説明

デュアル圧力センサ及び流量制御弁

【課題】デュアル圧力センサの校正の要否を適時に判断できるようにする。
【解決手段】第1の温度・圧力特性を有し、流体の圧力を検出する第1の圧力検出素子16Aと、第2の温度・圧力特性を有し、前記流体の圧力を検出する第2の圧力検出素子16Bと、第1の圧力検出素子16Aの検出値と第2の圧力検出素子16Bの検出値との差分を求める差分演算部176と、差分演算部176で求められた差分が許容値を超えている場合に校正指示信号を出力する判定部178と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、流体の圧力をセンシングする技術に関する。
【背景技術】
【0002】
2つの被測定圧力を検出する圧力センサ(デュアル圧力センサ)として例えば下記特許文献1に記載された技術が知られている。特許文献1に記載のデュアル圧力センサは、2つの感圧ダイヤフラムチップを有し、2つの導圧管から導入された2つの被測定圧力がそれぞれの感圧ダイヤフラムに加えられる。このときの感圧ダイヤフラムの変位を例えば拡散型歪みゲージによって電気信号に変換することにより、被測定圧力に応じた検出信号を得ることができる。
【0003】
このようなデュアル圧力センサは、2つの被測定圧力を検出できるから両者の差分つまりは差圧を求める差圧センサとしても利用できる。求められる差圧の一例としては、流量制御弁の上流側および下流側の流体の圧力差(つまりは差圧)が挙げられる。なお、流量制御弁の一例としては、下記特許文献2に記載のものが知られている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−31003号公報
【特許文献2】特開2009−115302号公報
【特許文献3】特開平6−108990号公報
【特許文献4】特開平11−325525号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
流量制御弁の上流側及び下流側の流体圧力の差分(差圧)は、当該流量制御弁内を流れる流体の流量を求めるのに用いることができる。流量制御を高精度に行なうには、圧力センサの検出精度ができるだけ高い、換言すれば、検出誤差が所定の許容範囲内に収まっていることが望まれる。しかしながら、感圧ダイヤフラムチップを用いたデュアル圧力センサは、ダイヤフラムの物理的な変位を検出する構成であるため、時間経過とともに検出出力が初期時からどうしてもドリフトしてしまう。
【0006】
このようなドリフトを補償するための圧力センサの校正方法としては、例えば周期的に圧力センサの測定を中断して、校正用に決められた温度環境下で、決められた流体圧力を圧力センサに与え、そのときの圧力センサの出力と当該圧力センサの初期時の同一条件下での検出出力とを比較し、両者の差が許容範囲を超えている場合に、圧力センサの検出出力を補正する手段を調整する方法がある。一例として、差圧・圧力センサの時間経過による補正方法について記載した文献として上記特許文献3及び4がある。
【0007】
しかしながら、このような校正方法では、圧力センサの校正の要否を判断するために、一時的に本来の圧力測定を中断せざるを得ない。そのため、流体圧力を連続的に、あるいは短周期で測定することが求められる場合には、中断による影響が大きくなる。また、校正時における圧力センサの温度や校正時に圧力センサに与える流体圧力等の諸条件を初期時の条件と同一にするための設備や装置が必要になる。
【0008】
そこで、本発明の目的の一つは、デュアル圧力センサによる流体圧力の測定を中断しなくても、また、校正のための設備や装置を用いなくても、当該センサの校正の要否を適時に判断できるようにすることにある。
【0009】
なお、前記目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本発明の他の目的の一つとして位置付けることができる。
【課題を解決するための手段】
【0010】
本発明のデュアル圧力センサの一態様は、第1の温度・圧力特性を有し、流体の圧力を検出する第1の圧力検出素子と、第2の温度・圧力特性を有し、前記流体の圧力を検出する第2の圧力検出素子と、前記第1の圧力検出素子の検出値と前記第2の圧力検出素子の検出値との差分を求める差分演算部と、前記差分演算部で求められた差分が前記差分に関する許容値を超えている場合に校正指示信号を出力する判定部と、を備える。
【0011】
ここで、デュアル圧力センサは、前記第1及び第2の温度・圧力特性をそれぞれ表わす第1及び第2の関数の温度変数及び圧力変数を互いに共通とし、前記第1及び第2の圧力検出素子による検出値がそれぞれ前記第1及び第2の関数の解であると仮定して、前記各関数を連立して解くことで、前記流体の圧力を求める圧力演算部と、前記圧力演算部で求められた前記圧力を出力する出力部と、を更に備え、前記第1の圧力検出素子と前記第2の圧力検出素子とが相互に接触した状態で一体化されていてもよい。
【0012】
また、前記第1の圧力検出素子の特性は、時間経過とともに検出値が大きくなる方向に前記ドリフトが生じる特性であり、かつ、前記第2の圧力検出素子の特性は、時間経過とともに検出値が小さくなる方向に前記ドリフトが生じる特性であり、前記圧力演算部は、前記判定部が前記校正指示信号を出力した場合に、前記第1の関数に所定の負の補正値を加えることと、前記第2の関数に所定の正の補正値を加えることとのいずれか一方又は双方を実施した上で、前記流体の圧力を求めるようにしてもよい。
【0013】
さらに、本発明の流量制御弁の一態様は、内部に流路を有する弁本体と、前記弁本体内で動作することで前記流路を通過する流体の流量を制御する弁体とを有する流量制御弁において、前記弁本体内の前記弁体よりも上流側の流路を流れる流体を前記弁本体の外周面へ導く上流側流体圧力導出路と、前記弁本体内の前記弁体よりも下流側の流路を流れる流体を前記弁本体の外周面へ導く下流側流体圧力導出部と、上述した構成を具備する第1及び第2のデュアル圧力センサと、を備え、前記第1のデュアル圧力センサは、前記上流側流体圧力導出路を介して前記第1のデュアル圧力センサの第1及び第2の圧力検出素子のそれぞれに前記流体を伝達可能に前記弁体本体の外周面に設けられ、前記第2のデュアル圧力センサは、前記下流側流体圧力導出路を介して前記第2のデュアル圧力センサの第1及び第2の圧力検出素子のそれぞれに前記流体を伝達可能に前記弁本体の外周面に設けられる。
【発明の効果】
【0014】
本発明の一態様によれば、デュアル圧力センサの校正の要否を適時に判断できる。その際、当該判断のために流体圧力の測定を中断しなくてもよい。また、校正のための特別な設備や装置を用いなくてもよい。
【図面の簡単な説明】
【0015】
【図1】一実施形態に係るデュアル圧力センサの一例を示す模式的な正面図である。
【図2】図1に例示するデュアル圧力センサの模式的な平面図である。
【図3】図1に例示するデュアル圧力センサの模式的な側面図である。
【図4】図2のII−II線断面図である。
【図5】図4のIII−III線平面図である。
【図6】図4に例示する構造の変形例を示す断面図である。
【図7】図1〜図6に例示するデュアル圧力センサを適用可能な流量制御弁の一例を示す断面図である。
【図8】図4及び図7に例示する出力補正・校正回路の一例を示すブロック図である。
【発明を実施するための形態】
【0016】
以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形(各実施例を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。
【0017】
(一実施形態)
図1、図2及び図3は、それぞれ、一実施形態に係るデュアル圧力センサの模式的な正面図、平面図及び側面図であり、図4は図2のII−II線断面図、図5は図4のIII−III線平面図である。これらの図において、デュアル圧力センサ1は、例示的に、気密容器2と、気密容器2の内部に収納された2つの圧力センサユニット3A及び3Bと、基板4と、を備えている。
【0018】
図1〜図4に例示するように、気密容器2は、開口部を有する有底箱型のケース7と、ケース7の開口部を気密に覆う蓋体8とを有する。蓋体8は、例示的に、図4に示すように凹陥部12を有する平板状に形成され、ケース7の開口部に図示を省略したシール部材を介して固定(例えばネジ止め)される。これにより、ケース7の開口部を気密に密封して、内部に一定圧力の圧力基準室9(図4参照)を形成することができる。なお、ケース7及び蓋体8は、それぞれ例えば合成樹脂によって成形することができる。また、蓋体8の凹陥部12とは反対側の面には、図2〜図4に例示するように、外部信号線13の一端を接続可能なコネクタ部14を設けることができる。
【0019】
ケース7は、例示的に、図4に示すように、底板7aと、底板7aの各辺に沿って立設された4つの側板7b〜7eとを備えた矩形箱型に形成され、内部(圧力基準室9)に2つの圧力センサユニット3A及び3Bを互いの側面が相互に接するように並設することができる。
【0020】
図5に例示するように、ケース7の内面の4つの各隅角部と、対向する長辺側の側板7d及び7eの内面の長手方向中央部分とには、圧力センサユニット3A及び3Bを位置決めする三角柱状の位置決め用突出部10をそれぞれ設けてもよい。また、図4に例示するように、底板7aには、2つの挿通孔11a及び11bを圧力センサユニット3A及び3Bに対応して形成することができる。
【0021】
圧力センサユニット3A及び3Bは、互いに同じ構成とすることができ、例示的に、圧力センサユニット3A(3B)は、図4に示すように、台座15A(15B)と、感圧ダイヤフラムチップ16A(16B)と、各感圧ダイヤフラムチップ16A及び16Bに共通の出力補正・校正回路17と、を備える。
【0022】
図4に示すように、台座15A(15B)は、例示的に、台座本体15A−1(15B−1)と、コネクタ部14から離れる方向に台座本体15A−1(15B−1)から突設した圧力導入部15A−2(15B−2)とを有する。台座本体15A−1(15B−1)と圧力導入部15A−2(15B−2)とは、例えば合成樹脂等によって一体的に形成することができる。
【0023】
台座本体15A−1(15B−1)は、内部に連通路21a(21b)を有しており、当該連通路21a(21b)から感圧ダイヤフラムチップ16A(16B)に被測定圧力P1(P2)を導く小孔22a(22b)が形成されている。台座本体15A−1(15B−1)における連通路21a(21b)の容積を大きく形成することにより、被測定圧力P1(P2)の急激な変動を吸収、緩和し、感圧ダイヤフラムチップ16A(16B)のダイヤフラムが破損することを抑制できる。
【0024】
圧力導入部15A−2(15B−2)は、例えば内面が円筒形状の圧力導入孔23a(23b)を有しており、圧力導入孔23a(23b)は、台座本体15A−1(15B−1)の連通路21a(21b)に連通している。これにより、連通路21a(21b)及び小孔22a(22b)を介して感圧ダイヤフラムチップ16A(16B)に被測定圧力P1(P2)を導くことができる。
【0025】
感圧ダイヤフラムチップ(以下、「圧力センサ」ともいう)16A及び16Bは、いずれも温度に応じて出力値である流体の検出圧力が変動する(例えば、温度が高くなるほどセンサ出力値が大きくなる傾向にある)出力特性を有する圧力検出素子(圧力センサ)の一例である。感圧ダイヤフラムチップ16A及び16Bのそれぞれは、例示的に、感圧部(ダイヤフラム)が形成された半導体基板(シリコン)と、拡散型歪みゲージとを備える。
【0026】
拡散型歪みゲージは、前記ダイヤフラムの被測定圧力による歪みを、ピエゾ抵抗効果を利用して検出し電気信号に変換する。拡散型歪みゲージの出力信号は、基板4(図4参照)の電気回路に例えばボンディングワイヤ25a(25b)を介して電気的に接続される。
【0027】
感圧ダイヤフラムチップ16A(16B)は、台座本体15A−1(15B−1)の例えば基板4側の面に設けることができ、台座本体15A−1(15B−1)に設けられた小孔22a(22b)を通じて被測定圧力P1(P2)がダイヤフラムの一方の面に印加される。ダイヤフラムの他方の面には、気密容器2内の圧力が基準圧力として印加される。
【0028】
上述した構成を備えた圧力センサユニット3A及び3Bは、例えば図5に示すように、ケース7内において、台座本体15A−1及び15B−1がケース内面と位置決め用突出部10(図5参照)とによって位置決めされる。これにより、互いに対向する側面20aどうしが接触し、残り3つの側面20b〜20dがケース7の内面にそれぞれ接触し、台座本体15A−1及び15B−1の底面が底板7aの内面に接触する。このように、2つの台座本体15A−1及び15B−1の側面20aどうしを互いに接触させておくことで、2つの台座15A及び15Bの温度、ひいては圧力センサ16A及び16Bの温度を等しくすることができる。
【0029】
各台座15A及び15Bの圧力導入部15A−2及び15B−2は、図4に例示するように、底板7aの対応する挿通孔11a及び11bを介してケース7から突出し、対応する導圧管24A及び24Bにそれぞれ接続することができる。
【0030】
基板4は、圧力センサユニット3A及び3Bと共にケース7内に収容され、例えば複数個の止めねじによって位置決め用突出部10に固定され、リード線28が蓋体8のコネクタ部14に接続される。
【0031】
次に、図4中に示す出力補正・校正回路17は、例えば基板4の前記電気回路の一部を成し、感圧ダイヤフラムチップ16A及び16Bによって検出された各被測定圧力を基に、温度補正された被測定圧力を求める。その際、本例のデュアル圧力センサ1は、温度補正のために圧力センサ16A及び16Bの個々の温度を実測しなくてもよい。その代わりに、デュアル圧力センサ1は、所定の演算により感圧ダイヤフラムチップ16A及び16Bの温度を検出することができる。また、当該出力補正・校正回路17は、感圧ダイヤフラムチップ16A及び16Bの時間経過とともに生じる出力特性のドリフトを検出して、その校正の要否を判定することができる。これらの温度検出及び校正要否判定の詳細については後述する。
【0032】
(感圧ダイヤフラムチップの取り付け構造の変形例)
図6に例示するように、感圧ダイヤフラムチップ16A及び16Bの一方(例えば感圧ダイヤフラムチップ16A)は、連通路21a(21b)の内壁面側に設けてもよい。例えば、小孔22aと連通する流路を有する台座(例えばガラス製の台座)160aを連通路21aの内壁面側に設け、当該台座(以下、「チップ台座」とも称する)160aの開放端側に感圧ダイヤフラムチップ16Aを設けることができる。なお、図6において、既述の符号と同一符号を付した部分は、特に断らない限り、既述の部分と同一若しくは同様の部分である。
【0033】
連通路21aの内壁面側に設けた感圧ダイヤフラムチップ16Aと基板4上の電気回路との電気的な接続は、図6中に例示するように、1又は複数のボンディングワイヤ161及び導体ピン162の組を用いて行なうことができる。導体ピン162は、台座本体15A−1の基板4側に設けられた貫通孔151を通じて基板4へ延在し、例えば基板4に半田付け(符号163参照)により固定することができる。導体ピン162が貫通する貫通孔151は、例示的に、ガラスハーメチックシール152によりシールすることができる。当該シール152によって、連通路21aから圧力基準室9に流体が漏れ出して圧力基準室9の圧力が変動することを回避することができる。
【0034】
また、連通路21aは、例えばダイヤフラム211aを設けることで、図6の紙面上下方向に2つの空間に分割することができる。一方の分割空間は、圧力導入孔23aと連通しており、当該圧力導入孔23aを通じて流体が流入することでダイヤフラム211aに被測定圧力P1が加わる。感圧ダイヤフラムチップ16Aを内包する他方の分割空間には、例示的に、液体(封入液)212aを充填(封入)することができる。封入液212aには、耐熱性、耐寒性、耐水性、電気特性等に優れたシリコンオイル等の絶縁油を用いることができる。
【0035】
封入液212aは、被測定圧力P1がダイヤフラム211aに加わったときのダイヤフラム211aの変形に応じて被測定圧力P1を感圧ダイヤフラムチップ16Aに伝達することができる。つまり、圧力導入孔23aを通じて連通路21aに導入された被測定圧力P1は、ダイヤフラム211a及び封入液212aを通じて間接的に感圧ダイヤフラムチップ16Aに伝達される。したがって、感圧ダイヤフラムチップ16A及びその配線(ボンディングワイヤ161や導体ピン162)を保護しつつ、被測定圧力P1を適切に感圧ダイヤフラムチップ16Aに伝達することができる。
【0036】
なお、他方の感圧ダイヤフラムチップ16Bの台座本体15B−1に対する取り付け構造は、図4に例示した構造でもよいし、図6中に例示するように、台座160aと同一若しくは同様の台座160bを介して取り付ける構造としてもよい。また、連通路21bの内部構造についても、図4に例示した構造でもよいし、図6中に例示するように、連通路21aの内部構造と同様の構造にしてもよい。
【0037】
すなわち、連通路21bをダイヤフラム211bによって2つの空間に分割するとともに、感圧ダイヤフラムチップ16B側の分割空間に封入液212bを封入する。封入液212bは、連通路21aにおける封入液212aと同一若しくは同様のものでよい。封入液212bは、小孔22b及び台座(チップ台座)160bの内部空間を満たしており、ダイヤフラム211bの変形に応じた圧力を小孔22b及び台座(チップ台座)160bの内部空間を通じて感圧ダイヤフラムチップ16Bのダイヤフラムに伝達することができる。したがって、圧力導入孔23bを通じて流体が流入しダイヤフラム211bに被測定圧力P2が加わってダイヤフラム211bが変形すると、当該変形に応じて被測定圧力P2を感圧ダイヤフラムチップ16Bのダイヤフラムに間接的に伝達することができる。
【0038】
以上のように圧力センサ16A及び16Bをなすダイヤフラム(以下、「センサダイヤフラム」ともいう。)に対する被測定圧力P1及びP2の圧力導入構造をそれぞれダイヤフラム211a及び211bを介した間接的な圧力導入構造にしておくことで、被測定圧力の測定環境(条件)を揃えることができ、測定環境(導入構造)の相違による誤差をできるだけ小さくすることができる。
【0039】
ここで、圧力センサ16A及び16Bの基板4と電気的に接続されている側の面をそれぞれ表面と位置付けた場合、図6に例示するように圧力センサ16A及び16Bの表面を互いに反対方向に向けて取り付けた構造では、一方の圧力センサ16A(センサダイヤフラム)は、表面から被測定圧力P1を受け、他方の圧力センサ16B(センサダイヤフラム)は、裏面から被測定圧力P2を受けることになる。
【0040】
したがって、センサダイヤフラムの時間経過に応じて圧力センサ16A及び16Bの出力特性に生じるドリフト方向を互いに異なる方向(例示的に、逆方向)とすることができる。その結果、ドリフト方向が同一方向(正又は負の方向)である場合に比して、両圧力センサ16A及び16Bの出力の差分の変化が検出し易くなる(検出感度が向上する)ので、後述するように当該差分と所定の閾値との比較に基づく圧力センサ16A及び16Bの校正の要否を判定し易くすることができる。
【0041】
以上のように構成されたデュアル圧力センサ1は、例えば弁本体内を流れる流体の流量を制御する流量制御弁と組み合わせて、弁本体内を流れる流体の流量を測定することができる。なお、流体は、気体(ガス)でもよいし、液体でもよい。流量制御弁の流路内を流れる流体の流量Qは、弁体の一次側(上流側)流路と二次側(下流側)流路中の流体の差圧と、弁体の開度で決まる流量係数(Cv)とから次式(1)によって算出することができる。
【0042】
Q=A・Cv・√ΔP ・・・・(1)
ただし、Aは定数、ΔPは流体の上流側と下流側の圧力差である。
【0043】
当該式(1)による流量計測は、固定オリフィスを用いた差圧式流量計測に比べて、弁体の開度に応じて絞り効果が変わるために幅広い流量の測定が可能である。また、流量制御弁部の配管圧力が判るため、流量を測定する他に圧力異常などの診断にその情報を利用することもできる。
【0044】
(デュアル圧力センサの適用例)
図7は、上述したデュアル圧力センサ1を適用可能な流量制御弁100の一例を示す断面図である。流量制御弁100は、例示的に、上流側及び下流側に配置された一対のシートリングによって弁体(ボールプラグ)を回動自在に支持するフローティングタイプの二方ボールバルブからなる流量制御弁である。フローティングタイプの弁は、全閉時に弁体が上流側流体圧によって下流側シートリングに押し付けられることにより、弁体と下流側シートリングとの接触によってシールを図ることができる。
【0045】
流量制御弁100は、例示的に、内部が流体102の流路103を形成する弁本体101と、弁本体101の内部において流路103を開閉する弁体104と、を有する。弁体104は、例えば弁軸107を有するボール形状の弁体であり、弁本体101内部で水平面内において弁軸107を中心に回動可能に配設されている。
【0046】
弁体104は、例えば中空体であり、内部を流体102が通過できるよう流入側開口部と流出側開口部とを有している。弁軸107は、図示を省略したアクチュエータ等によって駆動されることにより、弁体104を矢印θ方向に所定の角度範囲(例えば90°等)内で回動可能である。
【0047】
弁本体101の内部において、弁体104の上流側には、弁体104の外周面に接するよう上流側シートリング63が配設され、弁体104の下流側には、弁体の外周面に接するよう下流側シートリング65が配設されている。シートリング63及び65のそれぞれは、流路103の一部を成す中空構造を有しており、弁体104の前記開口部とそれぞれ連通する状態において流体102が弁体104の上流側から弁体104内部の流路を通過して弁体104の下流側へ流れる。弁体104の回動動作(回動角度)が制御されることによって、弁体104の上流側から下流側へ流路103を通過する流体の流量を制御することができる。
【0048】
上流側シートリング63は上流側リテーナ64によって、下流側シートリング65は下流側リテーナ66によって、それぞれ弁本体101内において保持されている。上流側リテーナ64には、内周面と外周面とを貫通する貫通孔50が周方向に複数(例えば4つ)設けられており、当該貫通孔50に、弁体104へ向かう流体102の一部が流入する。
【0049】
下流側リテーナ66にも、内周面と外周面とを貫通する貫通孔51が周方向に複数(例えば4つ)設けられており、当該貫通孔51に、弁体104から流出した流体102の一部が流入する。
【0050】
上流側リテーナ64の貫通孔50は、例えば上流側シートリング63近傍で弁本体101の肉厚内に内外を半径方向に貫通するように形成された2つの貫通孔24A及び24Bとそれぞれ連通している。したがって、上流側リテーナ64の貫通孔50に流入した流体102は、弁体104よりも上流側の2つの貫通孔24A及び24Bにそれぞれ伝達される。別言すれば、貫通孔50と弁体104よりも上流側の2つの貫通孔24A及び24Bの組とは、弁体104よりも上流側の流路を流れる流体102を弁本体外周面へ導く上流側流体圧力導出路の一例を成す。
【0051】
一方、下流側リテーナ66の貫通孔51は、例えば下流側シートリング65近傍で弁本体101の肉厚内に内外を半径方向に貫通するように形成された2つの貫通孔24A及び24Bとそれぞれ連通している。したがって、下流側リテーナ66の貫通孔51に流入した流体102は、弁体104よりも下流側の2つの貫通孔24A及び24Bにそれぞれ伝達される。別言すれば、貫通孔51と弁体104よりも下流側の2つの貫通孔24A及び24Bの組とは、弁体104よりも下流側の流路を流れる流体102を弁本体外周面へ導く下流側流体圧力導出路の一例を成す。
【0052】
上流側の2つの貫通孔24A及び24Bに対応して第1のデュアル圧力センサ1−1を、下流側の2つの貫通孔24A及び24Bに対応して第2のデュアル圧力センサ1−2を、それぞれ弁本体101に設けることができる。デュアル圧力センサ1−1及び1−2は、いずれも図1〜図5(又は図1〜図4及び図6)に例示した構成を有し、両者を区別しない場合には単に「デュアル圧力センサ1」と表記する。
【0053】
この場合、図4(又は図5)及び図7から明らかなように、弁本体101において、弁体104よりも上流側に設けられた2つの貫通孔24A及び24Bは、第1のデュアル圧力センサ1−1における圧力導入部15A−2及び15B−2にそれぞれ接続される導圧管として機能する。同様に、弁体104よりも下流側に設けられた2つの貫通孔24A及び24Bは、第2のデュアル圧力センサ1−2における圧力導入部15A−2及び15B−2にそれぞれ接続される導圧管として機能する。
【0054】
これにより、上流側流体圧力導出路の一例を成す貫通孔50と2つの貫通孔(導圧管)24A及び24Bとを通じて導かれた流体102の圧力P1が第1のデュアル圧力センサ1−1の圧力センサ16A及び16B(感圧ダイヤフラムチップ)のそれぞれに印加される。また、下流側流体圧力導出路の一例を成す貫通孔51と2つの貫通孔24A及び24Bとを通じて導かれた流体102の圧力P2が第2のデュアル圧力センサ1−2の圧力センサ16A及び16B(感圧ダイヤフラムチップ)のそれぞれに印加される。
【0055】
圧力センサ16A及び16Bの各ダイヤフラムは、ダイヤフラムの片側面に印加された圧力P1又はP2に応じて変形し、この変形により拡散型歪みゲージの出力電圧が変化することで、圧力P1又はP2が検出される。なお、ダイヤフラムの反対面側には気密容器2内の圧力が基準圧力として印加されているので、各圧力センサ16A及び16Bの出力電圧は、それぞれ被測定圧力に相当する出力電圧となる。
【0056】
デュアル圧力センサ1−1及び1−2をそれぞれ成す圧力センサ16A及び16Bの出力電圧は、それぞれ例えば基板4に設けられた出力補正・校正回路17に送られる。各デュアル圧力センサ1−1及び1−2の出力補正・校正回路17は、圧力センサ16A及び16Bの出力電圧を基に、温度補正された出力電圧を求める。当該出力電圧は、例えば外部信号線13を介してデュアル圧力センサ1−1及び1−2に接続されている流量算出部61(図7参照)に与えられる。
【0057】
流量算出部61では、デュアル圧力センサ1−1及び1−2のそれぞれから受信した温度補正済みの被測定圧力P1及びP2を減算して、両者の差圧ΔP(P1−P2)を求め、当該差圧ΔPを前記の式(1)に代入して演算処理することにより、流量制御弁100を流れる流体の流量Qを測定する。なお、弁体104の開度は、例えば図7に示す弁開度検出部60にて検出することができる。したがって、流量算出部61は、当該検出された開度によって式(1)で用いる流量係数Cvを決定することができる。
【0058】
(出力補正・校正処理)
次に、上述した出力補正・校正回路17によるデュアル圧力センサ1の出力の補正処理と校正処理とについて詳述する。
【0059】
図8は、出力補正・校正回路17の具体例を示すブロック図である。図8に示す出力補正・校正回路17は、例示的に、出力補正系の一例として、各圧力センサ16A及び16Bのそれぞれに対応したアナログ−デジタル変換器(ADC)171及び172と、出力補正用の記憶部173と、圧力演算部174と、演算結果出力部175と、を備える。また、校正処理系の一例として、出力補正・校正回路17は、差分演算部176と、差分許容値記憶部177と、校正要否判定部178と、校正信号送信部179と、を追加的に備えることができる。校正処理系には、校正用補正値記憶部180を追加的に設けることもできる。
【0060】
(出力補正系)
ADC171及び172は、それぞれ対応する圧力センサ16A及び16Bの出力(圧力検出信号)をデジタル信号に変換する。ADC171及び172によって得られたデジタル信号(S1及びS2)のそれぞれは、圧力演算部174と差分演算部176とに入力される。なお、デジタル信号は、プリアンプ等で所定の信号レベルに増幅した上で圧力演算部174及び176に入力するようにしてもよい。
【0061】
記憶部173は、一方の圧力センサ16Aの出力特性に関する情報と、他方の圧力センサ16Bの出力特性に関する情報とを記憶する。ここで、圧力センサ16A及び16Bの出力特性は、いずれも被測定圧力及び温度に依存して変動する(例えば、温度が高いほど検出圧力が高くなる傾向にある)から、圧力及び温度を変数とする関数により表わすことができる。
【0062】
したがって、圧力センサ16A及び16Bの出力特性(温度・圧力特性)は、両圧力センサ16A及び16Bが同じ流体102の同じ部分の圧力を測定し、かつ、両圧力センサ16A及び16Bの温度が同一(同一とみなせる場合も含む)であれば、共通の圧力変数P及び温度変数Tを用いて関数f1(P,T)及び関数f2(P,T)とそれぞれ表わすことができる。
【0063】
この点、本例において、1つのデュアル圧力センサ1−1(又は1−2)を成す両圧力センサ16A及び16Bは、図6に例示したように、それぞれ同じ上流側(下流側)の流体102の圧力を被測定圧力とし、かつ、図5に例示したように、互いに接触した状態で一体化されているから同一温度と扱うことができる。よって、記憶部173に記憶される「温度・圧力特性に関する情報」は、関数f1(P,T)及び関数f2(P,T)をそれぞれ定める定数と位置付けることができる。
【0064】
関数f1(P,T)及び関数f2(P,T)は、圧力センサ16A及び16Bの出力特性をそれぞれ正確に表わせている必要は無く、例えば一次式や二次式、あるいはそれ以上の高次式によって近似された関数(近似式)によって表わされても構わない。例えば、それぞれ流体102が取り得る温度範囲内の複数の温度で予め実測した個々の圧力データを基に計算(例えばフィッティング)することで関数f1及びf2を求めることができる。なお、前記定数は、関数f1及びf2の別に、記憶部173の記憶領域(アドレス)を分けて記憶してもよいし、記憶部173を2個用意し、それぞれの関数に対応する別々の記憶部173に記憶してもよい。記憶部173には、例えばEEPROMを用いることができる。
【0065】
圧力演算部174は、各ADC171及び172の出力であるデジタル信号S1及びS2と、記憶部173に記憶された関数f1及びf2をそれぞれ定める定数とに基づいて、関数f1及び関数f2を連立して解くことで、温度補正(補償)された被測定圧力Pを求める。例示すると、圧力演算部174は、下記の式(2)及び式(3)を連立して解くことで、圧力P及び温度Tの双方を求めることができる。

S1=f1(P,T) …(2)
S2=f2(P,T) …(3)
【0066】
すなわち、一方の圧力センサ16Aの出力値(検出値)S1が当該圧力センサ16Aの温度・圧力特性を表わす関数f1の解であり、他方の圧力センサ16Bの出力値(検出値)S2が当該圧力センサ16Bの温度・圧力特性を表わす関数f2の解であると仮定して、両関数f1及びf2を連立して解くことで、温度センサを用いずに、温度補正された流体圧力Pの検出値を得ることができる。
【0067】
なお、上流側のデュアル圧力センサ1−1の圧力演算部174によって求められた補正済み圧力Pの検出値は上流側流体圧力P1の検出信号として位置付けられ、下流側のデュアル圧力センサ1−2の圧力演算部174によって求められた補正済み圧力Pの検出値は下流側流体圧力P2の検出信号として位置付けられる。
【0068】
演算結果出力部175は、圧力演算部174によって求められた圧力P及び温度Tのうち、少なくとも圧力Pの情報を検出結果として出力する。当該検出結果は、例えば、流量算出部61に与えられる。したがって、流量算出部61には、各デュアル圧力センサ1−1及び1−2の演算結果出力部175から温度補正済みの検出圧力P1及びP2が少なくとも受信される。流量算出部61による圧力P1及びP2に基づく流量算出法については既述のとおりである。
【0069】
なお、演算結果出力部175は、圧力Pとともに圧力演算部174で求められた温度Tを外部(例えば流量算出部61)に出力することもできる。温度Tを受信した流量算出部61は、当該温度Tと前記の式(1)により求めた流量とに基づいて、流量制御弁100の流路103を流れる流体102の熱量を算出することも可能になる。また、受信した温度Tは、例えば当該温度Tの情報を所定の外部表示器(図示省略)等に出力して、圧力センサ16A及び16Bの温度情報としてオペレータ等のユーザに提示することも可能である。また、当該温度情報を所定の温度制御に用いることも可能である。
【0070】
(校正処理系)
一方、図8において、差分演算部176は、圧力センサ16Aの出力信号S1と圧力センサ16Bの出力信号S2との差分を演算する。差分許容値記憶部177は、当該差分についての閾値である所定の許容値(e)を記憶する。当該許容値eは、下記の適切な校正要否判定を実施する上で適当な値(理論値や実験に基づく値等)に設定することができる。
【0071】
校正要否判定部178は、差分演算部176で求められた差分の絶対値(|S1−S2|)と、差分許容値記憶部177に記憶された許容値eとを比較して、差分が許容値eを超えているかどうかを判定する。差分が許容値eを超えていれば(|S1−S2|>e)、校正要否判定部178は、デュアル圧力センサ1の校正が必要であると判定し、校正指示信号を校正信号送信部179に出力する。
【0072】
校正信号送信部179は、校正要否判定部178から校正指示信号を受けると、当該校正指示信号をデュアル圧力センサ1の外部(例えば図7に例示する警報部62)へ出力する。校正指示信号を受けた警報部62は、警報情報を生成する。警報情報は、例えば所定の外部表示器(図示省略)等に出力されて、デュアル圧力センサ1−1(1−2)の校正が必要性であることをオペレータ等のユーザに提示する。
【0073】
このように、本実施形態によれば、デュアル圧力センサ1を成す2つの圧力センサ16A及び16Bの出力信号S1及びS2の一方又は双方に時間経過によるドリフトが生じ、両信号S1及びS2の差分が許容値(e)を超えると、校正が必要であると判断してその旨をオペレータ等のユーザに知らせることができる。このとき、圧力センサ16A及び16Bのどちらの出力信号のドリフトが大きいかは判別できなくても、校正が必要である時期(タイミング)は適時に発信することが可能となる。したがって、適時な校正機会を得ることができ、デュアル圧力センサ1の定期的な校正コストの低減を図ることができる。
【0074】
また、デュアル圧力センサ1の校正の要否を判断するために、本来の圧力測定を一時的に中断する必要もない。したがって、圧力測定、ひいては流量測定、流量制御等を連続的に実施することができる。さらには、校正時における圧力センサの温度や校正時に圧力センサに与える流体圧力等の諸条件を初期時の条件と同一にするための設備や装置も不要である。
【0075】
また、この方法により、圧力センサ16A及び16Bのどちらか一方が故障した場合も検出できる。例えば、所定の故障検出閾値(>許容値e)を設定(例えば記憶部177に記憶)しておき、出力信号S1及びS2の差分が当該故障検出閾値を超えている場合に、圧力センサ16A及び16Bのどちらか一方に異常が生じたと判定することができる。
【0076】
(自動校正機能)
なお、校正要否判定部178による判定結果(校正指示信号)は、圧力演算部174に与えることもできる。校正指示信号を受けた圧力演算部174は、時間経過に伴う検出圧力のドリフトを校正する補正値(負の補正値−C1又は正の補正値+C2)を校正用補正値記憶部180から読み出して、当該補正値−C1/+C2によってドリフトの校正を行なう(自動校正機能)。
【0077】
例えば、圧力センサ16A及び16Bの出力信号のドリフト特性を予め調べておき、時間経過とともに出力信号S1(又はS2)が大きくなるドリフト特性をもつ圧力センサ16A(又は16B)については負の補正値−C1を関数f1(又はf2)に加える。一方、時間経過とともに出力信号S2(又はS1)が小さくなる特性をもつ圧力センサ16B(又は16A)については、正の補正値+C2を関数f2(又はf1)に加える。このようなドリフト補正は、関数f1及びf2の一方又は双方について実施することができる。これにより、圧力センサ16A及び16Bの出力信号のドリフトによる誤差を小さくすることができ、デュアル圧力センサ1の自動校正が可能となる。
【0078】
圧力演算部174は、このように補正した関数f1及びf2を用いて圧力P及び温度Tを求めることで、圧力センサ16A及び16Bのドリフト特性による圧力検出精度の低下を抑制することができる。ここで、2つの圧力センサ16A及び16Bの出力信号のドリフト特性は、例えば、時間経過とともに出力信号S1及びS2のドリフト方向が同じ方向(正又は負の方向)である特性でも構わないが、図6の変形例に示したように、構造的に互いに異なる(例えば逆の)ドリフト方向となるように設定しておけば、両圧力センサ16A及び16Bの出力の差分の変化が検出し易くなる(検出感度が向上する)。したがって、校正要否判定部178での当該差分と許容値(e)との比較に基づく圧力センサ16A及び16Bの校正の要否を判定し易くすることができる。
【0079】
なお、上記ドリフト補正は、両圧力センサ16A及び16Bの検出出力の差分が許容値(e)以下となって校正指示信号が出力されなくなるまで、繰り返し行なうことができる。したがって、両圧力センサ16A及び16Bの出力差分が許容範囲外となっても、自動的に許容範囲内に収まるように校正を実施することができる。その結果、人為的な校正を不要にでき、流量計測や流量制御は中断せずに実施することが可能である。
【0080】
また、圧力センサ16A及び16Bのドリフト特性を互いに異ならせる方法は、図6に例示したような構造的な変形に限られない。例えば図4に例示した構造に、ドリフト特性が互いに異なる圧力センサ16A及び16Bを設けることで上記と同等の作用効果を得るようにしてもよい。
【符号の説明】
【0081】
1,1−1,1−2…デュアル圧力センサ、2…気密容器、3A,3B…圧力センサユニット、4…基板、7…ケース、7a…底板、7b〜7e…側板、8…蓋体、9…圧力基準室、10…位置決め用突出部、11a,11b…挿通孔、12…凹陥部、13…外部信号線、14…コネクタ部、15A,15B…台座、15A−1,15B−1…台座本体、15A−2,15B−2…圧力導入部、16A,16B…感圧ダイヤフラムチップ(圧力検出素子;圧力センサ)、17…出力補正・校正回路、20a〜20d…側面、21a,21b…連通路、22a,22b…小孔、23a,23b…圧力導入孔、24A,24B…貫通孔(導圧管)、25a,25b,161…ボンディングワイヤ、28…リード線、50,51,151…貫通孔、60…弁開度検出部、61…流量算出部、62…警報部、63…上流側シートリング、64…上流側リテーナ、65…下流側シートリング、66…下流側リテーナ、100…流量制御弁、101…弁本体、102…流体、103…流路、104…弁体、107…弁軸、152…ガラスハーメチックシール、160a,160b…台座(チップ台座)、162…導体ピン、171,172…アナログ−デジタルコンバータ(ADC)、173…記憶部、174…圧力演算部、175…演算結果出力部、176…差分演算部、177…差分許容値記憶部、178…校正要否判定部、179…校正信号送信部、180…校正用補正値記憶部、211a,211b…ダイヤフラム、212a,212b…封入液

【特許請求の範囲】
【請求項1】
第1の温度・圧力特性を有し、流体の圧力を検出する第1の圧力検出素子と、
第2の温度・圧力特性を有し、前記流体の圧力を検出する第2の圧力検出素子と、
前記第1の圧力検出素子の検出値と前記第2の圧力検出素子の検出値との差分を求める差分演算部と、
前記差分演算部で求められた差分が前記差分に関する許容値を超えている場合に校正指示信号を出力する判定部と、
を備えた、
デュアル圧力センサ。
【請求項2】
前記第1及び第2の温度・圧力特性をそれぞれ表わす第1及び第2の関数の温度変数及び圧力変数を互いに共通とし、前記第1及び第2の圧力検出素子による検出値がそれぞれ前記第1及び第2の関数の解であると仮定して、前記各関数を連立して解くことで、前記流体の圧力を求める圧力演算部と、
前記圧力演算部で求められた前記圧力を出力する出力部と、を更に備え、
前記第1の圧力検出素子と前記第2の圧力検出素子とが相互に接触した状態で一体化されている、請求項1記載のデュアル圧力センサ。
【請求項3】
前記第1の圧力検出素子の特性は、時間経過とともに検出値が大きくなる方向に前記ドリフトが生じる特性であり、かつ、前記第2の圧力検出素子の特性は、時間経過とともに検出値が小さくなる方向に前記ドリフトが生じる特性であり、
前記圧力演算部は、
前記判定部が前記校正指示信号を出力した場合に、前記第1の関数に所定の負の補正値を加えることと、前記第2の関数に所定の正の補正値を加えることとのいずれか一方又は双方を実施した上で、前記流体の圧力を求める、請求項2に記載のデュアル圧力センサ。
【請求項4】
内部に流路を有する弁本体と、前記弁本体内で動作することで前記流路を通過する流体の流量を制御する弁体とを有する流量制御弁において、
前記弁本体内の前記弁体よりも上流側の流路を流れる流体を前記弁本体の外周面へ導く上流側流体圧力導出路と、
前記弁本体内の前記弁体よりも下流側の流路を流れる流体を前記弁本体の外周面へ導く下流側流体圧力導出部と、
請求項1〜3のいずれか1項に記載の構成を具備する第1及び第2のデュアル圧力センサと、を備え、
前記第1のデュアル圧力センサは、前記上流側流体圧力導出路を介して前記第1のデュアル圧力センサの第1及び第2の圧力検出素子のそれぞれに前記流体を伝達可能に前記弁体本体の外周面に設けられ、
前記第2のデュアル圧力センサは、前記下流側流体圧力導出路を介して前記第2のデュアル圧力センサの第1及び第2の圧力検出素子のそれぞれに前記流体を伝達可能に前記弁本体の外周面に設けられた、流量制御弁。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate