説明

タイヤの前後力検出方法、及びそれに用いるタイヤの前後力検出装置

【課題】 タイヤに作用する前後力を、構成簡易に、かつ高い信頼性及び精度を有して検出する。
【解決手段】 タイヤ2の円周線j上に少なくとも1つのマーク3と、マーク3の通過を検出しうる車体4側の第1のセンサ5と、車軸6の回転角度θを検出しうる第2のセンサ7と、第1,第2のセンサ5,7の情報に基づいてタイヤ2の前後力Frを演算する演算手段8とを具える。演算手段8は、マーク3が第1のセンサ5を通過した時点の、車軸6の回転角度θrを逐次記憶する。又予め記憶した無負荷回転角度θo(無負荷状態での車軸6の回転角度)と前記回転角度θrとの差(θo−θr)であるタイヤの捻れ角αrを演算し、予め求めた捻れ角αとタイヤの前後力Fとの関係式に基づき、前記捩れ角度αrから回転時のタイヤの前後力Frを逐次演算する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タイヤに作用する前後力(タイヤ周方向の力)を、タイヤの捻れ角度に基づいて高精度で検出することができ、タイヤの転動状況を的確に把握し、車両制御システムの制御に貢献しうるタイヤの前後力検出方法、及びそれに用いるタイヤの前後力検出装置に関する。
【背景技術】
【0002】
近年、走行中の自動車の安定性、安全性を確保するため、ABS(アンチロック・ブレーキ・システム)、TCS(トラクション・コントロール・システム)、ESC(エレクトリック・スタビリティ・コントロール)などの種々の車両制御システムが開発されている。そして、これらシステムを制御するためには、走行中のタイヤの転動状況を正確に把握することが必要となる。
【0003】
例えばABSにおいては、できるだけ大きい路面摩擦係数の転動状態を維持することが重要であり、この路面摩擦係数は、一定の路面状態では、車輪のスリップ率に依存している。そのため、従来のABSでは、車両の速度と車輪の回転数とを測定し、測定された速度及び回転数に基づいてスリッブ率を推定するとともに、このスリップ率が、路面摩擦係数が最大となる位置近傍の範囲内に維持されるように、タイヤのロック/アンロックを制御している。なお前記スリップ率とは、自動車の車体の移動速度を車体速度、車輪(タイヤ)の回転数により特定される自動車の速度を車輪速度とすると、{(車体速度−車輪速度)/車体速度}×100(%)で表すことができ、スリップ率100%とは、車輪速度がゼロ、即ち車輪(タイヤ)が完全にロックして滑っている状態を意味する。
【0004】
しかし路面摩擦係数は、路面状況によって時々刻々と変化するため、路面摩擦係数とスリップ率との関係は必ずしも一定とはならない。従って、スリップ率に基づくタイヤのロック/アンロック制御では、実際の路面摩擦係数との乖離が大きく、スリップ率を所定範囲に維持した場合であっても、路面摩擦係数が小さくなってしまうという問題が生じる恐れがある。
【0005】
斯かる間題に対応すべく、近年、タイヤに作用する前後力(周方向の力)を測定し、この測定した前後力に基づいて路面摩擦係数を求めることが提案されている。そしてこの前後力を測定する方法として、特許文献1のものが知られている。
【0006】
特許文献1では、サイドウォール表面における同一半径線上の2位置を基準点とし、それぞれに磁性体を配するとともに、車体側には、各基準点と対抗する2位置に磁気センサを固定している。そして、2つの磁気センサが各磁性体の通過を検出する時の相対的な時間的ずれ量を測定している。この時間的ずれ量は、タイヤの捻れ変形量に比例することから、該時間的ずれ量に基づいてタイヤに作用する前後力を求めることが可能となる。
【0007】
【特許文献1】特表平10―506346号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかし、近年、操縦安定性の向上等を主目的としてタイヤの偏平化が進んでいる。従って、前記特許文献1の方法の如く、サイドウォール部の半径方向内外の2位置に磁性体を設けることは、前記偏平化に伴いサイドウォール部の領域巾が狭くなりつつある今日においては、寸法的に難しいものとなってきている。しかも磁性体間の半径方向距離が小となることから、時間的ずれ量のゲインが小さく、かつ双方の基準位置が、タイヤの捻れ変形の影響を受けるため、測定精度を十分に高めることは難しい。
【0009】
そこで本発明は、前後力によるタイヤの捻れ変形量を検出するに当たり、半径方向内外に隔てた磁性体間の時間的ずれ量を利用するのではなく、タイヤの捻れ角自体を直接的に検出することを基本として、構成簡易に、かつ偏平タイヤにおいても高い信頼性、及び精度を有してタイヤに作用する前後力を検出しうるタイヤの前後力検出方法、及びそれに用いるタイヤの前後力検出装置を提供することを目的としている。
【課題を解決するための手段】
【0010】
前記目的を達成するために、本願請求項1の発明は、タイヤに作用する周方向の前後力を検出するタイヤの前後力検出方法であって、
タイヤ軸芯を中心とした一つの円周線上でタイヤに設けられる少なくとも1つのマークと、
車体に固定され、タイヤとともに回転する前記マークの通過を逐次検出しうる第1のセンサと、
車軸の回転角度θを検出しうる第2のセンサと、
第1,第2のセンサの情報に基づいてタイヤの前後力を演算する演算手段とを具えるとともに、
該演算手段は、前記マークが通過することにより生じる前記第1のセンサの通過信号の情報を受けた時点における、前記第2のセンサの回転角度θrの情報を逐次記憶するとともに、
タイヤが無負荷状態で回転する場合の、前記マークが通過することにより生じる通過信号の情報を受けた時点における、前記第2のセンサの無負荷回転角度θoの情報を予め記憶し、
かつ前記回転角度θrと前記無負荷回転角度θoとの差(θo−θr)であるタイヤの捻れ角αrを逐次演算し、
しかも予め求めた捻れ角αとタイヤの前後力Fとの関係式に基づき、前記捩れ角度αrから回転時のタイヤの前後力Frを逐次演算することを特徴としている。
【0011】
又請求項4の発明は、タイヤに作用する周方向の前後力を検出するタイヤの前後力検出装置であって、
タイヤ軸芯を中心とした一つの円周線上でタイヤに設けられる少なくとも1つのマークと、
車体に固定され、タイヤとともに回転する前記マークの通過を逐次検出しうる第1のセンサと、
車軸の回転角度θを検出しうる第2のセンサと、
第1,第2のセンサの情報に基づいてタイヤの前後力を演算する演算手段とを具えるとともに、
該演算手段は、前記マークが通過することにより生じる前記第1のセンサの通過信号の情報を受けた時点における、前記第2のセンサの回転角度θrの情報を逐次記憶する回転角度情報記憶部、
タイヤが無負荷状態で回転する場合の、前記マークが通過することにより生じる通過信号の情報を受けた時点における、前記第2のセンサの無負荷回転角度θoの情報を予め記憶する無負荷回転角度情報記憶部、
前記回転角度情報記憶部の回転角度θrと前記無負荷回転角度情報記憶部の前記無負荷回転角度θoとの差(θo−θr)であるタイヤの捻れ角αrを逐次演算する第1の演算部、
及び予め求めた捻れ角αとタイヤの前後力Fとの関係式に基づき、前記第1の演算部で演算される捩れ角度αrから回転時のタイヤの前後力Fを逐次演算する第2の演算部からなることを特徴としている。
【0012】
又請求項2,5の発明では、前記第2のセンサは、その分解能を0.10°以下としたことを特徴としている。
又請求項3,6の発明では、前記マークは、タイヤのサイドウォール部かつ前記円周線上に設けられ、かつその全周において4〜72個が形成されることを特徴としている。
又請求項7の発明では、前記第2のセンサは、ABS用の回転速度、回転加速度のセンサとして使用されることを特徴としている。
又請求項8の発明では、前記演算手段は、前記回転角度情報記憶部の回転角度θrと前記無負荷回転角度情報記憶部の前記無負荷回転角度θoとの差(θo−θr)の正負から、前後力Fの向きを演算することを特徴としている。
【発明の効果】
【0013】
叙上の如く本発明は、タイヤに、少なくとも1つのマークを形成するとともに、車体側には、タイヤ回転に伴う前記マークの通過を逐次検出しうる第1のセンサを取り付けている。又この第1のセンサが前記マークの通過を検出した時点における車軸の回転角度θrを、第2のセンサにより検出している。そしてこの車軸の回転角度θrを、予め演算手段に記憶させた無負荷回転角度θo、即ちタイヤが無負荷状態で回転する場合における車軸の回転角度θoと比較し、その差(θo−θr)であるタイヤの捻れ角αrを逐次演算している。従って、予め求めたタイヤの捻れ角αとタイヤの前後力Fとの関係式を用いることにより、前記捩れ角度αrから、回転時に作用するタイヤの前後力Frを逐次演算することができる。
【0014】
このように本発明は、車軸の回転角度を検出して、タイヤの捻れ角αr自体を直接的に求めるものであるため、構成簡易であり、しかも相対的な時間的ずれ量を介した場合に比して演算処理が容易となり、タイヤの前後力Frを優れた演算精度、処理速度で求めることが可能となる。
【0015】
又前記マークを一つの円周線上に形成するため、サイドウォール部の領域巾が狭い偏平タイヤにおいても容易に採用することができる。しかも大きなゲインが得られ、かつ検出する車軸の回転角度θも、相対値ではなくアブソリュート位置データとして得られるため、タイヤの前後力Frをより高い精度及び信頼性でうることができる。なお第2のセンサは、ABS用の既設の回転速度、回転加速度のセンサ(以下、回転センサと呼ぶ場合がある)としても使用可能であるなど、センサ数の増加を低く抑えることが可能であり、装置全体としての低コスト化、構造の簡素化にも貢献できる。
【0016】
なお車軸の回転角度θrを測定することによる前後力Frの検出方法は、近年における分解能0.10°以下の高性能の角度センサの出現によって案出でき、又実施可能となった。
【発明を実施するための最良の形態】
【0017】
以下、本発明の実施の一形態を、図示例とともに説明する。図1は、本発明のタイヤの前後力検出方法を実施するための前後力検出装置の車軸を含む部分縦断面図であり、図2は、タイヤを車体内側からみた側面図である。
【0018】
図1に示すように、本実施形態の前後力検出装置1は、
・タイヤ2に、かつタイヤ軸芯iを中心とした一つの円周線j(図2に示す)上に設けられる少なくとも1つのマーク3と、
・車体4に固定され、タイヤ2とともに回転する各前記マーク3の通過を逐次検出しうる第1のセンサ5と、
・車軸6の回転角度θを検出しうる第2のセンサ7と、
・前記第1,第2のセンサ5,7の情報に基づいて、タイヤ2に作用する前後力Frを演算する演算手段8とを含んで構成される。
【0019】
前記マーク3は、前記第1のセンサ5の被検出体であり、第1のセンサ5の種類に応じて適宜選択される。例えば本例では、前記第1のセンサ5が光反射型の光センサであり、又マーク3が、前記光センサからのセンサ光を反射する反射板である場合を例示している。この場合、反射板(マーク3)が前記光センサ(第1のセンサ5)下を通過する時に生じる反射光の光量変化を、前記光センサが検知することにより、マーク3の通過を逐次検出できる。
【0020】
前記反射板としては、タイヤ2に貼り付けるシール状体、及びタイヤ2に直接塗布されるインク等の印刷体を含むことができる。又第1のセンサ5とマーク3との組み合わせとしては、例えば、磁性体(マーク3)とその磁性変化を検知する磁気センサ(第1のセンサ5)、凹凸部(マーク3)とその凹凸を検知する磁気変異セン(第1のセンサ5)、凹凸部(マーク3)とその凹凸を検知する超音波センサ(第1のセンサ5)など種々の組み合わせが採用できる。
【0021】
又前記マーク3は、サイドウォール部2sに設けることがことが好ましく、特にタイヤ最大幅位置Pmよりも半径方向外側となる外サイドウォール域に設けることが、タイヤ捻れ変形量が大きく測定精度が高まる等の観点から望ましい。なおサイドウォール部2sとは、本明細書では、トレッドパターン2tのタイヤ軸方向内端から、タイヤがリムフランジから離間するリム離間位置までの間の領域を意味する。又前記マーク3の形成数は、4〜72個の範囲が好ましく、これらを、前記円周線j上に等間隔で形成する。形成数が4個未満では、前後力Frの検出頻度が過小となって、ABS等の車両制御システムの応答速度を不充分なものとする。又72個を超えると、検出頻度が過大となり演算処理能力の高い高性能のマイクロプロセッサが必要になるなど、不必要なコストの上昇を招く。
【0022】
又前記第1のセンサ5は、車体4に、かつ前記マーク3と対抗でき該マーク3の通過を検出しうる位置に取り付けられる。
【0023】
次に、前記第2のセンサ7は、車軸6の回転角度θを検出する所謂レゾルバ、エンコーダ等の回転角度センサであり、一回転内における基準点Po(図3に示す)からの車軸6の回転角度θ、即ち絶対角度位置を計測する。特に車軸6の回転数も計測しうる多回転タイプのものは、ABS用の既設の回転センサとしても併用できるため、装置全体としての低コスト化、構造の簡素化のために好ましい。
【0024】
本例では、第2のセンサ7として、レゾルバを用いたものを例示する。このレゾルバは、周知の如くロータ11とステータ12とを含んで構成される。前記車軸6は、車体4に支持される車軸本体13と、この車軸本体13に軸受け部材14を介して回転自在に保持される外筒部材15とを含み、該外筒部材15は、その前端に設けるフランジ15Aに、タイヤホイール16をボルト止めしている。そして前記車軸本体13には、前記ロータ11を固定するとともに、前記外筒部材15にはその後端側に、前記ロータ11とは相対回転自在に外挿されるステータ12を固定している。
【0025】
なお駆動輪の場合には、車軸本体13が回転駆動され、その前端にタイヤホイール16がボルト止めされる。このとき前記外筒部材15は車体4に支持され、前記回転駆動される車軸本体13を軸受け部材14を介して回転自在に保持する。斯かる場合にも、車軸本体13にロータ11を、又外筒部材15にステータ12を固定することにより、車軸6の回転角度θを検出できる。
【0026】
ここで、タイヤが無負荷状態で回転する場合、図3(A)に誇張して示すように、前記マーク3が第1のセンサ5を通過した時点における、車軸6の回転角度θは、捻れ変形のない無負荷回転角度θoとなる。なお前記回転角度θは、基準点Poからの絶対角度であり、この基準点Poは、第2のセンサ7に応じて自在に設定することができる。
【0027】
これに対して、ブレーキ制動によりタイヤ2に前後力Fが作用した場合、図3(B)に誇張して示すように、タイヤ2には、前記前後力Frによって回転方向に捻れ変形が発生する。即ちマーク3は車軸6に対して回転方向側に位相がずれることとなる。そのため、前記マーク3が第1のセンサ5を通過した時点では、車軸6の回転角度θrは、無負荷回転角度θoに比して小さなものとなり、そのときの差(θo−θr)が、前記前後力Fによるタイヤの捻れ角αrとなる。
【0028】
又捻れ角αと前後力Fとの間には相関関係があり、その関係式(F=f(α))を用いることにより、前記捻れ角αrから、そのとき作用する前後力Frを求めることができる。一般には、
F=K×α −−−−(1)
の関係式で近似しうる。前記係数Kは、タイヤに固有の前後バネ定数であって、事前に捻れ角αと前後力Fとの関係を測定したタイヤ個々の実験値から求めることができる。なお関係式としては、前記(1)式に限定されるものではなく、例えばタイヤの回転数、内圧等を考慮して実験より求めたより複雑な関係式であってもよい。
【0029】
そして本発明では、これに基づき、演算手段8を用て前後力Frを演算するのである。
【0030】
前記演算手段8は、図4に示すように、回転角度情報記憶部20と、無負荷回転角度情報記憶部21と、第1の演算部22と、第2の演算部23とを含んで構成される。前記回転角度情報記憶部20では、前記マーク3が通過することによって生じる前記第1のセンサ5の通過信号の情報を受けた時点における、前記第2のセンサ7の回転角度θrの情報を逐次記憶する。なお第2のセンサ7は、車軸6の回転角度θの情報を連続的に演算手段8に出力し、又第1のセンサ5は、マーク3が第1のセンサ5を通過した瞬間を検知し、その通過信号の情報を演算手段8に出力する。そして、演算手段8の回転角度情報記憶部20では、前記出力される回転角度θの情報のうちで、前記通過信号の情報を受けた時点における回転角度θrの情報を逐次記憶する。この時の回転角度θrは、前後力Frによるタイヤの捻れ角αrを含んだ角度である。
【0031】
又無負荷回転角度情報記憶部21では、タイヤが無負荷状態で回転する場合の、前記マーク3が通過することにより生じる通過信号の情報を受けた時点における、前記第2のセンサ7の無負荷回転角度θoの情報を予め記憶する。前記無負荷回転角度θoの情報は、例えば車両検査等によって事前に求めることができ、前記無負荷回転角度情報記憶部21に記憶する。
【0032】
又前記第1の演算部22では、前記記憶させた回転角度θrと前記無負荷回転角度θoとを呼び出し、その差(θo−θr)であるタイヤの捻れ角αrを、逐次演算する。
【0033】
又前記第2の演算部23では、関係式(F=f(α))に基づき、前記第1の演算部22で演算される捩れ角度αrから、タイヤに作用する前後力Frを逐次演算する。なお捻れ角αと前後力Fとの関係式(F=f(α))は、例えばタイヤ製造時の検査において事前に求めておくことができる。
【0034】
ここで、前記第2のセンサ7における分解能が0.10°より大であると、後述する表1のテスト結果に示すように、演算手段8によって求まる前記前後力Frの分解能も、例えば750Nを超えてしまい、ABS、TCS、ESCなどの車両制御システムに活用することが実質的に困難となる。従って、前記第2のセンサ7の分解能は、0.10°以下であることが必要であり、より好ましくは0.05°以下である。
【0035】
なお前記第2の演算部23では、前記差(θo−θr)の正負から、前後力Frの向きを演算する。即ち差(θo−θr)が正の場合、前後力Frはブレーキ制動力として検知し、逆に負の場合、前後力Frは駆動力として検知することができる。
【0036】
図5は、前記検出装置1を用いて実施する前後力検出方法のフローチャートである。
図5において、前後力検出方法では、まず第2のセンサ7により、車軸6の回転角度θを連続的に検出し、その回転角度θの情報を演算手段8に出力する。又第1のセンサ5では、マーク3がこの第1のセンサ5を通過した瞬間を逐次検知し、その通過信号の情報を演算手段8に出力する。
【0037】
演算手段8では、前記出力される回転角度θの情報のうちで、前記通過信号の情報を受けた時点における回転角度θrの情報を、回転角度情報記憶部20に逐次記憶する。又第1の演算部22では、この回転角度θrの情報と、予め無負荷回転角度情報記憶部21に記憶させた無負荷回転角度θoの情報とを比較し、その差(θo−θr)であるタイヤの捻れ角αrを逐次演算する。しかる後、予め求めた関係式(F=f(α))を用い、前記捻れ角αrからタイヤに作用する前後力Frを、第2の演算部23によって逐次演算する。
【0038】
そして求められた前後力Frは、ABS、TCS、ESCなどの車両制御システムに逐次出力され、該システムに活用される。
【0039】
このように、車軸6の回転角度θを検出して、タイヤ2の捻れ角αr自体を直接的に求めるものであるため、構成簡易であり、しかも相対的な時間的ずれ量を介した場合に比して演算処理が容易となり、タイヤの前後力Frを優れた演算精度、処理速度で求めることが可能となる。又マークを同一円周線上に設けるため、偏平タイヤにおいても容易に採用することができる。しかも大きなゲインが得られ、かつ検出する車軸の回転角度θも、相対値ではなくアブソリュート位置データとして得られるため、タイヤ2の前後力Frをより高い精度及び信頼性でうることができる。又第2のセンサ7は、ABS用の既設の前記回転センサとして使用できるため、センサ数の増加を最小限に抑えることができ、装置全体としての低コスト化、構造の簡素化にも貢献できる。
【0040】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【実施例】
【0041】
本発明に関わる検出方法を用いて、タイヤに作用する前後力を検出するとともに、該検出の分解能、及びABS、TCS、ESCなどの車両制御システムへの有効性を、×、△、○、◎の4段階で評価した。なお△は、現状の車両制御システムにおける性能と同レベルである。
【0042】
又タイヤを車両に装着して実車走行し、そのとき時タイヤに発生する前後力を、実施例2の仕様で検出した場合と、6分力計を用いて計測した場合とで比較し、その結果を図6(A)、(B)に示す。図6(A)は、速度40km/hでの定速走行状態から、ゆっくりとブレーキを踏んだ、即ち小さめの前後力を負荷した場合を示す。又図6(B)は、速度40km/hでの定速走行状態から、きつくブレーキを踏んだ、即ち大きめの前後力を負荷した場合を示している。
【0043】
【表1】

【0044】
図6(A)、(B)の如く、本発明の検出方法及び装置は、実測値に近い前後力のデータを検出しうることが確認できる。又表1の如く、検出データを車両制御システムに活用するためには、第2のセンサ(角度センサ)の分解能を少なくとも0.1°以下とするのが必要であることが確認できる。
【図面の簡単な説明】
【0045】
【図1】本発明のタイヤの前後力検出装置の一実施例を示す、車軸を含む部分縦断面図である。
【図2】タイヤを車体内側からみた側面図である。
【図3】(A)は、タイヤが無負荷状態で回転する場合の車軸の回転角度を説明する図、(B)は、タイヤに前後力が作用した場合の車軸の回転角度を説明する図である。
【図4】演算手段を説明する図である。
【図5】前後力検出方法を説明するフローチャートである。
【図6】(A)、(B)は、ブレーキ制動した場合にタイヤに作用する前後力を、本発明の前後力検出方法を用いて検出した結果を示すグラフである。
【符号の説明】
【0046】
1 前後力検出装置
2 タイヤ
2s サイドウォール部
3 マーク
4 車体
5 第1のセンサ
6 車軸
7 第2のセンサ
8 演算手段
20 回転角度情報記憶部
21 無負荷回転角度情報記憶部
22 第1の演算部
23 第2の演算部
i タイヤ軸芯
j 円周線

【特許請求の範囲】
【請求項1】
タイヤに作用する周方向の前後力を検出するタイヤの前後力検出方法であって、
タイヤ軸芯を中心とした一つの円周線上でタイヤに設けられる少なくとも1つのマークと、
車体に固定され、タイヤとともに回転する前記マークの通過を逐次検出しうる第1のセンサと、
車軸の回転角度θを検出しうる第2のセンサと、
第1,第2のセンサの情報に基づいてタイヤの前後力を演算する演算手段とを具えるとともに、
該演算手段は、前記マークが通過することにより生じる前記第1のセンサの通過信号の情報を受けた時点における、前記第2のセンサの回転角度θrの情報を逐次記憶するとともに、
タイヤが無負荷状態で回転する場合の、前記マークが通過することにより生じる通過信号の情報を受けた時点における、前記第2のセンサの無負荷回転角度θoの情報を予め記憶し、
かつ前記回転角度θrと前記無負荷回転角度θoとの差(θo−θr)であるタイヤの捻れ角αrを逐次演算し、
しかも予め求めた捻れ角αとタイヤの前後力Fとの関係式に基づき、前記捩れ角度αrから回転時のタイヤの前後力Frを逐次演算することを特徴とするタイヤの前後力検出方法。
【請求項2】
前記第2のセンサは、その分解能を0.10°以下としたことを特徴とする請求項1記載のタイヤの前後力検出方法。
【請求項3】
前記マークは、タイヤのサイドウォール部かつ前記円周線上に設けられ、かつその全周において4〜72個が形成されることを特徴とする請求項1又は2記載のタイヤの前後力検出方法。
【請求項4】
タイヤに作用する周方向の前後力を検出するタイヤの前後力検出装置であって、
タイヤ軸芯を中心とした一つの円周線上でタイヤに設けられる少なくとも1つのマークと、
車体に固定され、タイヤとともに回転する前記マークの通過を逐次検出しうる第1のセンサと、
車軸の回転角度θを検出しうる第2のセンサと、
第1,第2のセンサの情報に基づいてタイヤの前後力を演算する演算手段とを具えるとともに、
該演算手段は、前記マークが通過することにより生じる前記第1のセンサの通過信号の情報を受けた時点における、前記第2のセンサの回転角度θrの情報を逐次記憶する回転角度情報記憶部、
タイヤが無負荷状態で回転する場合の、前記マークが通過することにより生じる通過信号の情報を受けた時点における、前記第2のセンサの無負荷回転角度θoの情報を予め記憶する無負荷回転角度情報記憶部、
前記回転角度情報記憶部の回転角度θrと前記無負荷回転角度情報記憶部の前記無負荷回転角度θoとの差(θo−θr)であるタイヤの捻れ角αrを逐次演算する第1の演算部、
及び予め求めた捻れ角αとタイヤの前後力Fとの関係式に基づき、前記第1の演算部で演算される捩れ角度αrから回転時のタイヤの前後力Fを逐次演算する第2の演算部からなることを特徴とするタイヤの前後力検出装置。
【請求項5】
前記第2のセンサは、その分解能を0.10°以下としたことを特徴とする請求項4記載のタイヤの前後力検出装置。
【請求項6】
前記マークは、タイヤのサイドウォール部かつ前記円周線上に設けられ、かつその全周において4〜72個が形成されることを特徴とする請求項4又は5記載のタイヤの前後力検出装置。
【請求項7】
前記第2のセンサは、ABS用の回転速度、回転加速度のセンサとして使用されることを特徴とする請求項4〜6のいずれかに記載のタイヤの前後力検出装置。
【請求項8】
前記演算手段は、前記回転角度情報記憶部の回転角度θrと前記無負荷回転角度情報記憶部の前記無負荷回転角度θoとの差(θo−θr)の正負から、前後力Fの向きを演算することを特徴とする請求項4〜7のいずれかに記載のタイヤの前後力検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate