量計の殆どは、その流管が屈曲管で構成されているということがある。屈曲管で構成された流管の中を流れる砂は、強力な侵蝕性を発揮するため、屈曲管形コリオリ流量計を使用することは、実用性を有する選択肢とはなり得なかったのである。もし、屈曲管で構成された流管の中に砂を流したならば、その流管は数時間もしないうちに損傷してしまうであろう。これらの理由から、フラクチャリング流体の測定にこりは使用されておらず、ニュークリア・デンシトメータが使われ続けていたのである。
【発明の開示】
【課題を解決するための手段】
【0011】
本発明は、コリオリ流量計と制御システムとを備えた測定システムによって、上述した諸問題の解決を促進するものである。先ず、コリオリ流量計にベース流体を流す。コリオリ流量計は、そのベース流体の密度を測定して、ベース流体密度測定値を制御システムへ送出する。次に、そのベース流体にプロパントを添加してフラクチャリング流体を調製する。続いて、コリオリ流量計にそのフラクチャリング流体を流す。コリオリ流量計は、そのフラクチャリング流体の密度を測定して、フラクチャリング流体密度測定値を制御システムへ送出する。制御システムは、ベース流体密度測定値と、フラクチャリング流体密度測定値と、プロパントの密度とに基づいて、フラクチャリング流体に含まれるプロパントの含有量を求める。
【0012】
かかる測定システムによれば、核関連技術を用いずに、コリオリ技術によってだいたいすることを好適に可能にするものである。コリオリ流量計を使用することによって、高精度の密度測定値を得ることができ、しかも、放射線源及び放射線機器の操作及び輸送に関わる問題を払拭することができる。コリオリ流量計は更に、ニュークリア・デンシトメータに本来的に付随する安全上の懸念とも無縁である。
【0013】
本発明の別の実施例においては、コリオリ流量計に、物質のスリップ・ストリームが流入するようにしている。スリップ・ストリームを流入させるために、測定システムは、第1管路及び第2管路を更に備えている。第1管路は、第1端がコリオリ流量計の流入口に接続し、第2端がタンクの吐出部に接続している。第2管路は、第1端がコリオリ流量計の流出口に接続し第2端がタンクに接続している。第1管路には、タンクの吐出部から吐出された物質のスリップ・ストリームが流入する。このスリップ・ストリームは前記第1管路を通過し、前記コリオリ流量計を通過し、前記第2管路を通過して前記タンクへ還流する。スリップ・ストリームを測定するようにしたため、測定流量を小さくすることができ、例えば測定対象の流れを1インチ管の中の流れとすることも可能である。
【0014】
本発明のその他の実施の形態について開示すると、次の通りである。
【0015】
以下の記載は本発明の様々な局面を列挙したものである。本発明の1つの局面として、コリオリ流量計と制御システムとを備えた測定システムがあり、この測定システムにおいては、
前記コリオリ流量計は、該コリオリ流量計を通過して流れるベース流体の密度を測定してベース流体密度測定値を生成し、該ベース流体密度測定値を送出するように構成され、前記ベース流体とプロパントとの混合物から成るフラクチャリング流体の密度を測定するために該フラクチャリング流体のスリップ・ストリームが該コリオリ流量計へ流入するように構成され、更に、該コリオリ流量計を通過して流れる前記フラクチャリング流体の密度を測定してフラクチャリング流体密度測定値を生成し、該フラクチャリング流体密度測定値を送出するように構成されており、
前記制御システムは、前記ベース流体密度測定値と前記フラクチャリング流体密度測定値とを受取り、前記ベース流体密度測定値と、前記フラクチャリング流体密度測定値と、前記プロパントの密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの含有量を求めるように構成されている、
ことを特徴とする。
【0016】
前記コリオリ流量計は、直管形コリオリ流量計から成るものとすることが好ましい。
【0017】
前記測定システムは、
第1端が前記コリオリ流量計の流入口に接続し第2端がタンクの吐出部に接続した第1管路と、
第1端が前記コリオリ流量計の流出口に接続し第2端が前記タンクに接続した第2管路とを更に備え、
前記タンクの前記吐出部から吐出された物質のスリップ・ストリームが前記第1管路へ流入し、前記第1管路を通過し、前記コリオリ流量計を通過し、前記第2管路を通過して前記タンクに還流するようにしたものとすることが好ましい。
【0018】
前記制御システムが、前記プロパントの密度を求めるように構成されているものとすることが好ましい。
【0019】
前記制御システムが、前記プロパントの前記含有量をユーザに提示するように構成されたディスプレイ・システムを備えているものとすることが好ましい。
【0020】
前記制御システムが、前記プロパントの前記含有量を表す信号を補助システムへ送信するように構成された補助インターフェースを備えているものとすることが好ましい。
【0021】
前記制御システムが、ユーザが入力した前記プロパントの前記密度を受取るように構成されたユーザ・インターフェースを備えているものとすることが好ましい。
【0022】
前記制御システムが、
前記フラクチャリング流体の流速を算出し、
前記フラクチャリング流体の前記流速がスレショルド値を超えているか否かを判定し、
前記フラクチャリング流体の前記流速が前記スレショルド値をを超えていたならばそのことを表示する、
ように構成されているものとすることが好ましい。
【0023】
前記制御システムが、
前記コリオリ流量計で測定された複数の前記ベース流体密度測定値に基づいて前記ベース流体の平均密度を算出し、
前記ベース流体の前記平均密度と、前記フラクチャリング流体密度測定値と、前記プロパントの前記密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの前記含有量を求める、
ように構成されているものとすることが好ましい。
【0024】
前記コリオリ流量計が、前記フラクチャリング流体の質量流量を測定して、前記フラクチャリング流体の前記質量流量と該コリオリ流量計の駆動利得との少なくとも一方を前記制御システムへ供給するように構成されており、
前記制御システムが、前記フラクチャリング流体の前記質量流量と前記コリオリ流量計の前記駆動利得との少なくとも一方をユーザへ提示するように構成されている、
ものとすることが好ましい。
【0025】
本発明の別の1つの局面として、フラクチャリング流体に含まれるプロパントの含有量を測定する方法であって、前記プロパントの密度を求めるステップを含む方法があり、この方法においては、
ベース流体の密度をコリオリ流量計で測定して、ベース流体密度測定値を生成するステップと、
前記ベース流体とプロパントとの混合物から成るフラクチャリング流体の密度を測定するために該フラクチャリング流体のスリップ・ストリームを前記コリオリ流量計へ流入させるステップと、
前記フラクチャリング流体の密度を前記コリオリ流量計で測定してフラクチャリング流体密度測定値を生成するステップと、
前記ベース流体密度測定値と、前記フラクチャリング流体密度測定値と、前記プロパントの密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの含有量を求めるステップと、
を含むことを特徴とする。
【0026】
前記フラクチャリング流体の密度を前記コリオリ流量計で測定する前記ステップが、
前記フラクチャリング流体の前記密度を直管形コリオリ流量計で測定するステップから成る、
ものとすることが好ましい。
【0027】
前記方法が、
第1管路の第1端を前記コリオリ流量計の流入口に接続するステップと、
前記第1管路の第2端をタンクの吐出部に接続するステップと、
第2管路の第1端を前記コリオリ流量計の流出口に接続するステップと、
前記第2管路の第2端を前記タンクに接続するステップとを更に含み、
前記タンクの前記吐出部から吐出された物質のスリップ・ストリームが前記第1管路へ流入し、前記第1管路を通過し、前記コリオリ流量計を通過し、前記第2管路を通過して前記タンクに還流するようにする、
ものとすることが好ましい。
【0028】
前記方法が、前記プロパントの前記含有量をユーザに提示するステップを更に含むものとすることが好ましい。
【0029】
前記方法が、前記プロパントの前記含有量を表す信号を補助システムへ送信するステップを更に含むものとすることが好ましい。
【0030】
前記方法が、ユーザから前記プロパントの前記密度を受取るステップを更に含むものとすることが好ましい。
【0031】
前記方法が、
前記フラクチャリング流体の流速を算出するステップと、
前記フラクチャリング流体の前記流速がスレショルド値を超えているか否かを判定するステップと、
前記フラクチャリング流体の前記流速が前記スレショルド値をを超えていたならばそのことを表示するステップと、
を更に含むものとすることが好ましい。
【0032】
前記方法が、
前記コリオリ流量計で測定された複数の前記ベース流体密度測定値に基づいて前記ベース流体の平均密度を算出するステップと、
前記ベース流体の前記平均密度と、前記フラクチャリング流体密度測定値と、前記プロパントの前記密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの含有量を求めるステップと、
を更に含むものとすることが好ましい。
【0033】
前記方法が、
前記フラクチャリング流体の質量流量を前記コリオリ流量計で測定するステップと、
前記フラクチャリング流体の前記質量流量と前記コリオリ流量計の前記駆動利得との少なくとも一方をユーザへ提示するステップと、
を更に含むものとすることが好ましい。
【発明を実施するための最良の形態】
【0034】
図1は、本発明を理解し易くするために提示する、坑井内へフラクチャリング流体を供給する従来の供給システムを示した図である。図2〜図5並びに以下の説明は、本発明の最良の形態の製作法及び使用法を当業者に教示することを目的として提示する、本発明の具体的な実施例を図示し説明したものである。本発明の原理を教示することを旨として、本発明の特徴のうち、従来から存在する特徴については、説明を簡略化したものもあり、また、省略したものもある。当業者であれば、以下に説明する実施例に基づいて、本発明の範囲に含まれるその他の様々な変更例にも想到し得ることは当然である。従って、本発明は、以下に説明する具体的な実施例に限定されるのではなく、特許請求の範囲に記載されたもの、並びにその均等物に相当するものに限定されるものである。
【0035】
フラクチャリング流体を供給するための従来のシステム−図1
図1は、坑井内へフラクチャリング流体102を供給するための従来のフラクチャリング流体システム100を示した図である。フラクチャリング流体システム100は、タンク/ミキサ110、還流管111、供給管112、吐出管118、バルブ113、ポンプ123、ニュークリア・デンシトメータ114、及びコントローラ116を備えている。吐出管118は、一端がタンク/ミキサ110に接続され、他端がバルブ113の一端に接続されている。ポンプ128及びニュークリア・デンシトメータ114は、吐出管118に接続されている。還流管111は、一端がバルブ113に接続され、他端がタンク/ミキサ110に接続されている。供給管112はバルブ113に接続されており、また、この供給管112は、フラクチャリング流体102を坑井内へ供給するように構成されている。バルブ113は、フラクチャリング流体102の流れを、還流管111と供給管112とのいずれか一方へ流すように機能するものである。供給管112、還流管111、及び吐出管118は、いずれも直径が8インチ以上の配管である。コントローラ116はニュークリア・デンシトメータ114に接続されている。
【0036】
動作について説明すると、タンク/ミキサ110へは、水120、ガム122、及び砂124が投入される。タンク/ミキサ110は、水120、グアーゴム122、及び砂124を攪拌して混合し、それによってフラクチャリング流体102が調製される。フラクチャリング流体102を調製するために、水120及びガム122に対して混合する砂の量は、土の種類や、土の状態などをはじめとする、様々な要因によって決まるものである。フラクチャリング流体システム100を操作するオペレータは、ニュークリア・デンシトメータ114及びコントローラ116を使用して、フラクチャリング流体102に含まれる砂の量を測定する。
【0037】
フラクチャリング流体102の流れの全体が吐出管118内を流れ、ニュークリア・デンシトメータ114は、そのフラクチャリング流体102の密度を測定する。ニュークリア・デンシトメータ114は、フラクチャリング流体102の密度測定値をコントローラ116へ送出する。コントローラ116は、砂124の密度、水120の密度、及びガム122の密度の値を、既知の値として保持している。これらの値は、例えば、オペレータがコントローラ116に入力するものである。コントローラ116は、フラクチャリング流体102の密度測定値と、既知の値である砂124、水120、及びガム122の密度の値とに基づいて、フラクチャリング流体102に含まれる砂の含有量を算出する。コントローラ116はディスプレイ136を備えている。コントローラ116は、フラクチャリング流体102に含まれる砂の含有量を、ディスプレイ136を使用してオペレータに提示する。
【0038】
既述のごとくニュークリア・デンシトメータ114を使用することには多くの問題が付随している。例えば、州境ないし国境を越えてニュークリア・デンシトメータを輸送する際には面倒な手続きを要求されることがあり、ニュークリア・デンシトメータの操作及び輸送には、安全上の懸念がつきまとい、また、ニュークリア・デンシトメータのオペレータは、監督当局による資格認定ないし免許付与を受ける必要がある。これらの要因が、ニュークリア・デンシトメータを使用することを不都合なものにしている。
【0039】
測定システム及びその動作−図2
図2は、本発明の実施の形態における測定システム200を示した図である。測定システム200は、坑井(不図示)内へフラクチャリング流体202を供給するフラクチャリング流体システム201を動作させるように構成されている。フラクチャリング流体システム201は、タンク/ミキサ210、吐出管218、バルブ213、還流管211、供給管212、ポンプ228、及び測定システム200を備えている。吐出管218は、一端がタンク/ミキサ210に接続され、他端がバルブ213に接続されている。吐出管218には更に、ポンプ228も接続されている。還流管211は、一端がバルブ213に接続され、他端がタンク/ミキサ210に接続されている。供給管212はバルブ213に接続されていて、フラクチャリング流体202を坑井内へ輸送するように構成されている。バルブ213は、流体を還流管211と供給管212との一方へ流すものである。フラクチャリング流体システム201は、以上の他にも、多くの構成要素を備え得るものであるが、それら構成要素は図の見やすさを考慮して不図示とした。
【0040】
測定システム200は、コリオリ流量計222と制御システム224とを備えている。更に、測定システム200が管路226〜227を備えているようにしてもよく、ここでは、それら管路226〜227によって、吐出管218からのスリップ・ストリームが形成されるようにしている。管路226〜227としては、例えば直径1インチのゴム管などを用いることができる。管路226の両端部を引用符号271と272とで示した。端部271はコリオリ流量計222の流入端に接続しており、端部272は吐出管218に接続している。端部272を吐出管218に接続する位置は、吐出管218のエルボの部分とすれば、最も良好な結果が得られる。管路227の両端部を引用符号281と282とで示した。端部281はコリオリ流量計222の流出端に接続しており、端部282はタンク/ミキサ210に接続している。管路226、コリオリ流量計222、それに管路227は、物質のスリップ・ストリーム280がこれらに流入するように構成してある。スリップ・ストリーム280は、管路226へ流入し、この管路226を通過し、コリオリ流量計222を通過し、管路227を通過して、タンク/ミキサ210へ還流する。
【0041】
本発明の理解が容易なように、以下に幾つかの用語の定義を記しておく。コリオリ流量計とは、コリオリの原理に基づいて物質の密度を測定するように構成された測定用機器のことをいう。コリオリ流量計の具体例を挙げるならば、米国、コロラド州、Boulderに所在のMicro Motion社が製造している「T-100型」直管式流量計などがある。また、フラクチャリング流体とは、坑井内のフラクチャーが閉じてしまうのを防止して、流体が通過できる隙間を確保するために用いる、流体、物質、ないし混合物のことをいう。プロパントとは、フラクチャーを開いた状態に維持し易くするために、フラクチャリング流体に配合する、物質ないし添加材料のことをいう。プロパントの具体例としては砂がある。ベース流体とは、プロパントが混合されることによってフラクチャリング流体となる、物質ないし添加材料のことをいう。また、管路とは、ホース、チューブ、配管、パイプ、等々から成るものをいう。
【0042】
動作について説明すると、先ず、タンク/ミキサ210へ、ベース流体250を投入して攪拌させておく。また、バルブ213の切替位置は循環側に設定し、ポンプ228が、吐出管218及び還流管211を介してベース流体250を循環させるようにしておく。循環が行われているとき、管路226へは、ベース流体250のスリップ・ストリーム280が流入している。流入したベース流体250のスリップ・ストリーム280は、管路226を通過し、コリオリ流量計222を通過し、管路227を通過して、タンク/ミキサ210へ還流する。ベース流体250がコリオリ流量計222を通過する際に、コリオリ流量計222が、そのベース流体250の密度を測定する。コリオリ流量計222は、ベース流体密度測定値を制御システム224へ送出する。
【0043】
この状態で、タンク/ミキサ210にプロパント252を投入すると、タンク/ミキサ210が、そのプロパント252とベース流体250とを混合し、それによってフラクチャリング流体202が調製される。また、バルブ213の切替位置は循環側に設定し、ポンプ228が、吐出管218及び還流管211を介してフラクチャリング流体202を循環させるようにしておく。循環が行われているとき、管路226へは、フラクチャリング流体202のスリップ・ストリーム280が流入している。流入したフラクチャリング流体202のスリップ・ストリーム280は、管路226を通過し、コリオリ流量計222を通過し、管路227を通過して、タンク/ミキサ210へ還流する。フラクチャリング流体202がコリオリ流量計222を通過する際に、コリオリ流量計222が、そのフラクチャリング流体202の密度を測定する。コリオリ流量計222は、フラクチャリング流体密度測定値を制御システム224へ送出する。
【0044】
以上によって、制御システム224へ、ベース流体密度測定値と、フラクチャリング流体密度測定値とが供給される。更に、制御システム224へは、プロパント252の密度の値も供給される。制御システム224へ供給されるプロパント252の密度の値は、オペレータに入力させるようにしてもよく、メモリから読み出すようにしてもよく、或いはその他のデータ供給源から受信するようにしてもよい。制御システム224は、これらのベース流体密度測定値と、フラクチャリング流体密度測定値と、プロパント252の密度とに基づいて、フラクチャリング流体202に含まれるプロパント252の含有量を求める。フラクチャリング流体システム201のオペレータは、制御システム224が求めたフラクチャリング流体202に含まれるプロパント252の含有量の値を見て、フラクチャリング流体202へ添加するプロパント252の添加量を調整することができる。尚、当業者であれば、在来の測定システムにいかなる改変を加えれば測定システム200となしうるかは自明のことである。
【0045】
フラクチャリング流体202に含まれるプロパント252の含有量が適当な量に達したならば、バルブ213を切換えて、フラクチャリング流体202をポンプによって、供給管212を介して坑井内へ注入する。尚、供給管212に、フラクチャリング流体202をポンプによって坑井内へ注入するための、例えば大型ポンプなどのその他のデバイスないしシステムを接続するようにしてもよい。
【0046】
制御システム−図3
図3は本発明の実施の形態における制御システム224の具体例を示した図である。制御システム224は、ディスプレイ302、ユーザ・インターフェース304、及び補助インターフェース306を備えている。制御システム224の具体例を挙げるならば、例えば「Daniel FloBoss 407型(Danielは登録商標、FloBossは商標である)」などである。ディスプレイ302は、オペレータに関連データを表示するように構成したものである。ディスプレイ302の具体例を挙げるならば、例えば、液晶ディスプレイ(LCD)などである。ユーザ・インターフェース304は、オペレータが制御システム224へ情報を入力できるように構成したものである。インターフェース304の具体例を挙げるならば、例えば、キーパッドなどである。補助インターフェース306は、補助システム(不図示)との間で情報の送受信を行うように構成したものである。補助インターフェース306の具体例を挙げるならば、例えば、シリアル・データ・ポートなどである。
【0047】
更に、制御システム224が、プロセッサと、記憶媒体とを備えているようにしてもよい。その場合、その記憶媒体に格納した命令によって、制御システム224の動作を制御するようにすることができる。その命令は、プロセッサによって取出され、実行される。命令の具体例を挙げるならば、例えば、ソフトウェア、プログラムコード、それにファームウェアなどである。記憶媒体の具体例を挙げるならば、例えば、メモリ・デバイス、テープ、ディスク、集積回路、それにサーバなどである。命令は、プロセッサにより実行されるとき、動作命令として機能するものであって、プロセッサを本発明に従って動作させるものである。「プロセッサ」という用語は、ただ1個の処理装置を意味することもあれば、相互に関連して動作する処理装置群を意味することもある。プロセッサの具体例を挙げるならば、例えば、コンピュータ、集積回路、それに論理回路などである。尚、当業者であれば、命令、プロセッサ、並びに記憶媒体については熟知していて当然である。
【0048】
コリオリ流量計−図4
図4は本発明の実施の形態におけるコリオリ流量計400の具体例を示した図である。図4のコリオリ流量計400は、図2に示したコリオリ流量計222として使用し得るものである。コリオリ流量計400は、コリオリ・センサ402と、流量計電子回路404とを備えている。流量計電子回路404は、導線406を介してコリオリ・センサ402に接続されている。流量計電子回路404は、導線408を介して密度、質量流量、体積流量、合計質量流量、等々の情報を送出するように構成されている。
【0049】
コリオリ・センサ402は、流管410、バランス・バー412、2個のプロセス接続部材414〜415、2個のピックオフ424〜425、それに温度センサ426を備えている。流管410は、その左端部分を引用符号410Lで表し、その右端部分を引用符号410Rで表してある。流管410と、その左端部分410Lと、その右端部分410Rとは、コリオリ・センサ402の全長に亘って延在しており、即ち、流管410の流入端から、この流管410の流出端までが、コリオリ・センサ402の全長をなしている。バランス・バー412は、その両端が、夫々の取付バー416を介して流管410に取付けられている。
【0050】
左端部分410Lには、流入側プロセス接続部材414が取付けられており、右端部分410Rには、流出側プロセス接続部材415が取付けられている。それら流入側プロセス接続部材414及び流出側プロセス接続部材415は、コリオリ・センサ402を配管(不図示)に接続するための部材である。
【0051】
駆動装置422と、左側ピックオフ424と、右側ピックオフ425とは、一般的な取付方式によって、流管410及びバランス・バー412に取付けられている。流量計電子回路404は、導線432を介して駆動装置422に駆動信号を供給する。駆動装置422は、この駆動信号に応答して、流管410とバランス・バー412とを互いに逆位相で振動させ、その振動周波数は、内部に流体が充填されている流管410の共振周波数である。振動している流管410の、その振動には、周知のごとく、流管410のコリオリ撓みによる振動分が含まれている。ピックオフ424及び425は、そのコリオリ撓みを検出し、そして、検出したコリオリ撓みを表すピックオフ信号を、夫々、導線434と導線345とを介して送出する。
【0052】
温度センサ426は流管410に取付けられている。温度センサ426は、流管410の中を流れている流体の温度を検出する。温度センサ426は、温度信号を生成し、その温度信号を、導線436を介して流量計電子回路404へ送出する。
【0053】
測定システムの動作例−図5
図5に示したのは、本発明の実施の形態における測定システム200の動作例500を示したフローチャートである。先ず、オペレータが、制御システム224及びコリオリ流量計222に電源を投入する。制御システム224へは、この制御システム224のメモリをクリアするよう命じるクリア命令が供給される。これは、オペレータが、ユーザ・インターフェース304を操作して「クリア」命令を入力することによって行われる。ステップ504では、制御システム224が、オペレータにプロンプトを出して、プロパント252の密度を入力するよう促す。これは、制御システム224が、ディスプレイ302に「プロパントの密度を入力してください」という表示を出すことによって行われる。オペレータは、ユーザ・インターフェース304を操作して、プロパント252の密度を、例えばポンド/ガロンの単位で入力する。プロパント252が砂である場合には、その密度は、例えば22.1ポンド/ガロン(約2.65キログラム/リットル)である。ステップ506では、オペレータが入力したプロパント252の密度を、制御システム224が受取っている。尚、プロパントの密度は、オペレータに入力させる以外にも、メモリから読み出すようにしてもよく、他のシステムから受信するようにしてもよい。
【0054】
このときタンク/ミキサ210は、プロパント252を含まないベース流体250だけを攪拌している。また、このときバルブ213の切替位置は循環側に設定されており、ポンプ228がベース流体250を、吐出管218及び還流管211を介して循環させている。また、このベース流体250のスリップ・ストリーム280が、管路226へ流入している。ベース流体250のスリップ・ストリーム280は、管路226を通過し、コリオリ流量計222を通過し、管路227を通過して、タンク/ミキサ210へ還流している。ステップ508では、ベース流体250がコリオリ流量計222の中を流れており、コリオリ流量計222は、そのベース流体250の密度を測定する。コリオリ流量計222は、ベース流体密度測定値を制御システム224へ送出する。ステップ510では、制御システム224が、そのベース流体密度測定値をオペレータへ表示する。尚、ステップ508では、コリオリ流量計222が、ベース流体250の質量流量やベース流体250の温度などのその他のパラメータを併せて測定するようにしてもよい。また更に、その場合には、ステップ510において、制御システム224が、質量流量や温度などのその他のパラメータを併せてオペレータへ表示するようにしてもよい。複数のパラメータを表示するときには、オペレータが、それらパラメータをスクロールして、所望のパラメータを見ることができるようにしておくとよい。
【0055】
ステップ512では、制御システム224がベース流体250の平均密度を算出する。この平均密度を算出するために、制御システム224は、ベース流体250の10個の密度測定値の平均値を取る。別法として、この平均密度を算出するために、制御システム224が、5秒間に測定された密度測定値の平均値を取るようにしてもよい。また、平均密度を算出している間、制御システム224がオペレータへ「ベース流体が安定するのを待っています」と表示するようにしてもよい。或いはまた、オペレータが算出命令に発したときに、その命令に応答して制御システム224が平均密度の算出を実行するようにしてもよい。その場合には、例えば、オペレータが、制御システム224に表示されている密度の測定値及び温度の測定値を監視して、それら測定値が安定したか否かを判断する。そして、オペレータは、それら測定値が安定した後に、制御システム224に対して、平均密度を算出するよう命令を発すればよい。
【0056】
ステップ514では、制御システム224が、算出したばかりの平均密度の値が安定した値であるか否かを判定する。この判定を行うには、例えば、最近の5秒間に平均密度の値が1%以上の変動を生じていたならば、平均密度の値が安定していないと判定するようにすればよい。そして、そのような変動を生じていた場合には、制御システム224がオペレータへ「密度が安定していません」と表示して、ステップ512へ戻るようにする。一方、最近の5秒間に平均密度の値が1%以上の変動を生じていなかったならば、その平均密度の値は安定しており、使用可能な値である。ステップ516では、制御システム224が、ベース流体250の平均密度の安定した値をオペレータへ表示する。
【0057】
この時点で、タンク/ミキサ210が、フラクチャリング流体202を調製するためにベース流体250にプロパント252を添加しはじめる。バルブ213の切替位置は循環側に設定されているため、ポンプ328が、吐出管218及び還流管211を介してフラクチャリング流体202を循環させる。ポンプ328によって、フラクチャリング流体を循環させるようにしているのは、フラクチャリング流体202を連続的に攪拌して、フラクチャリング流体の特性を適切なものにするためである。また、このとき、フラクチャリング流体202のスリップ・ストリーム280が管路226へ流入している。フラクチャリング流体202のスリップ・ストリーム280は、管路226を通過し、コリオリ流量計222を通過し、管路227を通過して、タンク/ミキサ210へ還流している。ステップ518では、フラクチャリング流体202が、コリオリ流量計222の中を流れており、コリオリ流量計222はそのフラクチャリング流体202の密度を測定する。コリオリ流量計222は、そのフラクチャリング流体の密度の測定値を制御システム224へ送出する。
【0058】
続いて、制御システム224は、フラクチャリング流体202へ混入した砂の重量を算出する。この砂の混入量を算出するために、制御システム224は、以下に示す一連の数式を使用する。ステップ520では、制御システム224が、下の式〔1〕を用いて、フラクチャリング流体202に含まれている固形物の含有率(%S)を算出する。
【0059】
%S = (ρfrac fluidbase fluid) / (ρproppantbase fluid) 式〔1〕
この式〔1〕において、ρfrac fluidはフラクチャリング流体202の密度、ρbase fluidはベース流体250の密度、ρproppantはプロパント252の密度である。
【0060】
ステップ522では、制御システム224が、下の式〔2〕を用いて、プロパントによる置換容積(P.D.)を算出する。
【0061】
P.D. = 231 /ρproppant 式〔2〕
この式〔2〕において、ρproppantはプロパント252の密度である。
【0062】
ステップ524では、制御システム224が、下の式〔3〕を用いて、フラクチャリング流体202に添加された砂の重量である砂添加重量(P.S.A.)を算出する。
【0063】
P.S.A. = (%S * 231) / ((1 - %S) + P.D.) 式〔3〕
尚、砂添加重量(P.S.A.)は、プロパント添加重量(P.P.A.)と呼ばれることもある。
【0064】
制御システム224が、以上の式〔1〕〜式〔3〕を用いる替わりに、下の式〔4〕を用いて、砂添加重量を求めるようにしてもよい。
【0065】
P.S.A. = (ρfrac fluidbase fluid) / ((1 - (ρfrac fluidproppant)) 式〔4〕
この式〔4〕において、ρfrac fluidはフラクチャリング流体202の密度、ρbase fluidはベース流体250の密度、ρproppantはプロパント252の密度である。
【0066】
ステップ526では、制御システム224が、フラクチャリング流体202に添加された砂の重量である砂添加重量を表示する。制御システム224が砂添加重量を表示する際の単位は、水1ガロンあたりの添加された砂の重量をポンドを単位として表したものである。制御システム224は更に、砂添加重量を表す信号を生成する。この信号は、補助システム(不図示)へ送出される信号であり、4mA〜20mAの信号である。尚、ステップ518では、コリオリ流量計222が、フラクチャリング流体202の質量流量やフラクチャリング流体202の温度などのその他のパラメータを併せて測定するようにしてもよい。またその場合には、ステップ526において、制御システム224が、質量流量や温度などのその他のパラメータを併せてオペレータへ表示するようにしてもよい。複数のパラメータを表示するときには、オペレータが、それらパラメータをスクロールして、所望のパラメータを見ることができるようにしておくとよい。この後、制御システム224はステップ518へ戻る。
【0067】
この方法500が更に、ステップ528及びステップ530を含むようにしてもよい。ステップ528では、制御システム224が、フラクチャリング流体202の流速をスレショルド値と比較する。制御システム224は、下の式〔5〕を用いて、フラクチャリング流体202の流速(velocity material)を算出する。
【0068】
velocity material = flow rate material * A.F. 式〔5〕
この式〔5〕において、A.F.は断面係数であり、flow rate materialは物質の流量である。断面係数(A.F.)は、オペレータに入力させるようにしてもよく、メモリから読み出すようにしてもよく、他のシステムから受信するようにしてもよい。フラクチャリング流体202の流速がスレショルド値を超えていたならば、制御システム224は、ステップ530において、流速がスレショルド値を超えていることを表示する。例えば、フラクチャリング流体202の流速が 12 ft/sec(約3.6 m/秒)を超えていたならば、制御システム224が警報を発するようにしておいてもよい。フラクチャリング流体202の流速がスレショルド値を超えていなかったならば、制御システム224はステップ518へ戻る。
【0069】
制御システム224は、フラクチャリング流体202へ添加された砂の重量である砂添加重量を連続して算出し続けることができる。また、タンク/ミキサ210は、攪拌及び混合をバッチ式に実行するシステムではなく、連続的に攪拌及び混合を実行し続けるシステムである。そのため、オペレータは、タンク/ミキサ210が、フラクチャリング流体202を坑井内へ供給し続けている間も、制御システム224に砂添加重量の測定を行わせておくことができる。
【図面の簡単な説明】
【0070】
【図1】坑井内へフラクチャリング流体を供給するための従来の供給システムを示した図である。
【図2】本発明の実施の形態における測定システムを示した図である。
【図3】本発明の実施の形態における制御システムの具体例を示した図である。
【図4】本発明の実施の形態におけるコリオリ流量計の具体例を示した図である。本発明の1つの実施の形態に係る発泡剤注入アセンブリを示した図である。
【図5】本発明の実施の形態における測定システムの動作例を示したフローチャートである。

【特許請求の範囲】
【請求項1】
コリオリ流量計(222)と制御システム(224)とを備えた測定システム(200)において、
前記コリオリ流量計は、該コリオリ流量計を通過して流れるベース流体(250)の密度を測定してベース流体密度測定値を生成し、該ベース流体密度測定値を送出するように構成されるとともに、前記ベース流体とプロパント(252)との混合物から成り該コリオリ流量計を通過して流れるフラクチャリング流体(202)の密度を測定してフラクチャリング流体密度測定値を生成し、該フラクチャリング流体密度測定値を送出するように構成されており、
前記制御システムは、前記ベース流体密度測定値と前記フラクチャリング流体密度測定値とを受取り、前記ベース流体密度測定値と、前記フラクチャリング流体密度測定値と、前記プロパントの密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの含有量を求めるように構成されている、
ことを特徴とする測定システム(200)。
【請求項2】
前記コリオリ流量計(222)が直管形コリオリ流量計(400)から成ることを特徴とする請求項1記載の測定システム(200)。
【請求項3】
前記コリオリ流量計(222)は、前記フラクチャリング流体(202)の前記密度を測定するために該フラクチャリング流体のスリップ・ストリーム(280)を該コリオリ流量計へ流入させるように構成されていることを特徴とする請求項1記載の測定システム(200)。
【請求項4】
第1端(271)が前記コリオリ流量計(222)の流入口に接続し第2端(272)がタンク(210)の吐出部(218)に接続した第1管路(226)と、
第1端(281)が前記コリオリ流量計の流出口に接続し第2端(282)が前記タンクに接続した第2管路(227)とを更に備え、
前記タンクの前記吐出部から吐出された物質のスリップ・ストリーム(280)が前記第1管路へ流入し、前記第1管路を通過し、前記コリオリ流量計を通過し、前記第2管路を通過して前記タンクに還流するようにした、
ことを特徴とする請求項1記載の測定システム(200)。
【請求項5】
前記制御システム(224)が、前記プロパント(252)の密度を求めるように構成されていることを特徴とする請求項1記載の測定システム(200)。
【請求項6】
前記制御システム(224)が、前記プロパント(252)の前記含有量をユーザに提示するように構成されたディスプレイ・システム(302)を備えていることを特徴とする請求項1記載の測定システム(200)。
【請求項7】
前記制御システム(224)が、前記プロパント(252)の前記含有量を表す信号を補助システムへ送信するように構成された補助インターフェース(306)を備えていることを特徴とする請求項1記載の測定システム(200)。
【請求項8】
前記制御システム(224)が、ユーザが入力した前記プロパント(252)の前記密度を受取るように構成されたユーザ・インターフェース(304)を備えていることを特徴とする請求項1記載の測定システム(200)。
【請求項9】
前記制御システム(224)が、
前記フラクチャリング流体(202)の流速を算出し、
前記フラクチャリング流体の前記流速がスレショルド値を超えているか否かを判定し、
前記フラクチャリング流体の前記流速が前記スレショルド値をを超えていたならばそのことを表示する、
ように構成されていることを特徴とする請求項1記載の測定システム(200)。
【請求項10】
前記制御システム(224)が、
前記コリオリ流量計(222)で測定された複数の前記ベース流体密度測定値に基づいて前記ベース流体(250)の平均密度を算出し、
前記ベース流体の前記平均密度と、前記フラクチャリング流体密度測定値と、前記プロパントの前記密度とに基づいて、前記フラクチャリング流体(202)に含まれる前記プロパント(252)の前記含有量を求める、
ように構成されていることを特徴とする請求項1記載の測定システム(200)。
【請求項11】
前記コリオリ流量計(222)が、前記フラクチャリング流体(202)の質量流量を測定して、前記フラクチャリング流体の前記質量流量と該コリオリ流量計の駆動利得との少なくとも一方を前記制御システム(224)へ供給するように構成されており、
前記制御システムが、前記フラクチャリング流体の前記質量流量と前記コリオリ流量計の前記駆動利得との少なくとも一方をユーザへ提示するように構成されている、
ことを特徴とする請求項1記載の測定システム(200)。
【請求項12】
フラクチャリング流体に含まれるプロパントの含有量を測定する方法であって、前記プロパントの密度を求めるステップを含む方法において、
ベース流体(250)の密度をコリオリ流量計(222)で測定してベース流体密度測定値を生成するステップと、
前記ベース流体とプロパント(252)との混合物から成るフラクチャリング流体(202)の密度を前記コリオリ流量計で測定してフラクチャリング流体密度測定値を生成するステップと、
前記ベース流体密度測定値と、前記フラクチャリング流体密度測定値と、前記プロパントの密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの含有量を求めるステップと、
を含むことを特徴とする方法。
【請求項13】
前記フラクチャリング流体(202)の密度を前記コリオリ流量計(222)で測定する前記ステップが、
前記フラクチャリング流体の前記密度を直管形コリオリ流量計(400)で測定するステップから成る、
ことを特徴する請求項12記載の方法。
【請求項14】
前記フラクチャリング流体(202)の密度を前記コリオリ流量計(222)で測定する前記ステップが、
前記フラクチャリング流体の前記密度を測定するために該フラクチャリング流体のスリップ・ストリーム(280)を前記コリオリ流量計へ流入させるステップを含んでいる、
ことを特徴する請求項12記載の方法。
【請求項15】
第1管路(226)の第1端(271)を前記コリオリ流量計(222)の流入口に接続するステップと、
前記第1管路(226)の第2端(272)をタンク(210)の吐出部(218)に接続するステップと、
第2管路(227)の第1端(281)を前記コリオリ流量計の流出口に接続するステップと、
前記第2管路(227)の第2端(282)を前記タンクに接続するステップとを更に含み、
前記タンクの前記吐出部から吐出された物質のスリップ・ストリーム(280)が前記第1管路へ流入し、前記第1管路を通過し、前記コリオリ流量計を通過し、前記第2管路を通過して前記タンクに還流するようにする、
ことを特徴とする請求項12記載の方法。
【請求項16】
前記プロパント(252)の前記含有量をユーザに提示するステップを更に含むことを特徴とする請求項12記載の方法。
【請求項17】
前記プロパント(252)の前記含有量を表す信号を補助システムへ送信するステップを更に含むことを特徴とする請求項12記載の方法。
【請求項18】
ユーザから前記プロパント(252)の前記密度を受取るステップを更に含むことを特徴とする請求項12記載の方法。
【請求項19】
前記フラクチャリング流体(202)の流速を算出するステップと、
前記フラクチャリング流体の前記流速がスレショルド値を超えているか否かを判定するステップと、
前記フラクチャリング流体の前記流速が前記スレショルド値をを超えていたならばそのことを表示するステップと、
を更に含むことを特徴とする請求項12記載の方法。
【請求項20】
前記コリオリ流量計(222)で測定された複数の前記ベース流体密度測定値に基づいて前記ベース流体(250)の平均密度を算出するステップと、
前記ベース流体の前記平均密度と、前記フラクチャリング流体密度測定値と、前記プロパントの前記密度とに基づいて、前記フラクチャリング流体(202)に含まれる前記プロパント(252)の含有量を求めるステップと、
を更に含むことを特徴とする請求項12記載の方法。
【請求項21】
前記フラクチャリング流体(202)の質量流量を前記コリオリ流量計(222)で測定するステップと、
前記フラクチャリング流体の前記質量流量と前記コリオリ流量計の前記駆動利得との少なくとも一方をユーザへ提示するステップと、
を更に含むことを特徴とする請求項12記載の方法。
【特許請求の範囲】
【請求項1】
コリオリ流量計(222)と制御システム(224)とを備えた測定システム(200)において、
前記コリオリ流量計は、該コリオリ流量計を通過して流れるベース流体(250)の密度を測定してベース流体密度測定値を生成し、該ベース流体密度測定値を送出するように構成され、前記ベース流体とプロパント(252)との混合物から成るフラクチャリング流体(202)の密度を測定するために該フラクチャリング流体のスリップ・ストリーム(280)を該コリオリ流量計へ流入させるように構成され、更に、該コリオリ流量計を通過して流れる前記フラクチャリング流体(202)の密度を測定してフラクチャリング流体密度測定値を生成し、該フラクチャリング流体密度測定値を送出するように構成されており、
前記制御システムは、前記ベース流体密度測定値と前記フラクチャリング流体密度測定値とを受取り、前記ベース流体密度測定値と、前記フラクチャリング流体密度測定値と、前記プロパントの密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの含有量を求めるように構成されている、
ことを特徴とする測定システム(200)。
【請求項2】
前記コリオリ流量計(222)が直管形コリオリ流量計(400)から成ることを特徴とする請求項1記載の測定システム(200)。
【請求項3】
第1端(271)が前記コリオリ流量計(222)の流入口に接続し第2端(272)がタンク(210)の吐出部(218)に接続した第1管路(226)と、
第1端(281)が前記コリオリ流量計の流出口に接続し第2端(282)が前記タンクに接続した第2管路(227)とを更に備え、
前記タンクの前記吐出部から吐出された物質のスリップ・ストリーム(280)が前記第1管路へ流入し、前記第1管路を通過し、前記コリオリ流量計を通過し、前記第2管路を通過して前記タンクに還流するようにした、
ことを特徴とする請求項1記載の測定システム(200)。
【請求項4】
前記制御システム(224)が、前記プロパント(252)の密度を求めるように構成されていることを特徴とする請求項1記載の測定システム(200)。
【請求項5】
前記制御システム(224)が、前記プロパント(252)の前記含有量をユーザに提示するように構成されたディスプレイ・システム(302)を備えていることを特徴とする請求項1記載の測定システム(200)。
【請求項6】
前記制御システム(224)が、前記プロパント(252)の前記含有量を表す信号を補助システムへ送信するように構成された補助インターフェース(306)を備えていることを特徴とする請求項1記載の測定システム(200)。
【請求項7】
前記制御システム(224)が、ユーザが入力した前記プロパント(252)の前記密度を受取るように構成されたユーザ・インターフェース(304)を備えていることを特徴とする請求項1記載の測定システム(200)。
【請求項8】
前記制御システム(224)が、
前記フラクチャリング流体(202)の流速を算出し、
前記フラクチャリング流体の前記流速がスレショルド値を超えているか否かを判定し、
前記フラクチャリング流体の前記流速が前記スレショルド値をを超えていたならばそのことを表示する、
ように構成されていることを特徴とする請求項1記載の測定システム(200)。
【請求項9】
前記制御システム(224)が、
前記コリオリ流量計(222)で測定された複数の前記ベース流体密度測定値に基づいて前記ベース流体(250)の平均密度を算出し、
前記ベース流体の前記平均密度と、前記フラクチャリング流体密度測定値と、前記プロパントの前記密度とに基づいて、前記フラクチャリング流体(202)に含まれる前記プロパント(252)の前記含有量を求める、
ように構成されていることを特徴とする請求項1記載の測定システム(200)。
【請求項10】
前記コリオリ流量計(222)が、前記フラクチャリング流体(202)の質量流量を測定して、前記フラクチャリング流体の前記質量流量と該コリオリ流量計の駆動利得との少なくとも一方を前記制御システム(224)へ供給するように構成されており、
前記制御システムが、前記フラクチャリング流体の前記質量流量と前記コリオリ流量計の前記駆動利得との少なくとも一方をユーザへ提示するように構成されている、
ことを特徴とする請求項1記載の測定システム(200)。
【請求項11】
フラクチャリング流体に含まれるプロパントの含有量を測定する方法であって、前記プロパントの密度を求めるステップを含む方法において、
ベース流体(250)の密度をコリオリ流量計(222)で測定してベース流体密度測定値を生成するステップと、
前記ベース流体とプロパント(252)との混合物から成るフラクチャリング流体(202)の密度を測定するために該フラクチャリング流体のスリップ・ストリーム(280)を前記コリオリ流量計へ流入させるステップと、
前記フラクチャリング流体(202)の密度を前記コリオリ流量計で測定してフラクチャリング流体密度測定値を生成するステップと、
前記ベース流体密度測定値と、前記フラクチャリング流体密度測定値と、前記プロパントの密度とに基づいて、前記フラクチャリング流体に含まれる前記プロパントの含有量を求めるステップと、
を含むことを特徴とする方法。
【請求項12】
前記フラクチャリング流体(202)の密度を前記コリオリ流量計(222)で測定する前記ステップが、
前記フラクチャリング流体の前記密度を直管形コリオリ流量計(400)で測定するステップから成る、
ことを特徴する請求項11記載の方法。
【請求項13】
第1管路(226)の第1端(271)を前記コリオリ流量計(222)の流入口に接続するステップと、
前記第1管路(226)の第2端(272)をタンク(210)の吐出部(218)に接続するステップと、
第2管路(227)の第1端(281)を前記コリオリ流量計の流出口に接続するステップと、
前記第2管路(227)の第2端(282)を前記タンクに接続するステップとを更に含み、
前記タンクの前記吐出部から吐出された物質のスリップ・ストリーム(280)が前記第1管路へ流入し、前記第1管路を通過し、前記コリオリ流量計を通過し、前記第2管路を通過して前記タンクに還流するようにする、
ことを特徴とする請求項11記載の方法。
【請求項14】
前記プロパント(252)の前記含有量をユーザに提示するステップを更に含むことを特徴とする請求項11記載の方法。
【請求項15】
前記プロパント(252)の前記含有量を表す信号を補助システムへ送信するステップを更に含むことを特徴とする請求項11記載の方法。
【請求項16】
ユーザから前記プロパント(252)の前記密度を受取るステップを更に含むことを特徴とする請求項11記載の方法。
【請求項17】
前記フラクチャリング流体(202)の流速を算出するステップと、
前記フラクチャリング流体の前記流速がスレショルド値を超えているか否かを判定するステップと、
前記フラクチャリング流体の前記流速が前記スレショルド値をを超えていたならばそのことを表示するステップと、
を更に含むことを特徴とする請求項11記載の方法。
【請求項18】
前記コリオリ流量計(222)で測定された複数の前記ベース流体密度測定値に基づいて前記ベース流体(250)の平均密度を算出するステップと、
前記ベース流体の前記平均密度と、前記フラクチャリング流体密度測定値と、前記プロパントの前記密度とに基づいて、前記フラクチャリング流体(202)に含まれる前記プロパント(252)の含有量を求めるステップと、
を更に含むことを特徴とする請求項11記載の方法。
【請求項19】
前記フラクチャリング流体(202)の質量流量を前記コリオリ流量計(222)で測定するステップと、
前記フラクチャリング流体の前記質量流量と前記コリオリ流量計の前記駆動利得との少なくとも一方をユーザへ提示するステップと、
を更に含むことを特徴とする請求項11記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公表番号】特表2006−514282(P2006−514282A)
【公表日】平成18年4月27日(2006.4.27)
【国際特許分類】
【出願番号】特願2004−568253(P2004−568253)
【出願日】平成15年2月5日(2003.2.5)
【国際出願番号】PCT/US2003/003564
【国際公開番号】WO2004/072621
【国際公開日】平成16年8月26日(2004.8.26)
【出願人】(592225504)マイクロ・モーション・インコーポレーテッド (95)
【氏名又は名称原語表記】Micro Motion Incorporated
【Fターム(参考)】