説明

パーティクルカウンタ

【課題】小型化及び消費電力の低減化を図ることができるうえ、パーティクルを安定して精度良く計測すること。
【解決手段】試料気体Sの流動経路上に配設され、該試料気体を内部通過させる内部通路11が形成されたフローセル10と、内部通路の内面に形成された観察面10aを撮像する撮像部12と、内部通路内を通過している試料気体に向けて光束Lを平行光状態で照射させると共に、該試料気体中に含まれるパーティクルPの有無に基づいて観察面に該パーティクルの陰影を生じさせる照射部13と、撮像部で撮像された撮像画像の経時的変化に基づいてパーティクルを計測する計測部14と、を備えているパーティクルカウンタ1を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パーティクル(被検粒子)の粒径や個数等を計測するパーティクルカウンタに関するものである。
【背景技術】
【0002】
この種のパーティクルカウンタは、例えばクリーンルーム内の清浄度を測るためのカウンタとして使用されており、一般的には散乱光を利用してパーティクルの計測を行っているものが知られている。
即ち、パーティクルを含んだ試料流体を測定領域に送り込む供給部と、測定領域を通過中の試料流体に検出光を照射する照射部と、照射された検出光が試料流体中のパーティクルに当たることで発生する散乱光を集光すると共に、集光した散乱光の散乱光強度に基づいてパーティクルを計測する計測部と、を備えている。
【0003】
また、計測精度を高めるために、波長の異なる複数の検出光を試料流体に同時に照射するもの(特許文献1参照)や、試料流体を通過させる流路と、検出光が通過する光路と、がポリマー系材料等からなる光導波路型に互いに交差するように形成されたもの(特許文献2参照)も知られている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開昭62−293143号公報
【特許文献2】特開2006−275815号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、従来のパーティクルカウンタでは、微小な測定領域に試料流体を確実に導入させる必要がある。そのため、ポンプやファン等を利用して試料流体を絞り込みながら流路内に送り込み、該流路を通じて試料流体を測定領域に導く方法が一般的に採用されている。ところが、ポンプやファン等を構成に付加する必要があるので、大型化し易いうえ消費電力も高くなり易いものであった。
【0006】
また、微小領域で発生した散乱光を高精度に集光するための光学系を具備する必要もあるので、構成がより複雑化、煩雑化し易く、この点においても大型化に繋がってしまうものであった。また、光学系の特性や取付精度等が散乱光の集光に影響を与え易いので、パーティクルを精度良く計測することが難しい場合もあった。
【0007】
本発明は、このような事情に考慮してなされたもので、その目的は、小型化及び消費電力の低減化を図ることができるうえ、パーティクルを安定して精度良く計測することができるパーティクルカウンタを提供することである。
【課題を解決するための手段】
【0008】
本発明は、前記課題を解決するために以下の手段を提供する。
(1)本発明に係るパーティクルカウンタは、試料気体の流動経路上に配設され、該試料気体を内部通過させる内部通路が形成されたフローセルと、前記内部通路の内面に形成された観察面を撮像する撮像部と、前記内部通路内を通過している前記試料気体に向けて光束を平行光状態で照射させると共に、該試料気体中に含まれるパーティクルの有無に基づいて前記観察面に該パーティクルの陰影を生じさせる照射部と、前記撮像部で撮像された撮像画像の経時的変化に基づいて、前記パーティクルを計測する計測部と、を備えていることを特徴とする。
【0009】
本発明に係るパーティクルカウンタによれば、フローセルが試料気体の流動経路上に配設されているので、フローセルの内部通路内に試料気体を自然に効率良く導くことができ、該内部通路を通じてフローセル内を内部通過させることができる。そして照射部は、内部通路内を通過している試料気体に向けて光束を平行光状態で照射する。するとこの光束は、試料気体を横切るように通過した後、内部通路の観察面に到達して該観察面を照明する。そして、撮像部がこの照明された観察面の撮像を行う。
【0010】
ここで、フローセル内を内部通過している試料気体中にパーティクルが含まれていない場合には、光束は途中でパーティクルに遮られることなく観察面に到達するので、該観察面にはパーティクルの陰影が生じることがない。一方、試料気体中にパーティクルが含まれている場合には、光束の一部が途中でパーティクルによって遮られてしまい観察面に到達しなくなってしまう。そのため、観察面にはパーティクルの数やサイズ等に応じた陰影が生じることとなる。
従って、撮像部によって撮像された観察面の撮像画像に、フローセルの内部通路内を通過している試料気体にパーティクルが含まれているか否かの情報を反映させることができるうえ、含まれている場合にはその数やサイズ等についての情報も反映させることができる。従って、計測部はこの撮像画像の経時的変化に基づいて、パーティクルの計測を正確に行うことができる。
【0011】
特に、従来のように散乱光に基づいてパーティクルを計測する方式ではないので、ポンプやファン等を利用して試料気体を絞り込みながら測定領域に導く必要がない。即ち、観察面を撮像し、その撮像画像の経時的変化に基づいてパーティクルを計測する方式であるので、観察面を微小サイズにする必要がなく、フローセルの内部通路内に試料気体が自然に導入されるのであれば計測は十分可能である。従って、ポンプやファン等の構成が不要であり、小型化及び消費電力の低減化を図ることができる。
また、従来必要とされていた散乱光を集光する光学系も不要であるので、この点においても小型化を図り易い。しかも、光学系の特性や取付精度に何ら影響されずにパーティクルの計測を行えるので、長期的に安定して精度良くパーティクルの計測を行うことができる。
【0012】
(2)上記本発明に係るパーティクルカウンタにおいて、前記照射部が、前記光束としてレーザ光を出射するレーザ光源と、反射角度が変更可能とされ、出射された前記レーザ光を前記試料気体に向けて反射させるMEMSミラーと、を備えていても良い。
【0013】
この場合には、MEMSミラーの反射角度の切替制御を行うことで、レーザ光源から出射されたレーザ光を正確且つ瞬時にフローセルの内部通路を通過している試料気体に向けて反射させることができる。そのため、正確な複数の撮像画像をより連続的に取得することができ、撮像画像の経時的変化が僅かであっても高精度に把握することができる。従って、パーティクルの計測精度を高めることができ、信頼性の高いパーティクルカウンタとすることができる。
また、レーザ光源の作動をON/OFF制御する場合とは異なり、レーザ光の光路をMEMSミラーの反射によって切り替えるので、出力特性が安定した状態のレーザ光を試料気体に向けて照射させることができる。従って、この点においてもパーティクルの計測精度の向上化に繋げることができる。
【0014】
(3)上記本発明に係るパーティクルカウンタにおいて、前記撮像部が、前記MEMSミラーが前記レーザ光を前記試料気体に向けて反射させたタイミングに同期して前記撮像を行っても良い。
【0015】
この場合には、パーティクルの陰影が明瞭に写し出された状態における観察面の撮像画像を取得できるので、パーティクルの計測精度をさらに高めることができる。
【0016】
(4)上記本発明に係るパーティクルカウンタにおいて、前記計測部が、前記撮像画像の輝度分布変化に基づいて前記パーティクルを計測しても良い。
【0017】
この場合には、計測部が撮像画像の輝度分布変化に基づいてパーティクルの計測を行うので、より正確に計測し易い。即ち、上記したように試料気体中にパーティクルが含まれている場合には、観察面にパーティクルの数やサイズ等に応じた陰影が生じるので、撮像画像にはこの陰影に対応した輝度分布が顕著に現れ易い。そのため、経時的に変化する輝度分布変化を利用することで、パーティクルを正確に計測し易い。
【発明の効果】
【0018】
本発明に係るパーティクルカウンタによれば、小型化及び消費電力の低減化を図ることができるうえ、パーティクルを安定して精度良く計測することができる。
【図面の簡単な説明】
【0019】
【図1】本発明に係る実施形態を示す図であって、パーティクルカウンタが設置されているクリーンルームの簡易断面図である。
【図2】図1に示すパーティクルカウンタの構成図である。
【図3】図2に示すパーティクルカウンタの変形例を示す図であって、MEMSミラーを具備する照射部を備えたパーティクルカウンタの構成図である。
【図4】図3に示すMEMSミラーの構成図である。
【発明を実施するための形態】
【0020】
以下、本発明に係るパーティクルカウンタの実施形態について説明する。
なお、本実施形態では、クリーンルーム内に設置され、クリーンルーム内の空気清浄度を管理するシステムとして用いられている場合を例に挙げて説明する。
【0021】
(パーティクルカウンタの構成)
本実施形態のパーティクルカウンタ1は、図1に示すように、クリーンルームR内の天井R1付近に設置されている。
上記クリーンルームRは、室内の空気清浄度が一定レベルに確保された部屋であり、例えば半導体等の電子部品の製造工場、食品工場、医療関係の実験場等として幅広く使用されている。クリーンルームR内の室内圧力は、その用途に応じて室外圧力よりも大きい陽圧、或いは室外圧力よりも小さい陰圧に設定されており、例えば室外からの塵埃の流入や、室内での取り扱う物質が室外に流出すること等を防止している。
【0022】
ところで、クリーンルームR内における天井R1には、図示しない高性能エアフィルタを有し、該フィルタを通じてクリーンルームR内に空気を送り込む送風部2が設けられている。この送風部2によってクリームルームR内には、天井R1から床面R2に向かって一定の方向に流れる気流が生じている。そして、クリーンルームR内のパーティクルP(図2参照)を含む試料空気(試料気体)Sは、この気流の流れに沿ってクリーンルームR内を流動した後、図示しない排気部により室外に排出されている。
なお、送風部2及び排気部は、図示しない制御部によってそれぞれ制御されており、該制御部によってクリーンルームR内の空気清浄度が一定レベルとなるように換気が行われている。
【0023】
パーティクルカウンタ1は、図2に示すように、試料空気Sを内部通過させる内部通路11が形成されたフローセル10と、内部通路11の内面に形成された観察面10aを撮像する撮像部12と、内部通路11内を通過している試料空気Sに向けて光束Lを照射させる照射部13と、撮像部12で撮像された撮像画像の経時的変化に基づいて試料空気Sに含まれるパーティクルPを計測する計測部14と、を備えている。
なお、パーティクルPとは、例えば微粒子状の塵埃や、細菌やウイルス等の浮遊微生物等である。
【0024】
フローセル10は、例えば光学的に透明な材料によって上下が開口した筒状に形成されており、上部開口部側から試料空気Sが導入され、下部開口部側から試料空気Sが抜けでるようになっている。なお、図示の例では、四角筒状に形成されているが、それ以外の多角筒状であっても構わないし、円筒状や楕円状に形成されていても構わない。
【0025】
そしてこのフローセル10は、上記送風部2の下方に位置するように設置されている。これにより、送風部2によって作り出された気流に沿って流動する試料空気Sは、上部開口部からフローセル10の内部通路11内に自然と導入されて内部通路11内を通過することが可能とされている。
なお、フローセル10の設置位置は、送風部2の下方に限定されるものではなく、クリーンルームR内を流動する試料空気Sの流動経路上に設置されていれば構わない。
【0026】
フローセル10の内部通路11を画成する内面の1つには、上記観察面10aが形成されている。この観察面10aは、上記光束Lによって照明されるスクリーン面であり、例えば遮光材料が被膜されることで形成されている。
【0027】
撮像部12は、例えばCCD等の固体撮像素子であり、フローセル10に隣接して配置され、フローセル10の外部から上記観察面10aの撮像を行っている。そして、撮像部12は、撮像した画像を電気信号に変換し、撮像画像として計測部14に送っている。そして、上記したように計測部14がこの送られてきた撮像画像の経時的変化に基づいてパーティクルPの計測を行っている。
照射部13は、フローセル10の外部から内部通路11内を通過している試料空気Sに向けて光束Lを平行光状態で照射し、試料空気Sに含まれるパーティクルPの有無に基づいて上記観察面10aにパーティクルPの陰影を生じさせている。
【0028】
(パーティクルカウンタによる計測)
次に、上述したパーティクルカウンタ1を利用して、クリーンルームR内のパーティクルPを計測すると共に空気清浄度を一定レベルに維持する場合について説明する。
まず、図1に示すようにフローセル10がクリーンルームR内の天井R1に設けられた送風部2の下方に配置されているので、図2に示すようにクリーンルームR内の試料空気Sは送風部2によって作り出された気流に乗って流動し、上部開口部からフローセル10の内部通路11内に自然と効率良く導入される。そして、この導入された試料空気Sは、フローセル10の内部通路11を通った後、下部開口部からフローセル10の外部に抜け出る。そして、フローセル10を通過した試料空気Sは、クリーンルームR内の床面R2付近に達した後、排気部によってクリーンルームR外に排出される。
【0029】
ところで照射部13は、フローセル10の内部通路11内を通過している試料空気Sに向けて、光束Lを平行光状態で周期的或いは連続的に照射している。するとこの光束Lは、試料空気Sを横切るように通過した後、内部通路11の観察面10aに到達して該観察面10aを照明する。そして、撮像部12は、この照明された観察面10aの撮像を行い、撮像画像を電気信号に変換して計測部14を送っている。
【0030】
ここで、フローセル10内を内部通過している試料空気S中にパーティクルPが含まれていない場合、照射された光束Lは途中でパーティクルPに遮られることなく観察面10aに到達するので、該観察面10aにはパーティクルPの陰影が生じることがない。一方、試料空気S中にパーティクルPが含まれている場合には、光束Lの一部が途中でパーティクルPによって遮られてしまい観察面10aに到達しなくなってしまう。そのため、観察面10aにはパーティクルPの数やサイズ等に応じた陰影が生じることとなる。
【0031】
なお、光束Lは平行光であるので直進性があり、一部がパーティクルPによって遮られてしまったとしても、遮られなかった部分がパーティクルPを回りこむように直進し難い。そのため、観察面10aに上記陰影を明瞭に写し出し易い。
【0032】
従って、撮像部12によって撮像された観察面10aの観察データに、フローセル10の内部通路11内を通過している試料空気SにパーティクルPが含まれているか否かの情報を反映させることができるうえ、含まれている場合にはその数やサイズ等についての情報も反映させることができる。よって、計測部14は、送られてきた撮像画像の経時的変化に基づいて、パーティクルPの計測を正確に行うことができる。
そして、制御部は計測部14による計測結果に基づいて、送風部2及び排気部を制御してクリーンルームR内の換気量を調節することで、クリーンルームR内の空気清浄度を一定レベルに維持することができる。
【0033】
特に、本実施形態のパーティクルカウンタ1によれば、従来のように散乱光に基づいてパーティクルPを計測する方式ではないので、ポンプやファン等を使用して試料空気Sを絞り込みながら測定領域に導く必要がない。即ち、観察面10aを撮像し、その撮像画像の経時的変化に基づいてパーティクルPを計測する方式であるので、観察面10aを微小サイズにする必要がなく、フローセル10の内部通路11内に試料空気Sが自然に導入されるのであれば計測は十分可能である。従って、ポンプやファン等の構成が不要であり、小型化及び消費電力の低減化を図ることができる。
【0034】
また、従来必要とされていた散乱光を集光する光学系も不要であるので、この点においても小型化を図り易い。しかも、光学系の特性や取付精度に何ら影響されずにパーティクルPの計測を行えるので、長期的に安定して精度良くパーティクルPの計測を行うことができる。
【0035】
なお、上記実施形態において、図3に示すように照射部20が、上記光束Lとしてレーザ光L1を出射するレーザ光源21と、出射されたレーザ光L1をフローセル10に向けて反射させて、内部通路11内を通過している試料空気Sに照射させるMEMSミラー22と、で構成されていても構わない。
【0036】
レーザ光源21は、上記MEMSミラー22に向けて、所定の波長のレーザ光L1を所定の出力で出射するものであって、公知のものを採用することが可能である。
MEMSミラー22は、MEMS(Micro Electro Mechanical System)技術を用いて作製されたものであって、図4に示すように、本実施形態では電磁力を利用してミラー部25を振動させることで反射角度を任意の角度に変更し、レーザ光L1を走査させる電磁方式の光スキャナデバイスとされている。
【0037】
このMEMSミラー22は、ミラー部25が形成された平面視矩形状の可動板26と、一対の内側梁部27を介して可動板26を支持する可動フレーム部28と、一対の外側梁部29を介して可動フレーム部28を支持する固定フレーム部30と、を備えている。
可動板26、内側梁部27、可動フレーム部28、外側梁部29及び固定フレーム部30は、例えば半導体技術によって同一のSOI(Silicon on Insulator)基板から一体的に形成されている。
【0038】
上記ミラー部25は、例えば金属材料を被膜することで形成されたものであり、可動板26の表面に形成されている。一対の内側梁部27は、可動板26を間に挟んで該可動板26の平面に沿うX軸方向に並ぶように配設され、可動板26と可動フレーム部28とを連結していると共にX軸回りに捩じれ変形可能とされている。
そのため、可動板26は、一対の内側梁部27を介して可動フレーム部28に対してX軸回りに回転可能とされている。なお、可動フレーム部28は、可動板26を囲繞する枠状に形成されており、上記したように一対の内側梁部27を介して可動板26を回転可能に支持している。
【0039】
一対の外側梁部29は、可動フレーム部28を間に挟んで、可動板26の平面に沿い且つ上記X軸に直交するY軸方向に並ぶように配設され、可動フレーム部28と固定フレームと連結していると共にY軸回りに捩じれ変形可能とされている。
そのため、可動フレーム部28は、一対の外側梁部29を介して固定フレーム部30に対してY軸回りに回転可能とされている。なお、固定フレーム部30は、可動フレーム部28を囲繞する枠状に形成されており、上記したように一対の外側梁部29を介して可動フレーム部28を回転可能に支持している。
上述したように、可動板26はX軸回り及びY軸回りにそれぞれ回転可能とされている。従って、ミラー部25はX軸及びY軸の2軸回りに回転傾斜可能とされている。
【0040】
ところで、固定フレーム部30の外側には、永久磁石等の2組の一対の磁性体31、32が図示しないヨークに固定された状態で配置されている。このうち一対の磁性体31は固定フレーム部30を間に挟んで上記X軸方向に並ぶように配置され、一対の磁性体32は固定フレーム部30を間に挟んで上記Y軸方向に並ぶように配置されている。
また、一対の磁性体31は、互いに極性が異なっており、Y軸方向に沿って配置された外側梁部29に対して直交する向きに磁界を作用させている。一方、一対の磁性体32は、互いに極性が異なっており、X軸方向に沿って配置された内側梁部27に対して直交する向きに磁界を作用させている。
【0041】
また、固定フレーム部30には、2つの電極パッド35、36が可動フレーム部28を間に挟んでY軸方向に並ぶように形成されている。これら2つの電極パッド35、36には、それぞれコイル部35a、36aが電気的接続されている。
具体的には、一方の電極パッド35に接続されたコイル部35aは、一方の外側梁部29、可動フレーム部28及び一方の内側梁部27を介して可動板26に引き回されるように形成されると共に、可動板26上においてミラー部25を囲んでいる。これに対して、他方の電極パッド36に接続されたコイル部36aは、他方の外側梁部29を介して可動フレーム部28に引き回されるように形成されると共に、可動フレーム部28を周回するように形成されている。
【0042】
このように構成された照射部20により、内部通路11内を通過している試料空気Sに向けてレーザ光L1を照射する場合には、図3に示すように、MEMSミラー22の反射角度の切替制御を行うことで、レーザ光源21から出射されたレーザ光L1の光路を変えて、試料空気Sに向けて照射させることができる。
具体的には、外側梁部29及び内側梁部27に対してそれぞれ直交する方向に磁界が作用しているので、電極パッド35、36を介してコイル部35a、36aにそれぞれ電流を流すと、電磁力が働いて回転トルクが生じ、外側梁部29及び内側梁部27をそれぞれ捩り変形させることが可能とされている。
これにより、ミラー部25をX軸及びY軸の2軸回りに回転傾斜させることができ、レーザ光L1の反射角度を変化させることができる。この際、ミラー部25は、内側梁部27及び外側梁部29の弾性復元力が電磁力に釣り合う位置まで2軸回りに回転傾斜する。そのため、上記電流の大きさを制御することで、ミラー部25の2軸回りにおける傾斜角度を任意に変化させることができる。
【0043】
従って、本実施形態のMEMSミラー22によれば、電極パッド35、36に流す電流値を制御することで、ミラー部25の反射角度の制御を高精度に行うことができ、レーザ光L1を正確且つ瞬時に試料空気Sに向けて照射させることができる。
そのため、正確な複数の撮像画像をより連続的に取得することができ、撮像画像の経時的変化をより高精度に把握することができる。従って、パーティクルPの計測精度を高めることができ、信頼性の高いパーティクルカウンタ1とすることができる。
【0044】
また、レーザ光源21の作動をON/OFF制御する場合とは異なり、レーザ光L1の光路をMEMSミラー22の反射によって切り替えるので、出力特性が安定した状態のレーザ光L1を試料空気Sに向けて照射させることができる。従って、この点においてもパーティクルPの計測精度の向上化に繋げることができる。
【0045】
なお、上記のように照射部20を構成した場合、MEMSミラー22がレーザ光L1を試料空気Sに向けて反射させたタイミングに同期させて撮像部12が撮像を行うようにしても構わない。この場合には、パーティクルPの陰影がより明瞭に写し出された状態における観察面10aの撮像画像を取得できるので、パーティクルPの計測精度をさらに高めることができる。
【0046】
また、上記実施形態において、計測部14が取得した撮像画像の輝度分布変化に基づいてパーティクルPの計測を行っても構わない。
上記したように、試料空気S中にパーティクルPが含まれている場合、光束Lの一部がパーティクルPによって遮られてしまうので、観察面10aにはパーティクルPの数やサイズ等に応じた陰影が生じる。そのため、観察画像にはこの陰影に対応した輝度分布が顕著に生じる。従って、計測部14は、この経時的に変化する輝度分布変化に基づいてパーティクルPをより正確に計測し易くなる。
【0047】
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
【0048】
例えば、上記実施形態では、パーティクルカウンタ1をクリーンルームR内に設置し、試料空気S中に含まれる微粒子状の塵埃等のパーティクルPを計測することで、クリーンルームR内の清浄度を一定レベルとする場合を例に挙げて説明したが、この場合に限定されるものではない。例えば、空気ではなく特定のガス等の試料気体中に含まれるパーティクルPを計測しても構わない。具体的には、成膜装置等に流入する特定のガスに含まれるパーティクルPを計測することができる。これにより、構成を複雑にすることなく精度良くパーティクルPを計測することができ、特定のガス内の不純物の検出等を高精度に行うことが可能である。
【0049】
また、上記実施形態ではフローセル10を光学的に透明な材料で形成したが、この材料に限定されるものではなく、光を透過させない材料で形成しても良い。この場合には、照射部13、20及び撮像部をフローセル10に一体的に組み合わせて、観察面10aに向けての光束Lの照射と、観察面10aの撮像を行えるように構成すれば良い。
【0050】
また、MEMSミラー22を利用して照射部20を構成する場合、上記実施形態ではミラー部25をX軸及びY軸の2軸回りに回転傾斜させたが、1軸回りに回転傾斜させる構成としても構わない。また、可動側にコイル部35a、36aを配置し、且つ固定側に磁性体31、32を配置した構成としたが、これとは逆に可動側に磁性体31、32を配置し、且つ固定側にコイル部35a、36aを配置した構成としても構わない。
【0051】
更に、電磁力を利用してMEMSミラー22の反射角度を切り替える構成としたが、この場合に限られず、電圧を印加することによる静電力を利用してミラー部25を回転傾斜させることで、反射角度を切り替える静電タイプとしても構わないし、圧電効果を利用して可動板26を変位させ、それによりミラー部25を傾斜させて反射角度を切り替える圧電タイプとしても構わない。
いずれの場合であっても、反射角度を切り替える方式が異なるだけで、レーザ光L1の光路を正確且つ瞬時に変化させて、フローセル10の内部通路11を通過している試料空気Sに向けてレーザ光L1を照射させることができる。
【符号の説明】
【0052】
L…光束
L1…レーザ光源(光束)
P…パーティクル
S…試料空気(試料気体)
1…パーティクルカウンタ
10…フローセル0
10a…フローセルの観察面
11…フローセルの内部通路
12…撮像部
13、20…照射部
14…計測部
21…レーザ光源
22…MEMSミラー

【特許請求の範囲】
【請求項1】
試料気体の流動経路上に配設され、該試料気体を内部通過させる内部通路が形成されたフローセルと、
前記内部通路の内面に形成された観察面を撮像する撮像部と、
前記内部通路内を通過している前記試料気体に向けて光束を平行光状態で照射させると共に、該試料気体中に含まれるパーティクルの有無に基づいて前記観察面に該パーティクルの陰影を生じさせる照射部と、
前記撮像部で撮像された撮像画像の経時的変化に基づいて、前記パーティクルを計測する計測部と、を備えていることを特徴とするパーティクルカウンタ。
【請求項2】
請求項1に記載のパーティクルカウンタにおいて、
前記照射部は、
前記光束としてレーザ光を出射するレーザ光源と、
反射角度が変更可能とされ、出射された前記レーザ光を前記試料気体に向けて反射させるMEMSミラーと、を備えていることを特徴とするパーティクルカウンタ。
【請求項3】
請求項2に記載のパーティクルカウンタにおいて、
前記撮像部は、前記MEMSミラーが前記レーザ光を前記試料気体に向けて反射させたタイミングに同期して前記撮像を行うことを特徴とするパーティクルカウンタ。
【請求項4】
請求項1から3のいずれか1項に記載のパーティクルカウンタにおいて、
前記計測部は、前記撮像画像の輝度分布変化に基づいて前記パーティクルを計測することを特徴とするパーティクルカウンタ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−167945(P2012−167945A)
【公開日】平成24年9月6日(2012.9.6)
【国際特許分類】
【出願番号】特願2011−27094(P2011−27094)
【出願日】平成23年2月10日(2011.2.10)
【出願人】(000002325)セイコーインスツル株式会社 (3,629)
【Fターム(参考)】